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Abstract

We investigate whether it is possible to improve the

performance of automated facial forensic sketch matching

by learning from examples of facial forgetting over time.

Forensic facial sketch recognition is a key capability for

law enforcement, but remains an unsolved problem. It is

extremely challenging because there are three distinct con-

tributors to the domain gap between forensic sketches and

photos: The well-studied sketch-photo modality gap, and

the less studied gaps due to (i) the forgetting process of the

eye-witness and (ii) their inability to elucidate their mem-

ory. In this paper, we address the memory problem head on

by introducing a database of 400 forensic sketches created

at different time-delays. Based on this database we build

a model to reverse the forgetting process. Surprisingly, we

show that it is possible to systematically “un-forget” facial

details. Moreover, it is possible to apply this model to dra-

matically improve forensic sketch recognition in practice:

we achieve the state of the art results when matching 195

benchmark forensic sketches against corresponding photos

and a 10,030 mugshot database.

1. Introduction

Facial sketch recognition is an important law enforce-

ment tool for determining the identity of criminals where

only an eyewitness account of the suspect is available. In

this situation, a forensic sketch artist renders the face of the

suspect by hand or with compositing software based on eye-

witness description. The facial sketch is then disseminated

in the media, but the crucial capability is to then identify the

suspect by matching it against a photo mugshot database.

Motivated by this, the computer vision [12] and biomet-

rics [2] fields have extensively studied sketch to photo face

matching. However, practical matching of forensic sketches

to photo databases remains an unsolved question. This is

because studies have primarily focused on matching viewed

sketches rather than the rarer forensic sketches. Viewed

sketches such as those in the popular CUHK [23] database

are drawn by artists while viewing a photo. As such there is

no forgetting issue, and the sketches are accurate renditions

of the subject. The cross-modal sketch-photo gap is thus

small, and viewed sketches are relatively easy to match – re-

sulting in benchmark performance saturated at near-perfect

[1, 2, 4, 12]. Forensic sketches are drawn based on eye-

witness description, possibly days after the event. Despite

being the practically relevant variant of the problem for law

enforcement, forensic sketch matching remains both rela-

tively unstudied and unsolved. It is a much harder and un-

solved problem due to the sketch-photo gap being widened

by: (i) forgotten / inaccurate memory of facial details [7],

and (ii) imperfect communication of memory [5] (whether

to a human sketch-artist or software compositor [7]). Never-

theless, it is relatively unstudied largely due to lesser avail-

ability of forensic sketch benchmark databases, which is

why we introduce a new forensic sketch database.

In computer vision, facial sketch-photo matching has

been studied extensively using a variety of approaches in-

cluding invariant feature engineering [1, 2, 4, 12], cross-

modal regression/synthesis [22, 23] and shared subspace

learning [20]. These contributions address the sketch/photo

modality gap, but do not address the issue of forgotten or

inaccurately remembered details due to imperfect memory.

In contrast, psychology [25] and forensic psychology [6]

have studied the reliability of different facial features in hu-

man face matching, and the fading of memory with time [7].

This has provided some insights into human recognition (in-

ternal facial features are more important overall), and the

reliability of human memory, for example that memory fi-

delity drops rapidly after a few hours [7]. This means that

forensic sketches are very inaccurate in practice, because

they are usually taken days after the event [6, 7]. Thus the

memory gap is the key underlying problem to solve.

Motivated by these studies in human memory and recog-

nition, we investigate here whether it is possible to bring

learning and computer vision techniques to bear to ame-

liorate the memory gap problem. To disentangle the three

factors (cross-modal, forgetting, and imperfect communica-

tion) in the forensic sketch/photo gap, we introduce a new
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Figure 1. Database and approach overview. We first learn a projection for “un-forgetting”, as well as modality and description gap (top).

We apply this projection to improve (un-forget) forensic sketches before matching against photos (below). Reconstructed sketch (red) is a

closer match to the true photo (bottom left) than the input forensic sketch (bottom right) (visualisation with HOGgles [21]).

facial sketch memory gap database that contains 100 sub-

jects. Uniquely, each subject has a photo, a viewed sketch,

a 1-hour delay sketch, a 24-hour delay sketch and an un-

viewed sketch. Based on this database, we investigate the

question of whether memory transience is random (i.e., all

memory errors are equally likely), or there is any system-

aticity in the forgetting process (i.e., misremembered details

occur with some kind of predictable pattern that can be ex-

ploited). Somewhat surprisingly, we demonstrate that it is

possible for a machine learning model to input a forensic

sketch, and to some extent reverse the forgetting process to

produce a more accurate sketch that is easier to match.

Based on our memory gap database and model, we aim

to improve forensic sketch to mugshot matching: by mod-

elling the photo-sketch modality gap, imperfect communi-

cation gap and – uniquely – by modelling a map from mem-

ories of old to recently seen faces to correct misremembered

facial details. Since forgetting dynamics differ across time

periods [7], it is unclear how to model the memory gap

data: a single model covering forgetting across different

time-periods is too coarse, but a distinct model of the forget-

ting in time-slice of the database is too specific. Similarly,

the overall forensic sketch matching task spans modality,

communication and memory gaps. An intuitive approach

would therefore be to apply in sequence multiple models

trained to span each of these gaps. We show that while this

is effective, a better solution in practice is to apply multi-

task learning [24] to build a single model trained to span

the longer 24h memory gap, but with the others (short-term

memory, modality and communication) as auxiliary tasks.

Finally, we demonstrate the practical value of these contri-

butions by transferring the model learned on our memory

gap database to a realistic forensic task [11, 12] of match-

ing 195 forensic sketches against corresponding photos and

a 10,030-mugshot database. The results demonstrate a large

improvement over the previous state of the art. An overview

of our proposed framework is illustrated in Figure 1.

2. Related work

Facial sketch-photo recognition: Studies on matching fa-

cial sketches to photos can be classified based on the type

of sketches used: viewed, semi-forensic and forensic, and

whether the sketches are hand drawn, or computer com-

posited. The majority of previous studies have focused

on viewed sketches due to being an easier task with ac-

cessible benchmark databases. Representative approaches

to viewed sketch recognition include bridging the gap with

MRF-based photo-sketch synthesis, [23], learning common

subspace for comparison with PLS [20], or engineered new

invariant descriptors [8]. For further details, we refer the
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reader to the survey in [17]. Recognition rates on the main

viewed sketch benchmarks [23] have reached 100% [8], so

viewed sketch recognition can be considered solved.

Forensic sketch face recognition: One of the earliest stud-

ies to discuss automatically matching forensic sketches with

photos was [10]. It highlighted the importance, as well

as complexity and difficulty of forensic sketch based face

recognition. The first significant demonstration of auto-

mated forensic sketch matching was [12], which combined

feature engineering (SIFT and LBP) with a discriminative

(LFDA) method to learn a weighting that maximised iden-

tification accuracy. Later studies such as [2] improved these

results, again combining feature engineering (Weber and

Wavelet descriptors) plus the discriminative learning (ge-

netic algorithms) strategy to maximise matching accuracy.

Unlike viewed sketches, forensic sketch databases are

few and small in size. The main sketch/photo databases

are 159 pairs identified by [12], and 190 pairs in the IIIT-

D database [2]. A realistic evaluation of sketch-based face

matching should also include a large pool of mugshots to

match against, in addition to the true photo corresponding to

each sketch. Despite this, only a few studies have evaluated

forensic sketch matching algorithms in this way. Notably

[12], which trained a matching model on viewed sketches

and then tested matching 159 forensic sketches against cor-

responding photos and a 10,030 mugshot database. In this

paper we also evaluate our approach in this rigorous way,

and show that the results can be significantly improved by

explicitly modelling the human visual memory components.

Regression models: Regression models are widely

used in cross-domain face recognition [17]. For facial

sketch matching, regression models may provide facial

sketch↔photo synthesis [22] to support matching, for ex-

ample via support vector regression (SVR) [26]. Alterna-

tively, Partial Least Squares (PLS) models may be used to

map images in each modality to a common subspace where

they are more comparable [20]. Although widely and effec-

tively used, all prior work has focused on regression mod-

elling to tackle the modality-gap problem rather than the

memory-gap problem. In this paper, we exploit Gaussian

Process regression to deal with both the memory-gap and

the modality-gap components in forensic sketch matching.

Facial Attributes: Study of facial attributes [14, 16] is

a topical problem in computer vision. It is also relevant

to forensic sketch recognition because encoding sketches

and photos in terms of facial attributes can help to bridge

the sketch/photo modality gap [18], or prune the matching

space [12]. However, attributes are vulnerable to forgetting

as well, so the attributes of a sketch may mismatch those

of the corresponding photo even if they are perfectly de-

tectable by computer vision techniques.

Human memory and forensic sketches: Studies have

shown the ability of individuals to recognise faces depends

on different facial features according to the level of famil-

iarity [25]. Internal facial features are important for identifi-

cation of familiar faces, and external features for unfamiliar

faces [6]. It remains to be seen if/how these findings trans-

late to automatic face recognition, so we use whole face

images in our study. With regards to the forgetting pro-

cess, forensic psychology studies have found that memory

fidelity drops dramatically between the first hour and first 24

hours after witnessing a face. However, in practice forensic

sketches are rarely made within the first day [7]. Thus, any

mechanism capable of bridging this gap automatically is ex-

pected to both have a large impact on quantitative recogni-

tion performance and forensic police work in practice.

Contributions: Overall, our contributions are as follows:

(i) We present a new memory gap facial sketch database

with 100 subjects each with a photo and four sketches that

disentangle different aspects of the forensic sketch gap (400

sketches in total). (ii) We use this database to demonstrate

that there is systematicity in facial forgetting, by showing

that inaccurate forensic facial sketches can be automati-

cally improved by machine learning methods trained to re-

cover ‘recent’ from ‘old’ face memories. (iii) We trans-

fer the learned memory reconstruction models to a realistic

forensic sketch matching benchmark. The results signifi-

cantly outperform the previous state of the art [11, 12, 15]

at matching forensic sketches against corresponding photos

and a large 10,030 mugshot database.

3. Memory-Aware Facial Sketch Modeling

The forensic sketch-photo matching task is compli-

cated by three distinct challenges. Photo/sketch modal-

ity change, forgetting, and communication (of memory to

sketch artist/compositing software) issues all contribute.

We create a dataset designed to disentangle these issues.

It contains N subjects, with photos Dp = {xp
i }

N

i=1
and

sketches drawn with different conditions Ds = {xt
i}

N

i=1
,

t = (v)iewed, (1) hour, (24) hour and (u)nviewed. Each

image is assumed to be represented by a d-dimensional fea-

ture vector x. The task of nearest-neighbour (NN) matching

a viewed sketch xt=v to a photo database would be

i∗NN = argmin
i

|xv − x
p
i | . (1)

Studies focusing on bridging the modality gap by linear

regression-based synthesis or linear subspace projection

aim to solve a similar task, after learning a suitable regres-

sion matrix W v or projections W v and W p respectively:

i∗map = argmin
i

|W vxv −W px
p
i | . (2)

Memory Modelling: Making use of our memory-gap
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database, we can separate contributing components of the

forensic-sketch gap. For example, training W v→p in

W v→p = argmin
Wv→p

∑

i

‖xp
i −W v→pxv

i ‖
2

2
(3)

is the conventional task of learning to bridge the modality

gap between photos and viewed sketches. Training Wu→v

would be learning to correct the communication gap. While

training W 24→v in

W 24→v = argmin
W 24→v

∑

i

∥

∥xv
i −W 24→vx24

i

∥

∥

2

2
(4)

is learning to correct 24 hours worth of transience, inde-

pendent of the modality or communication gap. Given the

conditions in our memory-gap database, there are a vari-

ety of potential tasks (10 in total) including: correcting the

modality v → p or short term memory gap 1 → v; reducing

or completely correcting the long-term memory gap 24 → 1
or 24 → v respectively; and full forensic sketch matching

u → p (see Sec. 5.1 for full list). We will learn all 10 tasks

allowed by our database.

Mapping Strategy: Rather than the most common lin-

ear projection approach to these learning tasks [20], we

use Gaussian Process Regression (GPR) [19]. We take this

approach because: (i) GPR provides a more flexible non-

linear mapping, and importantly (ii) as a Bayesian regres-

sion framework, GPR provides a distribution over the re-

construction rather than a single point estimate. This uncer-

tainty metric at each point of the reconstruction turns out

to be important to improve matching performance, by auto-

matically weighting each feature according to its reliability.

Exploiting Multiple Models: As mentioned earlier, our

memory-gap database provides 10 potential modelling

tasks. The most obvious ways to use these for practical

forensic sketch matching would be: (i) apply the model

learned for direct forensic sketch-photo matching u → p,

or (ii) given multiple models trained to correct the differ-

ent sources of error, sequentially apply them to correct each

source of error in turn, e.g., u → 24 → 1 → v → p.

Clearly some of these tasks are related (e.g., tasks 1 → v,

24 → 1, 24 → v span different steps of forgetting). So an

alternative approach that will turn out to be better is to learn

all the tasks together in a multi-task learning framework. In

this way each task shares information with – is regularised

by – the others. Specifically, we will jointly learn the tasks

with Multi-Task Gaussian Process Regression (MTL-GPR).

3.1. Improving Forgotten Faces with MTL­GPR

Single Task Modelling: GP regression can be applied to

cross-modal/memory-gap problems such as those in Eqs. 2-

4, but learning a non-linear projection. Denoting now fea-

tures in input and target conditions as x and y respectively,

our database provides training pairs D = {y,x}. For any

query point x∗ the GPR prediction for y∗ is:

p(y∗|x∗, D) ∼ N (kT
∗
K−1y,k∗∗ − kT

∗
K−1k∗) (5)

where matrix K is the covariances at all pairs of train

points, vector k∗ is the train-test covariances, k∗ =
[κ(x∗, x1)...κ(x∗, xN )] and k∗∗ = κ(x∗, x∗). We take

the most common squared-exponential kernel κ(x, x′) =
exp(− 1

2l2
(x − x′)2), and the kernel hyper parameter l can

be tuned by gradient on the marginal likelihood [19].

Multi Task Modelling: In our problem there are 10 dis-

tinct mapping tasks, which we learn together in a MTL-

GPR framework. Following [3], we learn GP regression

with predictions for tasks l and k correlated as:

< fl(x)fk(x
′) > = Kf

lkκ(x, x
′) (6)

Here l and k index any two conditions in our memory-gap

database, and Kf is the 10 × 10 PSD matrix of inter-task

similarities. Standard GP predictions can then be made us-

ing this covariance. Importantly, with this approach, the key

task similarity matrix Kf can also be learned along with the

kernel hyper parameters l via the marginal likelihood [3].

3.2. Matching Forgotten Sketches to Photos

Correcting Inaccurate Memory: For any task provided

by our database, reconstruction is performed by computing

the GP posterior of each target feature. For example, to

improve an unviewed sketch u → v, we would compute

the predictive distribution p(xv
∗
|xu

∗
, D) ∼ N (µx∗

, σ2

x∗

), as

given by Eq. 5. The new sketch would then be given by

the mean of the posterior normal µx∗
, and the confidence of

each feature dimension by the corresponding variance σ2

x∗

.

Matching across Memory or Domain Gap: With this

framework matching can be performed by calculating the

likelihood of each mugshot in the gallery under the poste-

rior predictive distribution of the probe sketch. For exam-

ple, after training on our memory gap database D, we can

use model u → p to match a forensic sketch xu
∗

against a

database of mugshots Xp = {xp
i }

N
i=1

as follows:

• Compute the distribution over the expected photo cor-

responding to the forensic sketch: p(xp|xu
∗
, D).

• Pick the photo with maximum likelihood un-

der this predictive photo distribution: i∗ =
argmax

i

p(xp
i |x

u
∗
, D).

• In practice, we model each dimension of the target in-

dependently with GPR, so this is equivalent to i∗ =
argmax

i

∑

k(x
p
ik − µx∗k

)2/σ2

x∗k
. Where xp

ik, µx∗k
and

σ2

x∗k
respectively are the k−th dimension of the target

photo, posterior predicted photo mean and variance.
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4. Memory gap database

In this section we describe our memory gap database and

its creation procedure in more detail1. 100 subjects are cho-

sen from mugshots.com, which releases mugshots of real

criminals. For each subject one frontal face photo is se-

lected, and four types of sketches are drawn:

Viewed: Sketches are drawn while the artist looks directly

at the mugshot photos.

1 hour: Mugshot photos are viewed by the artist, and

sketches are drawn one hour later. Thus, compared to

viewed sketches, the sketch is ‘corrupted’ by one hour

worth of memory transience.

24 hours: Mugshot photos are viewed by the artist, and

drawn 24-hours later.

Unviewed: Sketches are drawn by an artist based on the de-

scription of an eyewitness who has seen the mugshot photo

immediately before (but does not view it during the sketch-

ing). The artist does not see the photo. In this case, the

memory gap is negligible, but it is the only condition in the

database where the communication gap of imperfect com-

munication between the eyewitness and artist exists.

The reason for this design of the collection procedure is

so that the modality and communication gaps can be iso-

lated (in photo-viewed and viewed-unviewed respectively)

from the memory gap (24h to 1h to viewed). This poten-

tially enables specific models to be built to address each

contributing factor of the forensic sketch challenge.

To build the memory gap database, over 20 art students

are selected to contribute as both sketch artists and eyewit-

ness. Each artist is asked to draw all four kinds of sketches

for each subject. This way the sketches for each mugshot

do not have inter-artist variability, but the drawing order is

such that forensic sketches are fully unviewed.

5. Experiments

5.1. Datasets and Settings

Databases: We study three databases: The contributed

Memory Gap Database (MGDB), where we have also an-

notated each image with 40 binary facial attributes from

the ontology provided by [18]; a Forensic Composite

Database with 51 forensic composite-photo pairs [7], and

the Forensic Sketch and Mugshot Database (FSMD). The

latter consists of two parts: 195 forensic sketch-photo pairs

[2, 12] and a large background gallery of mugshots to search

against, in order to replicate a real-world scenario where

a law-enforcement agency would query a large gallery of

mugshot images with a forensic sketch. We use the same

195 sketch-photo pairs as [12, 18]. The mugshot gallery

used by [11, 12] was not released publicly, so we simulate

1Available to download at http://sketchx.eecs.qmul.ac.uk/downloads.html

this as best as possible by downloading 10,030 mugshots

from mugshots.com (the same source used by [12]).

Memory-Aware Model Training: All sketch and photo

conditions (t=photo, viewed, 1 hour, 24 hour and unviewed)

are used to exhaustively construct the 10 possible recon-

struction tasks. For each task, sketches corresponding to

two-thirds of subjects serve as training data, and the oth-

ers serve as testing data. The 2/3s training subjects and 10

tasks are used to jointly train 10 models via MTL-GPR. We

explore performance on the testing split of Memory Gap

Database, before transferring to FSMD for final evaluation.

Overall ten regression tasks were trained: 1) viewed

sketch to photo, 2) 1 hour sketch to photo, 3) 24 hour sketch

to photo, 4) unviewed sketch to photo, 5) 1 hour to viewed

sketch, 6) 24 hour to viewed sketch, 7) unviewed to viewed

sketch, 8) 24 hour to 1 hour sketch, 9) unviewed to 1 hour

sketch and 10) unviewed to 24 hour sketch. Some of these

are illustrated in Fig. 1.

Features and settings: We normalise all photo and sketch

images to 256×196 and align them by normalising on inte-

rocular distance. Each image is then represented with HoG

features. We compute dense HoG feature over a regular

grid (16×16 step size), which results in a feature vector of

dimension 5,952 for each image. For each image, 40 at-

tributes are also detected using SVM detectors trained using

the ground-truth attributes on the training split [18].

Baselines: In addition to our MTL-GPR memory-aware

model, we also consider alternative regression methods that

could potentially model the gaps across database contexts:

Nearest Neighbour (NN): Direct matching. Ignore the gap.

Linear Regression (LR): Linear (L2 regularised) regres-

sion is the simplest explicit mapping approach.

Polynomial Support Vector Regression (SVR): SVR was

used in [26] to accomplish sketch-photo synthesis.

Polynomial Multi-Task Learning: We use the [24] imple-

mentation of the popular GO-MTL [13] multi-task learner.

By exploiting task relatedness, this may perform better than

SVR. In initial experiments we found polynomial MTL sig-

nificantly better than linear, so we report the former.

(Single Task) Gaussian Process Regression (GPR) [19]:

Compared to the others, GPR provides a non-parametric

probabilistic prediction with an estimate of uncertainty that

can be used for matching as in Sec 3.2.

Sequential GPR: As mentioned in Sec 3, this is the intu-

itive baseline of applying a number of the 10 GPR models

in sequence to correct distinct error sources.

5.2. Memory­Aware Model Analysis

In this section, we analyse the MTL-GPR reconstruction

of faces, as represented by HoG features2. To help inter-

2The analysis could in principle be done with pixels, but this would be

computationally expensive due to higher dimensionality.
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Figure 2. Illustration of facial regions.
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Figure 3. Learned reconstruction reduces sketch/photo gap for

each task in MGDB database: RMSE averaged across full face.

Table 1. RMSE of sketch/reconstruction vs photo according to re-

gions, averaged across all ten tasks in MGDB.
Region Photo v.s. Original Sketch Photo v.s. Projected Sketch

External 0.20± 0.013 0.16±0.025
Chin 0.20± 0.014 0.16±0.023
Internal 0.18± 0.003 0.16±0.015
Mouth 0.17± 0.007 0.16±0.012
Eyes 0.18± 0.003 0.15±0.023
Nose 0.18± 0.011 0.14±0.018

pret the results, we also divide the facial hog feature maps

into external regions and internal regions: external, inter-

nal, eyes, nose, mouth and chin [25], as shown in Fig. 2.

To investigate whether our memory model helps to bridge

the gap between photo and forensic sketch, we calculated

RMSE between sketch/reconstructed sketch and the corre-

sponding photos. The results are shown broken down by

facial region and averaged over tasks (Tab. 1) and aver-

aged over all regions broken down by tasks (Fig. 3). From

these we can see that: (i) Each learned projection task in the

MGDB database reduces the sketch-photo RMSE. (ii) This

demonstrates that sketches drawn at different delays con-

tain some systematic shift that it is possible to reverse, or

it would not be possible to learn a model that consistently

improves RMSE. (iii) Reconstruction consistently improves

RMSE for each distinct semantic facial region.

5.3. Face matching: Memory gap database.

In this section we quantitatively evaluate face matching

performance on the test split of the memory gap database.

As outlined in Sec 5.1, we compare a variety of baselines

to our proposed MTL-GPR and report the rank 1 (perfect

match) accuracy for each of the 10 tasks in Tab. 2. The

row and column give the MGDB image pair (training task).

The column gives the MGDB sketch input for testing, and

the task is always to match against photos using the corre-

sponding training model.

Efficacy of memory-aware models: From Tab. 2, we

can draw the conclusions: (i) Sketch reconstruction with

linear regression does not consistently improve on direct

NN matching, suggesting that a linear projection is insuffi-

cient. (ii) Every non-linear approach to bridging the modal-

ity/memory gap performs better than direct NN matching

with no memory gap model, but among the baseline mem-

ory gap models, there is no clear winner or loser. (iii) Our

MTL-GPR is the clear winner overall, often with significant

margins over the next best (e.g., 87% vs 57% in 24 → v
setting). (iv) That MTL-GPR outperforms regular GPR

demonstrates that there is common information in each of

the distinct tasks that can be extracted and shared. (v) In

some cases the gain from an explicit un-forgetting model is

vast: In the 24 → v setting, performance triples from 29%

to 87% comparing NN matching with MTL-GPR.

Significance of Bayesian Memory Gap Model: One of

the reasons for the GP methods’ good performance is their

ability to account for reconstructed feature reliability in

matching (Sec 3.2). We demonstrate this in Tab. 3, where

we compare performance with and without the use of the

reconstruction variance. Clearly accounting for reconstruc-

tion reliability significantly benefits performance.

Qualitative Analysis: The average variance map across

the database is shown in Fig. 5(right). The model con-

fidently predicts both internal (eyes, mouth) and external

(hair, chin) facial regions [25], while giving less weight to

skin regions (forehead, cheeks), where texture may not be

predictable from the sketch.

The MTL-GPR framework also aims to discover task re-

latedness. The learned task relatedness matrix Kf is shown

in Fig. 5(left). The clear block structure here shows that

the tasks with sketches as target context are much more re-

lated to each other than those with photos as the targets.

The 24 → 1 task is also noticeable as sharing structure with

many of the other sketch predictors (cross structure within

the block).

5.4. Applying Memory­Aware Models to Forensic
Sketch Matching

Matching on Forensic Sketch Database: All ten learned

memory-aware models are transferred to the forensic

sketch database, which includes 195 forensic sketch-photo

pairs. Few experiments have been done on forensic sketch

database, except [18] which focused on using attributes to

bridge the sketch/photo gap. To compare directly with [18],

we evaluate our models on the same 1/3 test split.

The results are shown in Tab. 4, from which we make

the following observations: (i) All our reconstruction mod-

els perform significantly better than 9% with HoG matching

alone, and almost all outperform the 21% of [18]. (ii) Com-
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Target Photo

Good quality sketches

Target Photo

Bad quality sketches

Reconstruction Reconstruction Reconstruction ReconstructionTarget Photo Target Photo

Figure 4. Qualitative results of matching in forensic sketch database. The memory reconstruction model trained on 24 → 1 hour sketches

of MGDB is transferred to forensic sketch database. Reconstruction variance improves matching by focusing on reliable features. These

good sketches were both retrieved at Rank 1 of 10,225 (10,030+195). Bad sketches were retrieved at Rank 1592 and 1800 respectively.

Table 2. Photo-sketch matching on the memory gap database (Rank 1 accuracy, %). Comparing MTL-GPR, GPR, Polynomial MTL,

Polynomial SVR, Linear Regr. and NN. Sketch input is given by column and matched with the model trained on the corresponding cell of

MGDB. Average accuracies over 15 random splits of 68 training and 32 testing subjects. See supplementary for standard deviations.

Accuracy
Viewed 1 Hour 24 Hour Unviewed

MG G- PM PS LR NN MG- G- PM PS LR NN MG G- PM PS LR NN MG G- PM PS LR NN

Photo 99 88 88 90 53 71 96 70 65 56 39 51 90 55 50 52 32 31 86 35 35 38 34 21

Viewed - - - - - - 90 58 63 66 52 51 86 57 44 46 26 31 73 33 32 38 24 21

1 Hour - - - - - - - - - - - - 69 41 44 45 26 31 63 32 29 35 18 21

24 Hour - - - - - - - - - - - - - - - - - - 42 30 30 32 18 21

Table 3. The importance of Bayesian memory modelling: Rank 1

MGDB match results (%) without/with reconstruction confidence.

Average accuracies over 15 random splits of 68 training and 32

testing subjects. See supplementary for standard deviations.

Accuracy Viewed 1h 24h Unviewed

photo 86 / 99 85 / 96 60 / 90 50 / 86

Viewed - 56 / 90 43 / 86 40 / 73

1h - - 38 / 69 36 / 63

24h - - - 28 / 42

Table 4. Matching results (Rank 1 accuracy, %) on forensic sketch

database (1/3 test split) using MTL-GPR / STL-GPR. Compare:

21% from [18] and 9% by direct HoG matching. Average accura-

cies over 15 random splits of 68 training and 32 testing subjects.

See supplementary for standard deviations.

Accuracy Viewed 1h 24h Unviewed

Photo 22 / 35 22 / 34 15 / 40 18 / 41

Viewed - 65 / 48 40 / 50 33 / 48

1h - - 78 / 48 54 / 40

24h - - - 65 / 42

Table 5. Matching results (Rank 1 accuracy, %) on forensic sketch

database (1/3 test split) using sequence of STL-GPR models.
u → 24 u → 24 → 1 u → 24 → 1 → v u → 24 → 1 → v → p
54 28 20 13

24 → 1 24 → 1 → v 24 → 1 → v → p 1 → v → p
56 39 16 16

paring STL-GPR and MTL-GPR, the models trained with

photo targets perform worse when learned jointly, i.e., they

suffer negative transfer from the sketch targets. However,

the models trained with sketch targets generally perform

better, i.e., they successfully share information about bridg-

ing the memory gap. (iii) The best model overall is MTL-

GPR’s 24 → 1, suggesting that the biggest single contribu-

tor to the forensic sketch gap in practice is the longer term

Figure 5. Qualitative results of MTL-GPR model. Left: Estimated

task relatedness Kf . Right: Average reconstruction variance.

forgetting between 1 and 24 hours. The second best is also

memory related 1 → v.

An intuitive alternative way to exploit the tasks learned

in MGDB for forensic sketch matching is to apply the mod-

els in sequence to correct the various sources of error in

forensic sketches. We conduct this experiment for a variety

of possible STL-GPR model sequences (Sec 3). The results

in Tab. 5 show that while all outperform the 9% of direct

matching, none of the multi-step configurations outperform

the best single task of 24 → 1. Which is itself outperformed

by our MTL-GPR 24 → 1 in Tab. 4. Based on this analysis,

we focus on the contribution of the two MTL-GPR memory

models 1 → v and 24 → 1, which we denote Early and

Late, in the final large-scale benchmark experiments.

Matching on Forensic Sketch and Mugshot Database:

We now address the full problem of matching forensic

sketches to a large database of mugshot photos. We com-

pare the results of our Early and Late-Memory MTL-GPR

models to the results of the state of the art LFDA [12] (who

also reported the results of a state of the art commercial sys-
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Table 6. State of the art comparison. Accuracy (%) of matching 49

good forensic sketches against corresponding photos and 10,030

FSMD database mugshots. ∗ Not directly comparable, used a dif-

ferent 53 sketch probe set.

Accuracy Rank 1 Rank 10 Rank 50

MTL-GPR Early-Mem 23 23 33

MTL-GPR Early-Mem+Attr 25 25 35

MTL-GPR Late-Mem 33 33 39

MTL-GPR Late-Mem+Attr 38 42 45

LFDA [12] 17 23 33

LFDA [12]+ gender +race 19 27 45

FaceVACS (reported by[12]) 2 4 8

KPS [11]∗ 4 9 21

Deep Features [9] 2 6 15

DFD [15] 6 13 19

Table 7. Accuracy (%) of matching 51 forensic composites against

corresponding photos and 10,030 FSMD database mugshots.

Accuracy Rank 1 Rank 10 Rank 50

HOG 6 14 20

DFD [15] 2 4 4

MTL-GPR Late-Mem 14 18 26

tem FaceVACS), KPS [11], and DFD [15]. To provide an

additional baseline, we also take the best publicly available

(photo) Deep face recognition model [9] and use it to ex-

tract features for matching. As [12] demonstrated the value

of filtering by soft biometrics, we also further combine our

models with predicted attributes (trained on memory gap

database) with score-level fusion.

In order to compare directly with [12], who break down

results by “good” and “bad” quality sketches, we show re-

sults in Tab. 6 focusing on a good quality subset of sketches.

In Fig. 6, we provide a cumulative match characteristic

(CMC) curve, including results for both all 195 sketches

as well as the 49 good quality sketches. From the results we

can see that: (i) Our memory-gap model significantly sur-

passes state of the art performance, demonstrating that the

model learned on our database can dramatically improve

real forensic sketch matching, (ii) Of the memory-aware

models, the Late-Memory model trained on the 1-24 hour

memory gap performs better, reflecting forensic psychology

conclusions that the first day’s forgetting is significant [7],

(iii) Including predicted facial attributes improves perfor-

mance further, (iv) Using modern deep features with direct

matching now outperforms the commercial FaceVACS re-

sult, but it is significantly worse than both LFDA [12] and

ours: indicating that deep features alone are insufficient to

address forensic sketch matching.

Qualitative Examples: Some qualitative examples of our

matching process using the forensic database are shown

in Fig. 4. Photos and sketches are represented with HoG

features (visualised by HOGgles [21]). The learned mem-

ory reconstruction model predicts the mean and variance of

photo-HOGs. Photos are chosen by their likelihood under

the predicted Gaussian distribution, allowing matching to

take into account the prediction reliability of each feature.

Figure 6. CMC curves for matching Good (49) / All (195) forensic

sketches against corresponding photos and 10,030 FSMD database

mugshots.
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Matching on Forensic Composite Database: Although

our model is trained on sketch rather than software com-

posite faces, we also evaluate whether the learned model

is general enough to improve forensic composite matching.

Tab. 7 shows the results of retrieving 51 composites from

among the same mugshot gallery. Clearly our model still

makes a significant impact on retrieval performance, despite

the sketch-composite domain shift.

6. Conclusions

We investigated two questions: Whether it is possible

to improve facial sketches whose quality is impacted by a

large delay between seeing the face and making the sketch;

and whether such models can be used to improve practical

forensic sketch recognition. We were able to demonstrate

that it is indeed possible to improve facial sketches drawn

after a time-delay, and that this translates into the signifi-

cantly improved state of the art performance on the impor-

tant task of forensic sketch matching.

One limitation of our current work is that each HoG di-

mension is modelled independently, so cross-pixel correla-

tion is not exploited. In future, we would explore richer in-

formation sharing architectures, such as local patches, CRF

smoothing, and multi-task among neighboring pixels. Sec-

ondly, we ultimately exploited the contributions of cross-

modal and communication gaps only implicitly via MTL

sharing. A richer framework more explicitly modelling the

contributing factors should be explored.
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