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Abstract

Estimating blur kernels from real world images is a chal-

lenging problem as the linear image formation assumption

does not hold when significant outliers, such as saturated

pixels and non-Gaussian noise, are present. While some

existing non-blind deblurring algorithms can deal with out-

liers to a certain extent, few blind deblurring methods are

developed to well estimate the blur kernels from the blurred

images with outliers. In this paper, we present an algo-

rithm to address this problem by exploiting reliable edges

and removing outliers in the intermediate latent images,

thereby estimating blur kernels robustly. We analyze the

effects of outliers on kernel estimation and show that most

state-of-the-art blind deblurring methods may recover delta

kernels when blurred images contain significant outliers.

We propose a robust energy function which describes the

properties of outliers for the final latent image restoration.

Furthermore, we show that the proposed algorithm can

be applied to improve existing methods to deblur images

with outliers. Extensive experiments on different kinds of

challenging blurry images with significant amount of out-

liers demonstrate the proposed algorithm performs favor-

ably against the state-of-the-art methods.

1. Introduction

Recent years have witnessed significant advances in

single-image deblurring [13, 15, 18]. The success of state-

of-the-art methods mainly stems from accurate restoration

of sharp edges [3, 5, 14, 30, 36] or strong priors of natural

images and blur kernels [2, 7, 17, 23, 29, 32, 38, 39]. While

these methods are able to deblur natural images well, they

are less effective for blurred inputs with significant amount

of outliers (e.g., saturated areas and non-Gaussian noise) as

illustrated by examples in Figure 1.
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Figure 1. Effects of outliers on blind deblurring. (a) A real cap-

tured blurred image with large saturated regions, e.g., light streaks

and blobs in red boxes. (b)-(e) Intermediate results generated by

Cho and Lee [3], Xu and Jia [36], Xu et al. [38], and Pan et

al. [27]. (f) Salient edges extracted by the proposed algorithm

(shown by Poisson reconstruction). (g)-(h) Deblurred results of

Xu and Jia [36] and Hu et al. [12]. (i) Deblurred result by the

proposed algorithm. (j)-(o) Estimated kernels by Xu and Jia [36],

Krishnan et al. [17], Levin et al. [21], Zhong et al. [40], Xu et

al. [38], Pan et al. [27], and Pan et al. [26]. (p) Estimated kernel by

the proposed algorithm. The red boxes in (a)-(e) and (g)-(h) con-

tain saturated regions (best viewed on high-resolution displays).

The main reason that most algorithms do not perform

well is that the gray levels of the pixels in the bright or

specular regions are clipped to the maximum value (e.g.,

255) during the image formation process due to the limited

quantization range of camera sensors. Thus, the linear blur

model,
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B = I ∗ k + e, (1)

that most deblurring methods assume does not hold for

blurred images containing saturated areas, where B, I , k,

e, and ∗ denote the blurred image, latent image, blur kernel,

noise, and the convolution operator, respectively. In addi-

tion, some dead or hot pixels of camera sensors also affect

the quality of captured images.

The problem with image outliers, especially saturated

pixels, has not received much attention in blind deblurring,

and existing methods mainly address its effect on non-blind

deblurring. Harmeling et al. [9] propose a multi-frame blind

deblurring method by thresholding the blurred image to de-

tect saturated pixels. In [4], Cho et al. present detailed

analysis on image outliers that affect restoration of latent

images, and propose an EM-based non-blind deconvolution

method. Since the pixels of saturated areas cannot be well

described by the linear convolution model (1), Whyte et

al. [34] extend the Richardson-Lucy algorithm [22] by spe-

cific functions. Recently, deep convolutional neural net-

works have been applied to restore latent images [37]. For

blind deblurring, recent work [12] focuses on handling spe-

cific images with low light streaks. This method is effective

when the light streaks can be detected but ineffective if the

saturated regions are large (e.g., bright blobs in Figure 1).

In addition, a text image prior [26] is developed, which is

able to deblur saturated images, but less effective for images

with non-Gaussian noise.

The examples illustrated in Figure 1 reveal one critical

problem with generic and specific blind deblurring meth-

ods (e.g., [12, 26]). Namely, it is difficult to recover the

blur kernel when the blurred image contains large number

of saturated pixels. Furthermore, it is not a coincidence that

the estimated kernels by [17, 21, 27, 36, 38, 40] are close to

delta functions. Analysis and explanations of the estimated

kernels by these methods are presented in Section 4.1.

We note that one specific outlier modeled by the

nonlinear camera response function (CRF) has been ad-

dressed [31]. Although the nonlinear CRF affects kernel

estimation, it can be avoided by using raw camera output,

or alleviated by first applying an inverse response curve ob-

tained from camera calibration [8]. Furthermore, the CRF

estimation process can be estimated before kernel estima-

tion as evidenced in [31], whereas the aforementioned out-

liers, e.g., saturated pixels, cannot be effectively removed in

advance (See Section 4.3). Although some aforementioned

outliers, e.g., impulse noise, can be removed from blurred

images using filters (e.g., median filter), kernels cannot be

accurately estimated from the filtered results [40].

We address the blind deblurring problem for images with

significant outliers such as saturated and clipped areas [4]

and non-Gaussian noise [1] in this paper. In contrast to

existing edge selection methods [3, 27, 36], we propose a

novel scheme to extract reliable edges for kernel estima-

tion, thereby facilitating the subsequent optimization pro-

cess without the effects of outliers. As shown in Figure 1(f),

the selected salient edges contain fewer saturated pixels,

which accordingly lead to a better estimated blur kernel

(Figure 1(q)) and deblurred result with fine textures (Fig-

ure 1(i)).

The contributions of this work are summarized as fol-

lows. First, we propose an algorithm to remove outliers

from selected edges for robust kernel estimation (See Fig-

ure 1(f)). We show that the proposed method is generic and

applicable to existing blind deblurring methods (e.g., [3, 17,

36, 38]) for better performance. In addition, we analyze the

effects of outliers on kernel estimation and show that ex-

isting methods favor delta kernels for such blurred inputs.

Second, we propose a robust deconvolution model accord-

ing to the properties of outliers for latent image restoration.

Third, the proposed method is extended to handle the non-

uniform deblurring problem. Numerous experimental eval-

uations show that the proposed algorithm performs favor-

ably against the state-of-the-art blind deblurring methods.

2. Robust Kernel Estimation

In this section, we present a robust kernel estimation

method within the maximum a posteriori (MAP) framework

to deal with outliers. We note that saturated and clipped

pixels cannot be well described by the linear convolution

model (1), and the non-Gaussian noise can be described by

the noise term e in (1). To establish a proper blur model in-

cluding the aforementioned outliers, we have the following

formulation:

B = f(I ∗ k) + e, (2)

where f(·) can be either a piecewise function describing

the saturated and clipped pixels, i.e., if I ∗ k is within the

dynamic range, f(I ∗k) = I ∗k and otherwise f(I ∗k) is a

non-linear function (e.g., a truncated function which returns

the maximum or minimum intensity of the dynamic range),

or an index function that indicates missing pixels. With this

model, a blur kernel can be estimated by solving

min
I,k

‖B − f(I ∗ k)‖1 + λcEI(I) + γEk(k), (3)

where EI(I) and Ek(k) are regularization terms on the la-

tent image and blur kernel; λc and γ are positive scalar

weights. The ℓ1 norm is used in the first term to handle

non-Gaussian noise [1]. Due to non-linearity of f , it is dif-

ficult to minimize (3) within the conventional MAP frame-

work. In the following, we propose an efficient algorithm

that does not estimate f directly. Central to our method is

to select reliable salient edges (See the part in the blue box

in Figure 2) that satisfy the linear convolution model (1) for

kernel estimation. Figure 2 shows the main steps of the pro-

posed deblurring algorithm. We first describe the proposed

algorithm and then analyze the components in Section 4.
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Figure 2. Main steps of the proposed algorithm. The dotted red line box encloses the process of kernel estimation, and the solid blue line

box encloses our core contribution.

2.1. Update Intermediate Latent Image I

Within the MAP framework, the intermediate image I
can be obtained when the blur kernel k is known,

min
I

‖f(I ∗ k)−B‖1 + λcEI(I). (4)

It is difficult to minimize (4) as f is non-linear and its con-

crete form is assumed to be unknown in this work. To gen-

erate an intermediate image for kernel estimation, we ap-

proximate the data fitting term with ‖I ∗ k − B‖1. This

substitution makes (4) tractable but may lead to the results

with ringing artifacts (See the intermediate images in Fig-

ures 2 and 3). However, we do not need accurate inter-

mediate results at this stage. The proposed edge selection

method (illustrated in Section 2.2) is able to select reliable

edges from this approximated intermediate result for ker-

nel estimation. For the regularization term EI(I), we use

the hyper-Laplacian prior [19] to estimate the intermediate

image. Thus, the intermediate latent image is estimated by

min
I

∑

x

|(I ∗k−B)x|+λc(|(∂xI)x|
0.8+ |(∂yI)x|

0.8), (5)

where the subscript x denotes the spatial location of a pixel.

We use the iteratively re-weighted least squares (IRLS) [19]

method to solve (5). At each iteration, we need to solve the

quadratic problem:

min
I{t}

∑

x

wd(x)|(I
{t} ∗ k −B)x|

2+

λc(w
h
r (x)|(∂xI

{t})x|
2 + wv

r (x)|(∂yI
{t})x|

2),

(6)

where wd(x) = |(I{t−1} ∗ k − B)x|
−1, wh

r (x) =
|(∂xI

{t−1})x|
−1.2, wv

r (x) = |(∂yI
{t−1})x|

−1.2, and t de-

notes the iteration index.

2.2. Update Blur Kernel k

Most state-of-the-art methods either use the gradient

properties [17, 21, 29] or select sharp edges [3, 27, 36] from

the estimated intermediate image I for kernel estimation.

However, those aforementioned methods are less effective

for kernel estimation when the blurred image B contains

numerous saturated or clipped pixels, as these outliers are

salient and considered as important salient edges for ker-

nel estimation (See Figure 1). To address these issues, we

introduce a model to select intermediate salient edges (Sec-

tion 2.2.1) such that tiny details corresponding to small im-

age gradients are removed. We then propose a method to

detect and remove outliers from intermediate salient edges

(Section 2.2.2).

2.2.1 Intermediate salient edge selection

The goal of edge selection in most blind deblurring meth-

ods [3, 36] is to retain large image gradients and remove tiny

details. In this work, we propose a model to select salient

edges from an intermediate image I ,

min
∇S

∑

x

1

2
‖∇S(x)−∇Φ(I(x))‖22+θω(x)‖∇S(x)‖1, (7)

where Φ(·) denotes the operation of shock filter [24];

∇S(x) = (∂xS(x), ∂yS(x))
⊤ corresponds to the gradi-

ents ∇Φ(I(x)) = (∂xΦ(I(x)), ∂yΦ(I(x)))
⊤; ‖∇S(x)‖1 =

|∂xS(x)| + |∂yS(x)| is an anisotropic total variation (TV)

regularizer to preserve the sharp edges; θ is a weight pa-

rameter; and ω(x) = exp(−(r(x))0.8) with

r(x) =
‖
∑

y∈Nh(x) ∇B(y)‖22∑
y∈Nh(x) ‖∇B(y)‖22 + 0.5

. (8)

In the above equation based on [36], B(y) is the blurred

image and Nh(x) is an h × h window centered at pixel x.

A small value of r(x) indicates that the area is flat, whereas

a large value of r(x) suggests that there exist strong image

structures in the local window.

The model in (7) is in spirit similar to edge-preserving

methods [6, 27] that are developed to keep large gradients.

Since our goal is to select gradients from the intermediate

image I , we use gradients as the data fitting term, which

accordingly leads to a closed-form solution of (7) based on

the shrinkage formula:
{

∂xS(x) = sign(∂xΦ(I(x)))max(|∂xΦ(I(x))| − θω(x), 0),
∂yS(x) = sign(∂yΦ(I(x)))max(|∂yΦ(I(x))| − θω(x), 0).

(9)
Thus, a solution of (7) enforces ∇S that only contains gra-

dient values larger than θω(x).

2.2.2 Outliers removal from intermediate salient edges

Although the proposed model in (7) can remove tiny details

and retain salient edges for kernel estimation, it is based

on large gradients and thus only effective for the blurred

images without significant amount of outliers. Figure 3(c)

shows one example that saturated areas are not removed

based on the edges extracted by (9).
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(a) (b) (c) (d) (e) (f) (g)

Figure 3. Removing outliers from salient edges. (a) Blurred image. (b) Intermediate latent image and estimated kernel. (c) Edge map of

salient edges ∇S extracted by (9). (d) Visualization of M. (e) Visualization of M∗R(k). (f) Result after applying M on the edges in (c)

(i.e., M◦∇S). (g) Result after applying (M∗R(k)) on the edges in (c) (i.e., (M∗R(k)) ◦ ∇S).

We present a method to remove outliers from the inter-

mediate salient edges ∇S. As the linear model in (1) does

not hold for blurred images with outliers, a pixel x is likely

to be an outlier if the value of I ∗k−B is large. An intuitive

approach is to apply the thresholding strategy to I ∗ k −B.

That is, we set the value of I ∗ k − B at x to be close to 0
if the value of I ∗ k − B is large at x, and 1 otherwise. As

the aforementioned analysis is similar to the binary classi-

fication problem, we employ the sigmoid function which is

widely used in neural network [10] and logistic regression

for such tasks,

O(x) =
1

1 + aecx
, (10)

where a and c are positive constants. Figure 4(a) shows an

example of O(x). As the sigmoid function monotonically

decreases to 0 when x goes to infinity, we use it to detect

outliers as follows,

M =
1

1 + aec(I∗k−B)2
. (11)

Figure 3(d) shows one example where outliers can be de-

tected using (11) from Figure 3(b).

Since M is computed from the blurred input, it cannot

be directly applied to the extracted salient edges ∇S. We

note that the positions of dark regions in M do not always

correspond to the positions of outliers in an intermediate

edge extracted by (9) due to the influences of blur. Directly

applying M to ∇S is not able to remove outliers effectively

(See Figure 3(f)). To remove outliers from ∇S, we use the

following formula:

∇Sf = (M∗R(k)) ◦ ∇S, (12)

where ◦ denotes a pixel-wise multiplication operator and

R(k) is a mirrored function, which rotates k counterclock-

wise by 180 degrees. The use of M∗R(k) makes the po-

sitions of dark regions in M cover the positions of outliers

in an intermediate edges, and thus remove outliers from ∇S
(See Figure 3(g)). After removing outliers in the edges of an

intermediate image, we approximate f(∇Sf∗k) by ∇Sf∗k.

To further increase the robustness to outliers, we apply M
to the blurred image (outliers are not used for kernel esti-

mation). A blur kernel can thus be estimated by

min
k

‖M ◦ (∇Sf ∗ k −∇B)‖1 + γ‖k‖1. (13)

In (13), the ℓ1 norm is used to preserve the sparsity of blur

kernel k. Similar to (5), we also use the IRLS method to

solve (13).
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Figure 4. A sigmoid function O(x) and the proposed outlier-aware

function ρ(x2) used in final latent image restoration. The values

of a and c in (10) are set to be 0.0055 and 1300.5, respectively.

2.3. Final Latent Image Estimation

Existing methods [1, 36] show that the use of ‖I∗k−B‖1
in deblurring (once the blur kernel is determined) is more

robust to outliers. While such approaches that use this data

fitting cost are able to deal with large Gaussian or impulse

noise [1], they are less effective if blurred images contain

saturated pixels [4]. We note that if the image does not con-

tain outliers, the use of ‖I∗k−B‖22 in (5) is able to generate

high-quality results [16, 19]. We also note that if the image

contains outliers, e.g., saturated areas, useful information in

the regions containing outliers is missing (e.g., the saturated

regions are usually smooth in clear images (Figure 5(f))). A

natural way is to use the regularization term (e.g., the sec-

ond term in (5)) to smooth the regions containing outliers in

the image restoration since the data fidelity is not reliable.

Based on above discussions, our goal is to find a function

ρ(x) that considers the presence of outliers and satisfies: a)

ρ(|(I ∗k−B)x|
2) ≈ |(I ∗k−B)x|

2, if x is not an outlier; b)

ρ(|(I ∗k−B)x|
2) is close to be a constant, if x is an outlier.

We note that the function

ρ(x2) = x2/2− log(σ1 exp(σ2x
2) + 1)/(2σ2), (14)

satisfies the above conditions (See Figure 4(b)) where σ1

and σ2 are positive constants. The image restoration model

is

min
I

∑

x

ρ(|(I ∗k−B)x|
2)+λ(|(∂xI)x|

0.8+ |(∂yI)x|
0.8), (15)

where λ > 0 is a regularization weight.

We use the IRLS method to solve (15). At the t-th itera-

tion, we need to solve the following problem:

min
I{t}

∑

x

wf (|(I
{t−1} ∗ k −B)x|

2)|(I{t} ∗ k −B)x|
2

+λ(wh
r (x)|(∂xI

{t})x|
2 + wv

r (x)|(∂yI
{t})x|

2),

(16)
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(a) Input and kernel (b) TV-ℓ1 result [36] (c) Whyte et al. [34]

PSNR: 19.45 PSNR: 21.71 PSNR: 20.10

(d) Cho et al. [4] (e) Proposed result (f) Ground truth

PSNR: 27.08 PSNR: 27.48

Figure 5. Deblurred results on an image containing saturated ar-

eas. The white boxes shown in (b) contain ringing artifacts.

where wh
r (x) and wv

r (x) are the same as those in (6), and

the weight wf (|(I
{t−1} ∗ k−B)x|

2) is the outlier detection

function M if we set σ1 = a and σ2 = c, which also shows

that (15) is able to deal with outliers.

Figure 5(a) shows an example with several large satu-

rated areas, where the saturated areas are created according

to [4]. Although the TV-ℓ1 method is robust to outliers, e.g.,

impulse noise, the deblurred result in Figure 5(b) shows that

this method is not robust to saturated areas. The deblurred

result by the proposed model based on (15) is visually com-

parable or better than methods in [34] and [4] which are

specifically designed to deal with saturated pixels.

Algorithm 1 Proposed blind deblurring algorithm

Input: Blurred image B.

Output: Latent image I and blur kernel k.

1: Initialize the intermediate image I and kernel k with

the results from the coarser level.

2: for l = 1 → 4 do

3: Estimate I according to (5);

4: Estimate ∇S according to (7);

5: Remove outliers from ∇S according to (12);

6: Estimate k according to (13);

7: end for

8: Estimate the final latent image by solving (16).

Similar to the state-of-the-art methods, we use a coarse-

to-fine approach with an image pyramid [3]. Algorithm 1

presents the main steps for kernel estimation algorithm.

3. Extension to Non-Uniform Deblurring

Based on the geometric camera model [33, 35], the pro-

posed algorithm can be extended to non-uniform deblurring

as follows,

B = f(

N∑

i

µibiI) + e, (17)

where B, I, and e are the vector forms in (2); bi is the

kernel basis induced by a possible camera shake which can

be computed in advance [11]; µi is the weight correspond-

ing to bi; and N is the number of kernel basis. Based

on (17), we replace the terms I∗k and ‖k‖1 with
∑N

i µibiI
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Figure 6. Effects of outliers on kernel estimation. (b) shows the

results of [36] using the signals shown in (a).
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Figure 7. Energy values when the inputs contain outliers or not.

(b)-(c) Energy values of a MAP model [20] when the blurred sig-

nals contain outliers or not.

(µ = {µi}
N
i=1) and ‖µ‖1 in the proposed method described

in Section 2. We use the efficient filter flow [11] together

with the IRLS method described in Section 2.1 to compute

latent images and blur kernels.

4. Analysis of Proposed Algorithm

In this section we analyze how outliers affect kernel es-

timation and explain the steps of the proposed algorithm to

remove outliers for kernel estimation.

4.1. Effects of Outliers on Kernel Estimation

The effects of outliers on restoration of latent images

have been discussed in [4]. In addition to image restoration,

we show and explain why the state-of-the-art blind deblur-

ring methods [3, 7, 17, 21, 36] generate delta functions for

kernel estimation when the blurred images contain outliers.

As illustrated in [20], conventional MAP-based kernel

estimation methods usually perform well for step edges

(See Figure 6(a)) if outliers do not exist. Figure 6(a) shows

one example with 1D signals. As the corrupted signals can-

not be modeled well by the linear convolution model (1), the

state-of-the-art method [36] is less effective in kernel esti-

mation (See Figure 6(b)). Since the solution with the delta

kernel has lower energy (i.e., y-axis in Figure 7(b)), meth-

ods based on linear convolution without considering out-

liers favor such estimates. Numerous state-of-the-art meth-

ods (e.g., [3, 36]) are effective in estimating kernels when

the blurred signals do not contain outliers. This is mainly

because the delta kernel solution has higher objective func-

tion energy values than those of ground truth kernels when

the signals are not corrupted by outliers. The quantitative

results in Figure 7(b) and (c) illustrate that existing MAP-

based deblurring methods are likely to converge to the delta

kernel solutions if the input signals contain outliers.

We propose a sigmoid function (11) to detect the outliers
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 8. Outlier removal methods. (a) Blurred image. (b)-(d)

Edge maps generated by [3], [36], and [27]. (e) and (g) denote the

edge maps by the proposed algorithm without and with M. (f)

Our detected M. (h) Results of [36]. (i)-(j) Ours without and with

M (best viewed on high-resolution displays with zoom-in).
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Figure 9. Application and fast convergence property of the pro-

posed algorithm (See supplemental material for the dataset).

from blurred images. As a result, only the salient edges that

satisfy the linear convolution model are retained for ker-

nel estimation. We note that large gradients do not always

facilitate kernel estimation when a blurred image contains

outliers. As such, we use (12) to remove some large gradi-

ents whose positions correspond to the outliers from inter-

mediate edges ∇S. We carry out several experiments for

validation and one example is shown in Figure 8(a). More

results can be found in the supplemental material.

As saturated areas in Figure 8(a) are salient (e.g., the

white blobs), edge selection methods [3, 36] based on large

gradients are likely to select these areas (Figure 8(b) and

(c)) for kernel estimation. Since the linear convolution

model (1) does not hold for the pixels in the saturated ar-

eas, kernels cannot be estimated well from the salient edges

shown in Figure 8(b) and (c). The estimated kernel in Fig-

ure 8(h) is similar to a delta kernel as discussed above. Al-

though the algorithm [27] adopts an adaptive TV denoising

step to select salient edges, which is similar to the interme-

diate edge selection step (7) of the proposed algorithm, this

method is not able to remove the outliers from salient edges

(Figure 8(d)). Thus, the selected salient edges still contain

saturated pixels which accordingly affect kernel estimation.

We note that although the use of ℓ1 metric norm for data

fitting in kernel estimation can deal with large Gaussian or

impulse noise, this method is less effective (See Figure 8(i))

as it does not remove the saturated areas in the selected

salient edges (See Figure 8(e)). Different from existing edge

selection methods [3, 27, 36], the proposed algorithm does

not necessarily select the salient edges with the largest gra-

dients when blurred image contains saturated areas. As the

pixels in the saturated areas (See Figure 8(a)) cannot be de-

scribed well by the linear convolution model (1), most out-

liers are detected (Figure 8(f)) and removed in the salient

edges by applying (12) although they have large gradients.

4.2. Convergence of Proposed Algorithm

We note that the proposed algorithm without M de-

grades to an edge-based deblurring method for images with-

out outliers. Figure 9(b) shows that the sum of squared

differences (SSD) of an estimated kernel increases with re-

spect to the iteration due to the effects of outliers. Since the

proposed kernel estimation algorithm uses edges where out-

liers are removed as much as possible, the SSD error con-

verges well as shown in Figure 9(b). We show that existing

blind deblurring methods with M have better convergence

properties in Section 4.4.

4.3. Effectiveness of Outlier Detection Method

We note that the intensities of saturated regions (e.g.,

Figure 1(a) or Figure 8(a)) are usually high. Thus, a

straightforward approach is to find the brightest pixels from

a blurred input and discard them before kernel estimation.

Although this simple strategy is able to deal with some

cases [35], it does not remove outliers especially when a

blurred image contains large saturated regions as shown in

Figure 10(a).

As discussed in Section 1, the outlier handling meth-

ods [4, 34] mainly focus on the non-blind image deblurring,

and both approaches use the blind deblurring method [3]

to estimate blur kernels on the image patches without out-

liers. However, it is difficult to select a good image patch

when the outliers are uniformly distributed in a blurred im-

age (e.g., impulse noise). Without good kernel estimates,

clear latent images cannot be recovered well [4, 34]. We

note that [4] involves an outlier detection step as an EM

approach is developed. To clarify the difference, we use

our kernel estimates together with the outlier detection re-

sult of [4] for fair comparisons. Figure 10(b) shows that

some saturated regions are not detected by [4], which ac-

cordingly affect the final deblurred result (Figure 10(e)). In

contrast, the proposed method detects the saturated regions

and recovers the latent image well (Figure 10(f)). In addi-

tion, we show that our method helps improve kernel estima-

tions by [3] in Section 4.4, which accordingly improves the

performance of [4, 34].

4.4. Improvement on Existing Deblurring Methods

Since the proposed algorithm described in Section 2.2.2

is effective for removing outliers, we show that it facilitates

MAP-based deblurring methods (e.g., [3, 17, 36, 38]) to de-

blur images. In each deblurring method, we first compute

M from previous estimated intermediate latent images, and

then estimate blur kernels and intermediate latent images

under the guidance of M. We use one blind deblurring
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(a) (b) (c) (d) (e) (f)

Figure 10. Deblurred results using different masks on the blurred

input in Figure 1(a). (a) Intensity mask where dark regions indicate

that the pixels with intensity values are larger than 240. (b) Result

of [4]. (c) Our detected M. (d)-(f) Results using (a), (b), and (c),

respectively.

method [3] as an example in this section, and present more

results in the supplemental material. The quantitative eval-

uations in Figure 9(a) show that the proposed outlier detec-

tion algorithm significantly improves the accuracy of [3].

We note that even when a blurred image does not contain

saturated and clipped pixels, the proposed algorithm still

contributes to kernel estimation. As blurred images may

contain ambiguous edges [25, 36], these edges are likely to

be selected as they are salient [25] and thus affect kernel

estimation. However, we can still use (11) to detect the po-

sitions of these ambiguous edges as they cannot be modeled

well by the linear convolution model (1), and then remove

them from the intermediate edges ∇S such that only the re-

liable ones are retained for kernel estimation. We present

experimental results on challenging examples without out-

liers in Section 5.

5. Experimental Results

The proposed algorithm is implemented in MATLAB on

a computer with an Intel Core i7-4790 CPU and 28 GB

RAM. The kernel estimation process takes 3 minutes for

a 255× 255 image with a 25× 25 kernel without code op-

timization. All the color images are converted to grayscale

ones in the kernel estimation process. The parameter λc

in (5) is set to be 0.5, γ in (13) is set to be 0.01, θ in (7) is set

to be 1, a and c in (10) are set to be 0.0055 and 1300.5, re-

spectively, and λ in (15) is adjusted according to the amount

of outliers. In the final deconvolution process, each color

channel is processed independently. The MATLAB code

and dataset are available at the authors’ websites. In the

following, we present examples with different outliers, e.g.,

impulse noise and saturated areas. As mentioned in Sec-

tion 1, the nonlinear CRF can be estimated before kernel

estimation, so we do not consider this outlier in the follow-

ing synthetic and real examples. Due to the space limit, we

present large images and more results in the supplemental

material.

Synthetic Images: Figure 11(a) shows a synthetic exam-

ple with saturated regions and impulse noise. As the pix-

els in the saturated regions cannot be described well by the

linear convolution model, one state-of-the-art method [38]

is less effective in estimating kernels from this input im-

age. The estimated kernels by this method is similar to

delta functions, which can be explained by the analysis in

Section 4.1. We note that the recent work [12] hinges on

(a) Input (b) [40] (c) [38] (d) [12]

PSNR: 17.84 PSNR: 16.53 PSNR: 18.06 PSNR: 15.02

(e) [26] (f) Our kernel+[4] (g) Our kernel+[34] (h) Ours

PSNR: 18.42 PSNR: 22.72 PSNR: 18.59 PSNR: 21.55

Figure 11. A synthetic example with saturated regions and im-

pulse noise (best viewed on high-resolution displays with zoom-

in).

detection of light streaks from a blurred image for kernel

estimation. When light streaks are not detected well, this

method is less effective as shown in Figure 11(d). Although

the method [40] is designed to deal with Gaussian noise, it

is less effective for saturated areas. We also note that the

method [26] is able to deal with saturated images, but less

effective for this example due to noise (See Figure 11(e)).

In contrast, the proposed algorithm is able to detect the sat-

urated regions, which facilitates kernel estimation and the

deblurred results contain fine textures. We further compare

with outlier handling methods [4, 34]. As [4, 34] mainly

focus on non-blind image deblurring with outliers, we use

our estimated kernels to generate the final results. With our

estimated kernel, high-quality deblurred results can be ob-

tained by [4]. As the method by [34] is mainly designed for

handling saturated areas, it is less robust to impulse noise.

Real Images: We use a real example to evaluate the pro-

posed algorithm. Figure 12(a) shows a real captured exam-

ple with several saturated areas and unknown noise. Again,

state-of-the-art methods [17, 21, 38] do not perform well on

this example due to effects of saturated areas. Method [12]

also fails to generate clear results due to unavailable light-

streaks (See Figure 12(e)). Although the method by [4] gen-

erates much clearer results by our estimated kernel, the de-

blurred image still contains significant artifacts. In contrast,

our method successfully estimates the blur kernel and gen-

erates a better deblurred result. Moreover, the comparison

results shown in Figure 12(g) and (h) demonstrate that the

proposed algorithm with M is able to remove outliers in the

kernel estimation.

Non-Uniform Deblurring: We evaluate the proposed al-

gorithm against the state-of-the-art methods [35, 38] for

non-uniform image deblurring. Figure 13 shows one real-

captured image from [35] in which the proposed algorithm

performs favorably with sharper results.

Images without Outliers and Noise: As discussed in Sec-

tion 4.4, the proposed algorithm can be applied to deblur

images without containing outliers and noise. Figure 14(a)

shows an example without outliers from [38]. The proposed

method is able to detect the positions of ambiguous edges
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(a) Input (b) [17] (c) [38] (d) [21]

(e) [12] (f) Our kernel+[4] (g) Without M (h) Ours

Figure 12. Real example with numerous saturated regions (e.g.,

the light blobs). The kernel size is estimated at 45× 45 pixels.

(a) Input (b) [35] (c) [38] (d) Ours

Figure 13. Real captured non-uniform example from [35] (best

viewed on high-resolution displays with zoom-in).

(a) Input (b) Xu et al. [38] (c) Ours (d) Detected M

Figure 14. A blurred image without outliers. The parts enclosed in

blue boxes in (b) contain ringing artifacts. The size of estimated

kernel is 45 × 45 pixels (best viewed on high-resolution displays

with zoom-in).

where the linear convolution model does not hold from ex-

tracted salient edges (See Figure 14(d)). The estimated la-

tent image contains fewer ringing artifacts compared to the

result by [38].

Benchmark Datasets with and without Outliers: We use

the benchmark dataset by Levin et al. [20] for quantitative

evaluation in which we add the salt and pepper noise (as it

is one of the most common outliers [1]) to each image. The

noise density is set to be 0.01. We evaluate the performance

of the proposed algorithm against the state-of-the-art meth-

ods [3, 7, 17, 21, 28, 36] and one deblurring algorithm that

also deals with noise [40]. The error ratio metric [20] is

used for quantitative evaluations. Figure 15(a) shows that

the proposed algorithm achieves favorable results against

state-of-the-art methods. We further evaluate the proposed

algorithm using the images with different noise densities.

Figure 15(b) shows that the proposed algorithm performs

well even when the noise density is high.

We create a dataset containing 10 ground truth images

with saturated regions and 8 kernels from [20]. The size of

the saturated regions in this dataset is from 5×5 to 400×400
pixels. Similar to [4], we stretch the intensity histogram

range of each image into [0, 2] and apply 8 different blur
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Figure 15. Quantitative evaluation on the dataset with outilers. (a)

Results on the dataset with salt and pepper noise. (b) PSNR values

of blind deblurring methods on the 10 input images with noise

density from 1% to 10%. (c) Results on the dataset with saturated

regions (best viewed on high-resolution displays with zoom-in).
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Figure 16. Quantitative evaluations on two benchmark datasets.

kernels to generate blurred images where the pixel intensi-

ties are clipped into the range of [0, 1]. Finally, we add 1%

random noise on each blurred image. Figure 15(c) shows

that the proposed algorithm achieves favorable results com-

pared with state-of-the-arts. We note that the proposed al-

gorithm can also be applied to deblur images with Gaussian

noise. More experimental results are included in the sup-

plemental document.

In addition, we use the natural image deblurring

datasets [15], [20], and [30] for evaluation with correspond-

ing metrics [15, 20]. Figure 16 shows that the proposed

algorithm performs well on both datasets against the state-

of-the-art blind deblurring methods.

6. Conclusions

In this work, we propose a robust kernel estimation al-
gorithm in which effective edges are selected for deblur-
ring images containing significant amount of outliers. We
present detailed analysis on the effects of outliers on ker-
nel estimation. Furthermore, we show that the proposed
method can be applied to improve the accuracy of exist-
ing blind deblurring methods. In the final deconvolution
step, we develop a robust method to restore the latent im-
age under the guidance of the proposed outlier-aware func-
tion where the effects of outliers are minimized. Exten-
sive experimental evaluations on real images and bench-
mark datasets demonstrate the proposed algorithm performs
favorably against the state-of-the-art methods for uniform
as well as non-uniform deblurring.
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