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Abstract

In recent years, several methods have been developed to

utilize hierarchical features learned from a deep convolu-

tional neural network (CNN) for visual tracking. However,

as features from a certain CNN layer characterize an ob-

ject of interest from only one aspect or one level, the per-

formance of such trackers trained with features from one

layer (usually the second to last layer) can be further im-

proved. In this paper, we propose a novel CNN based track-

ing framework, which takes full advantage of features from

different CNN layers and uses an adaptive Hedge method

to hedge several CNN based trackers into a single stronger

one. Extensive experiments on a benchmark dataset of 100

challenging image sequences demonstrate the effectiveness

of the proposed algorithm compared to several state-of-the-

art trackers.

1. Introduction

Visual tracking has become a topic of increasing inter-

est over the past couple of decades due to its importance

in numerous applications, such as intelligent video surveil-

lance, vehicle navigation, and human-computer interaction.

Despite significant efforts put into developing algorithm-

s [20, 22, 14, 36, 9, 38, 32, 37, 39, 35] and benchmark e-

valuations [34, 27] for visual tracking, it is still a challeng-

ing task due to complicated interfering factors like heavy

illumination changes, shape deformation, partial and ful-

l occlusion, large scale variations, in-plane and out-of-plane

rotations, and fast motion, to name a few.

Most existing tracking approaches focus on either de-

signing effective decision models [13, 12, 16, 40] or ex-

tracting robust features [6, 24, 41, 1]. Recently, inspired by

the success of deep convolutional neural networks (CNNs)

in object recognition and detection [26, 15, 21, 11], several

CNN based trackers [30, 18, 9, 25] have been developed.

Empirical studies using a large object tracking benchmark

show that the performance of CNN based trackers surpasses

Figure 1. Tracking results of using CNN features from different

convolutional layers on a representative frame of four sequences

with diverse challenges. The best tracking results are obtained

using layers 12, 16, 10, and 10 on four sequences, respectively.

that of hand-crafted features such as HOG [6], SIFT [24],

and color histogram [28, 1].

Despite achieving state-of-the-art performance, existing

CNN based trackers still have some limitations. Most of

these methods represent target objects only using features

from very last layers (e.g., fully-connected layers) of C-

NNs, which capture rich category-level semantic informa-

tion, and therefore are useful for object classification. How-

ever, features from last layers are not optimal for visual

tracking as they do not capture spatial details of the tracked

target. These details, captured by first layers, are crucial

to visual tracking, as they allow for accurate localization of

targets, as shown in the last two rows of Figure 1. On the

other hand, as features from first layers are more generic

than discriminative as ones from last layers, methods based

on features from first layers are likely to fail in challeng-

ing scenarios, as shown in the first two rows of Figure 1.

To achieve better tracking performances, it is imperative to

combine features from different layers to best represent and
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separate foreground objects from the background clutters.

In this paper, we propose a novel CNN based track-

ing algorithm, which first builds weak trackers from con-

volutional layers by applying correlation filters on the lay-

er output, and then hedges all weak trackers into a single

stronger one using an online decision-theoretical Hedge al-

gorithm. Specifically, we treat each weak tracker as an ex-

pert and compute weights for all experts as their decision

confidences. The tracking result in the current frame is the

weighted decisions of all experts, which combines advan-

tages of all the considered CNN layers. Since the tracked

target moves a small offset between consecutive frames

and undergoes appearance variance gradually, an expert that

performs well in previous frames has a higher probability to

perform well in the current frame. By factoring in historical

performance of experts to make decisions, we propose an

improved Hedge algorithm to update the weights of all ex-

perts, which is more suitable for real-world tracking tasks.

The contributions of this paper are summarized below:

• We propose a novel tracking algorithm that combines

weak CNN based trackers from various convolutional

layers into a single stronger tracker.

• We develop an improved Hedge algorithm for visu-

al tracking by considering historical performance of

weak trackers.

• We carry out extensive experiments on a large-scale

benchmark dataset [34] with 100 challenging se-

quences to demonstrate the effectiveness of the pro-

posed algorithm in comparisons to the state-of-the-art

trackers.

2. Related Work

We give a brief review of tracking methods closely relat-

ed to this work. Comprehensive reviews on visual tracking

approaches can be found in [23, 27].

Correlation filters based trackers. Correlation filters are

introduced into visual tracking for its computational effi-

ciency [4, 16, 17]. These methods approximate the dense

sampling scheme by generating a circulant matrix, of which

each row denotes a vectorized sample. As such, its regres-

sion model can be computed in the Fourier domain, which

brings a large speed improvement in both training and test-

ing stages. Bolme et al. [4] develop the Minimum Output

Sum of Squared Error (MOSSE) method to learn the filters,

and use intensity features for object representation. In [16],

Henriques et al. propose a tracking method based on corre-

lation filters by introducing kernel methods and employing

ridge regression. Subsequently a method that extends the

input features from a single channel to multiple channels

(e.g., HOG) is presented [17]. Danelljan et al. [7] propose

an algorithm that searches over scale space for correlation

filters to handle large variation in object size. However, all

the above mentioned works use only one correlation filter,

which limits the power of trackers based on correlation fil-

ters. In this work, we exploit the computational efficiency

of correlation filters to construct an ensemble tracker where

each component tracker is based on features extracted from

one convolutional layer of a CNN.

CNN based trackers. Hierarchical features learned from

CNNs have been shown to be effective for numerous vision

tasks, e.g., classification and recognition [21, 26, 15] in re-

cent years. Numerous methods have since been proposed

to exploit CNN features [9, 30, 18] for visual tracking.

In [9], Fan et al. utilize a pre-trained deep network for hu-

man tracking. Wang and Yeung [30] design an autoencoder

network to learn representative features for generic object-

s. Hong et al. [18] construct a discriminative model with

features from the first fully-connected layer of R-CNN [11]

and a generative model with saliency map for visual track-

ing. While this method is effective for visual tracking, its

computational complexity is high. We note that the afore-

mentioned methods do not exploit features from different

layers adequately. As shown in Figure 1, features from d-

ifferent layers are effective in different scenarios. Based on

these observations, we use an ensemble of multiple CNN

based trackers where each one is trained with features from

one convolutional layer. We regard each one as a weak ex-

pert and hedge them adaptively for visual tracking.

Ensemble trackers. Ensemble approaches have been de-

veloped to combine multiple component trackers for visual

tracking. Several ensemble tracking methods [2, 31, 12, 3]

have been proposed using hand-crafted features. For exam-

ple, ensemble methods [2, 12, 3] under the boosting frame-

work [10] incrementally train each component weak tracker

to classify the training samples that previous trackers mis-

classified. In [31], Wang and Yeung use a conditional par-

ticle filter to infer the target position and the reliability of

each component tracker. Different from these works, we

consider visual tracking as a decision-theoretic online learn-

ing task [5] that infers the tracked target using decisions

from multiple expert trackers. That is, in every round each

expert makes a decision and the final decision is determined

by the weighted decisions of all experts.

3. Algorithmic Overview

As shown in Figure 2, the proposed approach consists

of three steps: extracting CNN features, constructing weak

trackers, and hedging weak trackers. The pre-trained VGG-

Net [26] is used to extract feature maps of convolutional

layers from image regions, which represent the tracked tar-

get at different resolutions and semantic levels. Each feature

map is then convolved by correlation filters to generate re-

sponse maps, from which a weak tracker is constructed with
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Figure 2. Main steps of the proposed algorithm. The proposed algorithm consists of three components: 1) extracting CNN features from

different convolutional layers using the pre-trained VGG-Net (Section 4.1); 2) constructing weak trackers using correlation filters where

each one is trained with CNN features from one layer (Section 4.2); 3) hedging weak trackers into a stronger one using an improved Hedge

algorithm (Section 4.3).

moderate performance. All weak trackers are finally hedged

into a stronger one using the proposed adaptive Hedge al-

gorithm for visual tracking, which exploits the strength of

all CNN layers.

4. Proposed Algorithm

In this section, we first present the technical details of

the proposed algorithm and then describe the online update

scheme.

4.1. Deep CNN features

CNN models, such as AlexNet [21], R-CNN [11],

CaffeNet [19], and VGG-Net [26], have been developed

for large-scale image classification and object recognition

tasks. The proposed method is based on the VGG-Net, as it

has a much deeper architecture (up to 19 weight layers) and

hence can provide much richer features compared to most

CNNs which usually have 5 or 7 layers. The VGG-Net is

trained with 1.3 million images of the ImageNet dataset and

achieves the state-of-the-art results on classification chal-

lenges [26].

Different from classification tasks which only require the

extracted features to capture more category-level semantic

information, visual tracking also requires the extracted fea-

tures to have precise localization ability since a small drift

from the tracked target to its surrounding background caus-

es gradual degradation in tracking performance and eventu-

al failure. The deep VGG-Net facilitates features extracted

from different layers to describe target objects with greater

details. However, tracking methods using CNN features

from any layer alone are less effective (see Figure 1 for ex-

ample of tracking failures).

4.2. Weak CNN based trackers

In this work, a module that makes use of correlation fil-

ters on CNN features extracted from one layer is used to

build a weak tracker. Trackers based on correlation fil-

ters [4, 7, 17, 16] exploit the circulant structure of train-

ing and testing samples to greatly accelerate the training

and testing processes with negligible precision loss. Let

Xk ∈ R
P×Q×D denote the feature map extracted from the

k-th convolutional layer and Y ∈ R
P×Q be the gaussian

shape label matrix, which is subject to a 2D Gaussian distri-

bution with zero mean and standard deviation proportional

to the target size. Let X k = F(Xk), Y = F(Y ), where

F(·) denotes the discrete Fourier transformation (DFT).

The k-th filter can be modeled in the Fourier domain by

Wk = argmin
W

‖Y − X k
·W‖2F + λ‖W‖2F , (1)

where

X k
·W =

∑D

d=1
X k

∗,∗,d ⊙W∗,∗,d, (2)

and the symbol ⊙ denotes the element-wise product.

The optimization problem in (1) has a simple closed for-

m solution, which can be efficiently computed in the Fourier
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domain by

Wk
∗,∗,d =

Y

X k
· X k + λ

⊙X k
∗,∗,d. (3)

Given the testing data T k from the output of the k-th layer,

we first transform it to the Fourier domain T k = F(T k),
and then the responses can be computed by

Sk = F−1(T k
·Wk), (4)

where F−1 denotes the inverse of DFT.

The k-th weak tracker outputs the target position with

the largest response

(xk, yk) = argmax
x′,y′

Sk(x′, y′). (5)

4.3. Hedging CNN based trackers

The standard parameter-free Hedge algorithm [5] is pro-

posed to tackle decision-theoretic online learning problems

in a multi-expert multi-round setting. Given the initial con-

fidence weights of all experts, in the current round, a final

decision is made based on the weighted decisions of all ex-

perts. The weights of all the experts are then updated to

reflect each expert’s decision loss. In the visual tracking s-

cenario, it is natural to treat each CNN based tracker as an

expert and then predict the target position in the t-th frame

by

(x∗

t , y
∗

t ) =
∑K

k=1
wk

t · (xk
t , y

k
t ), (6)

where wk
t is the weight of expert k and

∑K

k=1 w
k
t = 1.

Once the ultimate target position is predicted, each expert

will incur a loss.

The loss of expert k at frame t is computed as

ℓkt = max(Sk
t )− Sk

t (x
∗

t , y
∗

t ), (7)

where max(·) operates on a matrix and returns the largest

element of the matrix and S(x, y) denotes the element at

position (x, y) of matrix S. The standard parameter-free

Hedge algorithm generates a new weight distribution on all

experts by introducing a regret measure defined by

rkt = ℓ̄kt − ℓkt , (8)

where the weighted average loss among all experts is com-

puted as ℓ̄kt =
∑K

k=1 w
k
t ℓ

k
t .

By minimizing the cumulative regret

Rk
t =

∑t

τ=1
rkτ , (9)

to any expert k, for any round of t, the new weights

w1
t+1, · · · , w

K
t+1 are generated.

Although the standard parameter-free Hedge algorithm

performs well in the simulated one-dimension tracking ex-

periment, where the target stays stationary or moves in a

constant velocity [5], it is less effective for the real-world

tracking tasks since it does not consider two crucial factors:

(i) The target appearance usually changes at irregular pace

(sometimes gradually and sometimes rapidly). This means

that the proportion of the historic regret Rk
t−1 should vary

with time t to better reflect the current state for visual track-

ing. (ii) Since each expert captures a different aspect of

the target, it is not effective to fix the ratio of the cumula-

tive regret for all the experts. To address these issues, we

propose an adaptive Hedge algorithm, which considers the

difference of historic regrets over time t and expert k simul-

taneously.

As the object appearance usually does not change sig-

nificantly at least in a short time period, we model the loss

of each expert ℓk during the time period ∆t via a Gaussian

distribution with mean µk
t and standard variance σk

t

µk
t =

1

∆t

t
∑

τ=t−∆t+1

ℓkτ , (10)

σk
t =

√

√

√

√

1

∆t− 1

t
∑

τ=t−∆t+1

(ℓkτ − µk
t )

2. (11)

We then measure the stability of expert k at time t using

skt =
|ℓkt − µk

t |

σk
t

. (12)

A smaller skt indicates that this expert tends to be more sta-

ble than the one with a larger skt . Therefore, we prefer a

larger proportion on its current regret. In contrast, a larger

skt means this expert varies greatly, and therefore we com-

pute its cumulative regret mainly depending on its historic

information. Based on this principle, we obtain the follow-

ing adaptive cumulative regret

Rk
t = (1− αk

t )R
k
t−1 + αk

t r
k
t , (13)

αk
t = min (g, exp (−γskt )), (14)

where γ is a scale factor and g defines a maximum ratio

on the current regret to avoid that no historic information is

considered. We validate the effectiveness of the proposed

adaptive Hedge compared to the original one in Section 5.4.

Since our adaptive Hedge algorithm adheres to the

framework of the standard one, the solution to minimize the

cumulative regret (13) has the same form,

wk
t+1 ∝

[Rk
t ]+
ct

exp
([Rk

t ]+)
2

2ct
, (15)

where [Rk
t ]+ denotes max {0, Rk

t }, and ct servers as a s-

cale parameter like in [5], which is determined by solving
1
K

∑K

k=1 exp(
([Rk

t
]+)2

2ct
) = e.
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Algorithm 1: Hedged deep tracking

1 Input: initial weights w1

1, · · · , w
K

1 ; target position (x1, y1)

in the 1st frame; VGG-Net19; Rk

1 = 0, ℓk1 = 0;

2 Crop interested image region;

3 Initiate K weak experts using (3);

4 for t = 2, 3, · · · do

5 Exploit the VGG-Net19 to obtain K representations;

6 Compute correlation filter responses using (4);

7 Find target position predicted by each expert using (5);

8 if t 6= 2 then

9 Compute ultimate position using (6);

10 else

11 Set ultimate position with ground truth;

12 end

13 Compute experts’ losses using (7);

14 Update stability models using (10) and (11);

15 Measure each expert’s stability using (12);

16 Compute adaptive proportion of historic regret for each

expert using (14);

17 Update cumulative regret of each expert using (13);

18 Update weights for each expert using (15) and

normalize them to have a sum of 1;

19 end

4.4. Model update

Since the feature maps of VGG-Net have up to 512 chan-

nels, retraining the ridge regression models with the new-

ly collected samples is impractical, especially when the

amount of the training data becomes extremely large over

time. In practice, we adopt an incremental update similar to

that in [7], which only uses new samples X̄ k in the current

frame to partially update the previous models,

Zk
∗,∗,d =

Y

X̄ k
· X̄ k + λ

⊙ X̄ k
∗,∗,d, (16)

Wk
t = (1− η)Wk

t−1 + ηZk
t . (17)

Algorithm 1 summarizes the main steps of the proposed

tracking method.

5. Experimental Results

In this section, we present extensive experimental eval-

uations on the proposed hedged deep tracker (HDT). We

first discuss the implementation details and the evaluation

protocol. We then present two sets of experimental evalua-

tions: one compared to several state-of-the-art trackers and

the other one to several baseline trackers including compo-

nent weak trackers and the hedged strong tracker using the

standard parameter-free Hedge method [5].

5.1. Implementation details

For feature extraction, we crop an image patch with 2.2

times the size of the target bounding box and then resize it

Figure 3. Evaluation results on 100 sequences.

Figure 4. Evaluation results on 50 sequences.

to 224×224 pixels for the VGG-Net with 19 layers (16 con-

volutional layers and 3 fully-connected layers). After the

forward propagation, we use the outputs from six convolu-

tional layers (10th∼12th, 14th∼16th) as six types of fea-

ture maps and all feature maps are resized to the same size.

This setting simultaneously takes the feature diversities and

the computational cost into consideration. Since VGG-Net

adopts very small convolutional filters (3×3 pixel size), the

feature maps from first layers (i.e., less than 10) have lim-

ited representation power (see Section 5.4). We implemen-

t our algorithm in MATLAB, and utilize the MatConvNet

toolbox [29] in this work. Our implementation runs at 10

frames per second on a computer with an Intel I7-4790K
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Figure 5. Attribute-based evaluation on 100 sequences. We also put the overall performance here (the last one) for comparison convenience

facing a single challenge and their combination.

4.00 GHz CPU, 16GB RAM, and a GeForce GTX780Ti G-

PU card which is only used to compute the CNN features.

We make MATLAB code available to the public (http://

faculty.ucmerced.edu/mhyang/pubs.html).

All the following experiments are carried out using the

following fixed parameters: the tradeoff parameter in (1) is

set to λ = 10−4; the time window in (10) is set to ∆t = 5;

the truncate threshold in (14) is set to g = 0.97; the learning

rate in (17) is set to η = 0.01; and the initial weights of the

six weak experts are empirically set to (1, 0.2, 0.2, 0.02,

0.03, 0.01).

5.2. Evaluation protocol

To fully assess our method, we use one-pass evaluation

(OPE), temporal robustness evaluation (TRE), and spatial

robustness evaluation (SRE) metrics on a large object track-

ing benchmark dataset [34] which contains 100 image se-

quences. These sequences involve 11 tracking challenges,

such as illumination changes, camera shake, scale varia-

tion, pose variation, partial or full occlusion, and rotation, to

name a few. Experimental results are reported using over-

lap success plots and center location error plots. The com-

pared trackers are ranked in terms of area under the curve

and distance precision at a threshold of 20 pixels, respec-

tively. For completeness, we also report the results on the

benchmark [33], which is a subset of [34]. More results and

videos are presented in the supplementary material.

5.3. Comparisons to state­of­the­art trackers

We compare our algorithm to 8 recent state-of-the-

art trackers: DLT [30], CNN-SVM [18], KCF [17],

MEEM [36], Struck [14], CXT [8], TLD [20], and

SCM [41]. DLT and CNN-SVM are based on deep learning;

KCF is one of the best correlation filters based trackers; and

the remaining trackers rank top 5 on the benchmark [34].

Quantitative evaluation. Figure 3 shows the OPE, TRE,

and SRE results on 100 image sequences. It should be not-

ed that the results of CNN-SVM are not included for fair

comparisons as the source code is not available. We al-

so provide a comparison on 50 sequences in Figure 4 with

OPE results for CNN-SVM taken from [18]. Figure 3 and

Figure 4 show that our HDT performs favorably against the

state-of-the-art methods on all the three evaluation metrics.

We note that HDT performs better in terms of tracking pre-

cision (than success rate), which indicates that HDT is able
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Figure 6. Bounding box comparison on several challenging image sequences (from left to right and top to down are bolt2, coke, diving,

dragonBaby, football, human2, human9, ironman, shaking, and trellis, respectively).

Figure 7. Tracking results on the 12-th frame of the skiing sequence. We illustrating how the weights are assigned to the CNN based

trackers by the proposed adaptive and the standard parameter-free Hedge methods.

to track target objects well but gives a less accurate bound-

ing box since, for computational efficiency, HDT does not

search over scales to determine the best one.

Attribute-based evaluation. To thoroughly evaluate the

robustness of the proposed HDT in various scenes, we

present tracking performance in terms of each tracking chal-

lenge on 100 image sequences in Figure 5. As illustrated in

Figure 5, our algorithm performs well against other meth-

ods in almost all tracking challenges. In particular, HDT

outperforms other methods by a huge margin in handling

low resolution, which can be attributed to CNN features

with rich spatial details from first layers and features with

semantics from last layers. In contrast, DLT only takes ad-

vantage of last layers’ features, and hence its performance

is suffered. We also observed that HDT does not perform

well in handling out-of-view challenge, as HDT does not

search for the target in a whole frame in order to reduce the
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Figure 8. Comparison among our HDT and several baselines: all

its constituent CNN based trackers and the one combined by s-

tandard parameter-free Hedge. For completeness, we also include

two state-of-the-art methods, CNN-SVM and MEEM, in the plots.

computational load. Therefore, HDT may lose the target,

even if it reappears somewhere else.

Qualitative evaluation. We present several tracking results

from the evaluated methods in Figure 6. For presentation

clarity, only results from the top six performing methods

are shown. Overall, our tracker is able to localize the tar-

gets more precisely. However, almost all the other meth-

ods are unable to handle these complicated scenarios. The

MEEM tracker performs well in presence of illumination

variations, occlusion, and in-plane-rotation (shaking, coke,

and trellis), as MEEM simultaneously maintains several tar-

get snapshots from different times. However, it tends to fail

when similar objects appear, such as in sequence bolt2 or

football, since the features are not discriminative enough.

When the background is cluttered, as in sequences diving

or ironman, most of the compared methods are apt to lose

the target. Although DLT adopts a deep autoencoder net-

work, it usually fails on these challenging sequences. This

is because its deep network has no shared weights and it is

trained with small amount of data. Since our HDT hedges

several weak CNN based trackers that perform well in dif-

ferent environments, it can overcome these challenges much

better than other trackers. In addition, we note that in the

diving, human9, and trellis sequences, even though HDT

tracks targets accurately, some of its bounding boxes are not

tight to the target since it does not search for the best scale

as previously discussed.

5.4. Comparisons to baseline trackers

To evaluate the effectiveness of the proposed adaptive

Hedge method, we compare the HDT against its com-

ponent CNN based trackers denoted by VGG-10, VGG-

11, VGG-12, VGG-14, VGG-15, and VGG-16, as well

as the hedged CNN based tracker using the standard

parameter-free Hedge [5], denoted by HDT-SH, on the

benchmark [33].

Figure 8 shows the tracking results. When features from

each convolutional layer are used solely for tracking, the

performance generally increases as the depth of the layer is

increased. But even the best component CNN based track-

er VGG-16 still does not perform as good as CNN-SVM.

This is because CNN-SVM takes advantages of both a R-

CNN feature based discriminative model (features of fc6
being used) and a back-project saliency map based gener-

ative model. Note that the performance of VGG-10 is far

behind that of MEEM which is based on hand-crafted fea-

tures. This explains why we train weak trackers only using

convolutional features from the layers after the 10th layer.

When combining these six component CNN based track-

ers using the standard Hedge, the tracking performance is

below the best performed component tracker. In contrast,

the proposed HDT achieves the best results, which demon-

strates the effectiveness of the adaptive Hedge method.

To further explore the difference between the proposed

adaptive and the standard parameter-free Hedge methods,

we present a comparison of them on a typical frame at run-

ning time in Figure 7. Figure 7 shows that the proposed

adaptive Hedge allocates more desirable weights to weak C-

NN based trackers than the standard one. The reason mainly

lies in the computation of the accumulative regret R. The

standard Hedge uses a fixed proportion of historical infor-

mation Rt−1 for all weak trackers at any time t. In contrast,

we adaptively compute the proportion of historical informa-

tion Rt−1, i.e., we introduce a dynamic parameter α in (13)

and model the α with a Gaussian distribution in a time win-

dow ∆t. As demonstrated in Figure 8, the hedged tracker

using the adaptive scheme performs better.

6. Conclusion

In this paper, we propose a novel CNN based tracking

framework which uses an adaptive online decision learning

algorithm to hedge weak trackers, obtained by correlation

filters on CNN feature maps, into a stronger one to achieve

better results. To the best of our knowledge, the proposed

algorithm is the first to adaptively hedge features from dif-

ferent CNN layers in an online manner for visual tracking.

Extensive experimental evaluations on a large-scale bench-

mark dataset demonstrate the effectiveness of the proposed

hedged deep tracking algorithm.
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