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Abstract

3D shape models are becoming widely available and

easier to capture, making available 3D information crucial

for progress in object classification. Current state-of-the-

art methods rely on CNNs to address this problem. Recently,

we witness two types of CNNs being developed: CNNs

based upon volumetric representations versus CNNs based

upon multi-view representations. Empirical results from

these two types of CNNs exhibit a large gap, indicating

that existing volumetric CNN architectures and approaches

are unable to fully exploit the power of 3D representations.

In this paper, we aim to improve both volumetric CNNs

and multi-view CNNs according to extensive analysis of

existing approaches. To this end, we introduce two distinct

network architectures of volumetric CNNs. In addition,

we examine multi-view CNNs, where we introduce multi-

resolution filtering in 3D. Overall, we are able to outper-

form current state-of-the-art methods for both volumetric

CNNs and multi-view CNNs. We provide extensive experi-

ments designed to evaluate underlying design choices, thus

providing a better understanding of the space of methods

available for object classification on 3D data.

1. Introduction

Understanding 3D environments is a vital element of

modern computer vision research due to paramount rele-

vance in many vision systems, spanning a wide field of

application scenarios from self-driving cars to autonomous

robots. Recent advancements in real-time SLAM tech-

niques and crowd-sourcing of virtual 3D models have ad-

ditionally facilitated the availability of 3D data. [26, 31, 28,

30, 2]. This development has encouraged the lifting of 2D to

3D for deep learning, opening up new opportunities with the

additional information of 3D data; e.g., aligning models is

easier in 3D Euclidean space. In this paper, we specifically

focus on the object classification task on 3D data obtained

from both CAD models and commodity RGB-D sensors. In

* indicates equal contributions.

addition, we demonstrate retrieval results in the supplemen-

tal material.

While the extension of 2D convolutional neural networks

to 3D seems natural, the additional computational com-

plexity (volumetric domain) and data sparsity introduces

significant challenges; for instance, in an image, every pixel

contains observed information, whereas in 3D, a shape is

only defined on its surface. Seminal work by Wu et al.

[30] propose volumetric CNN architectures on volumetric

grids for object classification and retrieval. While these

approaches achieve good results, it turns out that training a

CNN on multiple 2D views achieves a significantly higher

performance, as shown by Su et al. [29], who augment their

2D CNN with pre-training from ImageNet RGB data [6].

These results indicate that existing 3D CNN architectures

and approaches are unable to fully exploit the power of 3D

representations. In this work, we analyze these observations

and evaluate the design choices. Moreover, we show how to

reduce the gap between volumetric CNNs and multi-view

CNNs by efficiently augmenting training data, introducing

new CNN architectures in 3D. Finally, we examine multi-

view CNNs; our experiments show that we are able to

improve upon state of the art with improved training data

augmentation and a new multi-resolution component.

Problem Statement We consider volumetric representa-

tions of 3D point clouds or meshes as input to the 3D

object classification problem. This is primarily inspired

by recent advances in real-time scanning technology, which

use volumetric data representations. We further assume that

the input data is already pre-segmented by 3D bounding

boxes. In practice, these bounding boxes can be extracted

using the sliding windows, object proposals, or background

subtraction. The output of the method is the category label

of the volumetric data instance.

Approach We provide a detailed analysis over factors that

influence the performance of volumetric CNNs, including

network architecture and volumn resolution. Based upon

our analysis, we strive to improve the performance of volu-

metric CNNs. We propose two volumetric CNN network

architectures that signficantly improve state-of-the-art of
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volumetric CNNs on 3D shape classification. This result

has also closed the gap between volumetric CNNs and

multi-view CNNs, when they are provided with 3D input

discretized at 30×30×30 3D resolution. The first network

introduces auxiliary learning tasks by classifying part of an

object, which help to scrutize details of 3D objects more

deeply. The second network uses long anisotropic kernels

to probe for long-distance interactions. Combining data

augmentation with a multi-orientation pooling, we observe

significant performance improvement for both networks.

We also conduct extensive experiments to study the in-

fluence of volume resolution, which sheds light on future

directions of improving volumetric CNNs.

Furthermore, we introduce a new multi-resolution com-

ponent to multi-view CNNs, which improves their already

compelling performance.

In addition to providing extensive experiments on 3D

CAD model datasets, we also introduce a dataset of real-

world 3D data, constructed using dense 3D reconstruction

taken with [22]. Experiments show that our networks can

better adapt from synthetic data to this real-world data than

previous methods.

2. Related Work

Shape Descriptors A large variety of shape descriptors

has been developed in the computer vision and graphics

community. For instance, shapes can be represented as

histograms or bag-of-feature models which are constructed

from surface normals and curvatures [13]. Alternatives

include models based on distances, angles, triangle areas, or

tetrahedra volumes [23], local shape diameters measured at

densely-sampled surface points [3], Heat kernel signatures

[1, 17], or extensions of SIFT and SURF feature descriptors

to 3D voxel grids [16]. The spherical harmonic descriptor

(SPH) [15] and the Light Field descriptor (LFD) [4] are

other popular descriptors. LFD extracts geometric and

Fourier descriptors from object silhouettes rendered from

several different viewpoints, and can be directly applied to

the shape classification task. In contrast to recently devel-

oped feature learning techniques, these features are hand-

crafted and do not generalize well across different domains.

Convolutional Neural Networks Convolutional Neural

Networks (CNNs) [18] have been successfully used in dif-

ferent areas of computer vision and beyond. In particu-

lar, significant progress has been made in the context of

learning features. It turns out that training from large

RGB image datasets (e.g., ImageNet [6]) is able to learn

general purpose image descriptors that outperform hand-

crafted features for a number of vision tasks, including

object detection, scene recognition, texture recognition and

classification [7, 10, 24, 5, 12]. This significant improve-

3D Shape

Multi-View Sphere ReŶderiŶgMulti-View StaŶdard ReŶderiŶg

Voluŵetric OccupaŶcy Grid

Figure 1. 3D shape representations.

ment in performance on these tasks has decidedly moved

the field forward.

CNNs on Depth and 3D Data With the introduction

of commodity range sensors, the depth channel became

available to provide additional information that could be

incorporated into common CNN architectures. A very first

approach combines convolutional and recursive neural net-

works for learning features and classifying RGB-D images

[27]. Impressive performance for object detection from

RGB-D images has been achieved using a geocentric em-

bedding for depth images that encodes height above ground

and angle with gravity for each pixel in addition to the

horizontal disparity [11]. Recently, a CNN architecture has

been proposed where the RGB and depth data are processed

in two separate streams; in the end, the two streams are

combined with a late fusion network [8]. All these descrip-

tors operate on single RGB-D images, thus processing 2.5D

data.

Wu et al. [30] lift 2.5D to 3D with their 3DShapeNets

approach by categorizing each voxel as free space, surface

or occluded, depending on whether it is in front of, on, or

behind the visible surface (i.e., the depth value) from the

depth map. The resulting representation is a 3D binary

voxel grid, which is the input to a CNN with 3D filter

banks. Their method is particularly relevant in the context

of this work, as they are the first to apply CNNs on a 3D

representation. A similar approach is VoxNet [21], which

also uses binary voxel grids and a corresponding 3D CNN

architecture. The advantage of these approaches is that it

can process different sources of 3D data, including LiDAR

point clouds, RGB-D point clouds, and CAD models; we

likewise follow this direction.

An alternative direction is to exploit established 2D CNN

architectures; to this end, 2D data is extracted from the

3D representation. In this context, DeepPano [25] converts

3D shapes into panoramic views; i.e., a cylinder projection

around its principle axis. Current state-of-the-art uses mul-

tiple rendered views, and trains a CNN that can process
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all views jointly [29]. This multi-view CNN (MVCNN) is

pre-trained on ImageNet [6] and uses view-point pooling to

combine all streams obtained from each view. A similar

idea on stereo views has been proposed earlier [19].

3. Analysis of state-of-the-art 3D Volumetric

CNN versus Multi-View CNN

ϴϰ.ϳ

ϴϵ.ϱ

ϵϮ.0

ϴ0 ϴϮ ϴϰ ϴϲ ϴϴ ϵ0 ϵϮ ϵϰ
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Multi-Vieǁ CNN ;staŶdard reŶderiŶgͿ

Figure 2. Classification accuracy. Yellow and blue bars: Perfor-

mance drop of multi-view CNN due to discretization of CAD

models in rendering. Blue and green bars: Volumetric CNN

is significantly worse than multi-view CNN, even though their

inputs have similar amounts of information. This indicates that the

network of the volumetric CNN is weaker than that of the multi-

view CNN.

Two representations of generic 3D shapes are popularly

used for object classification, volumetric and multi-view

(Fig 1). The volumetric representation encodes a 3D shape

as a 3D tensor of binary or real values. The multi-view rep-

resentation encodes a 3D shape as a collection of renderings

from multiple viewpoints. Stored as tensors, both repre-

sentations can easily be used to train convolutional neural

networks, i.e., volumetric CNNs and multi-view CNNs.

Intuitively, a volumetric representation should encode

as much information, if not more, than its multi-view

counterpart. However, experiments indicate that multi-

view CNNs produce superior performance in object clas-

sification. Fig 2 reports the classification accuracy on the

ModelNet40 dataset by state-of-the-art volumetric/multi-

view architectures1. A volumetric CNN based on voxel

occupancy (green) is 7.3% worse than a multi-view CNN

(yellow).

We investigate this performance gap in order to ascer-

tain how to improve volumetric CNNs. The gap seems

to be caused by two factors: input resolution and net-

work architecture differences. The multi-view CNN down-

samples each rendered view to 227 × 227 pixels (Multi-

view Standard Rendering in Fig 1); to maintain a similar

computational cost, the volumetric CNN uses a 30×30×30

occupancy grid (Volumetric Occupancy Grid in Fig 1)2. As

shown in Fig 1, the input to the multi-view CNN captures

more detail.

1We train models by replicating the architecture of [30] for volumetric

CNNs and [29] for multi-view CNNs. All networks are trained in an end-

to-end fashion. All methods are trained/tested on the same split for fair

comparison. The reported numbers are average instance accuracy. See

Sec 6 for details.
2Note that 30× 30× 30 ≈ 227× 227.

However, the difference in input resolution is not the

primary reason for this performance gap, as evidenced by

further experiments. We compare the two networks by

providing them with data containing similar level of detail.

To this end, we feed the multi-view CNN with renderings of

the 30 × 30 × 30 occupancy grid using sphere rendering3,

i.e., for each occupied voxel, a ball is placed at its center,

with radius equal to the edge length of a voxel (Multi-View

Sphere Rendering in Fig 1). We train the multi-view CNN

from scratch using these sphere renderings. The accuracy

of this multi-view CNN is reported in blue.

As shown in Fig 2, even with similar level of object

detail, the volumetric CNN (green) is 4.8% worse than

the multi-view CNN (blue). That is, there is still sig-

nificant room to improve the architecture of volumetric

CNNs. This discovery motivates our efforts in Sec 4 to

improve volumetric CNNs. Additionally, low-frequency

information in 3D seems to be quite discriminative for ob-

ject classification—it is possible to achieve 89.5% accuracy

(blue) at a resolution of only 30× 30× 30. This discovery

motivates our efforts in Sec 5 to improve multi-view CNNs

with a 3D multi-resolution approach.

4. Volumetric Convolutional Neural Networks

4.1. Overview

We improve volumetric CNNs through three separate

means: 1) introducing new network structures; 2) data

augmentation; 3) feature pooling.

Network Architecture We propose two network varia-

tions that significantly improve state-of-the-art CNNs on 3D

volumetric data. The first network is designed to mitigate

overfitting by introducing auxiliary training tasks, which

are themselves challenging. These auxiliary tasks encour-

age the network to predict object class labels from partial

subvolumes. Therefore, no additional annotation efforts are

needed. The second network is designed to mimic multi-

view CNNs, as they are strong in 3D shape classification.

Instead of using rendering routines from computer graphics,

our network projects a 3D shape to 2D by convolving its

3D volume with an anisotropic probing kernel. This ker-

nel is capable of encoding long-range interactions between

points. An image CNN is then appended to classify the 2D

projection. Note that the training of the projection module

and the image classification module is end-to-end. This em-

ulation of multi-view CNNs achieves similar performance

to them, using only standard layers in CNN.

In order to mitigate overfitting from too many param-

eters, we adopt the mlpconv layer from [20] as our basic

building block in both network variations.

3It is computationally prohibitive to match the volumetric CNN resolu-

tion to multi-view CNN, which would be 227× 227× 227.
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Figure 3. Auxiliary Training by Subvolume Supervision (Sec 4.2). The main innovation is that we add auxiliary tasks to predict class labels

that focus on part of an object, intended to drive the CNN to more heavily exploit local discriminative features. An mlpconv layer is a

composition of three conv layers interleaved by ReLU layers. The five numbers under mlpconv are the number of channels, kernel size

and stride of the first conv layer, and the number of channels of the second and third conv layers, respectively. The kernel size and stride of

the second and third conv layers are 1. For example, mlpconv(48, 6, 2; 48; 48) is a composition of conv(48, 6, 2), ReLU, conv(48, 1, 1),
ReLU, conv(48, 1, 1) and ReLU layers. Note that we add dropout layers with rate=0.5 after fully connected layers.

Data Augmentation Compared with 2D image datasets,

currently available 3D shape datasets are limited in scale

and variation. To fully exploit the design of our networks,

we augment the training data with different azimuth and ele-

vation rotations. This allows the first network to cover local

regions at different orientations, and the second network to

relate distant points at different relative angles.

Multi-Orientation Pooling Both of our new networks are

sensitive to shape orientation, i.e., they capture different

information at different orientations. To capture a more

holistic sense of a 3D object, we add an orientation pooling

stage that aggregates information from different orienta-

tions.

4.2. Network 1: Auxiliary Training by Subvolume
Supervision

We observe significant overfitting when we train the

volumetric CNN proposed by [30] in an end-to-end fashion

(see supplementary). When the volumetric CNN overfits to

the training data, it has no incentive to continue learning.

We thus introduce auxiliary tasks that are closely correlated

with the main task but are difficult to overfit, so that learning

continues even if our main task is overfitted.

These auxiliary training tasks also predict the same ob-

ject labels, but the predictions are made solely on a local

subvolume of the input. Without complete knowledge of

the object, the auxiliary tasks are more challenging, and

can thus better exploit the discriminative power of local

regions. This design is different from the classic multi-

task learning setting of hetergenous auxiliary tasks, which

inevitably requires collecting additional annotations (e.g.,

conducting both object classification and detection [9]).

We implement this design through an architecture shown

in Fig 3. The first three layers are mlpconv (multilayer

perceptron convolution) layers, a 3D extension of the 2D

mlpconv proposed by [20]. The input and output of our

mlpconv layers are both 4D tensors. Compared with the

standard combination of linear convolutional layers and

max pooling layers, mlpconv has a three-layer structure and

is thus a universal function approximator if enough neurons

are provided in its intermediate layers. Therefore, mlpconv

is a powerful filter for feature extraction of local patches,

enhancing approximation of more abstract representations.

In addition, mlpconv has been validated to be more discrim-

inative with fewer parameters than ordinary convolution

with pooling [20].

At the fourth layer, the network branches into two. The

lower branch takes the whole object as input for traditional

classification. The upper branch is a novel branch for

auxiliary tasks. It slices the 512 × 2 × 2 × 2 4D tensor (2

grids along x, y, z axes and 512 channels) into 2×2×2 = 8

vectors of dimension 512. We set up a classification task

for each vector. A fully connected layer and a softmax

layer are then appended independently to each vector to

construct classification losses. Simple calculation shows

that the receptive field of each task is 22×22×22, covering

roughly 2/3 of the entire volume.

4.3. Network 2: Anisotropic Probing

The success of multi-view CNNs is intriguing. multi-

view CNNs first project 3D objects to 2D and then make

use of well-developed 2D image CNNs for classification.

Inspired by its success, we design a neural network archi-
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Figure 4. CNN with Anisotropic Probing kernels. We use an elongated kernel to convolve the 3D cube and aggregate information to a 2D

plane. Then we use a 2D NIN (NIN-CIFAR10 [20]) to classify the 2D projection of the original 3D shape.

tecture that is also composed of the two stages. However,

while multi-view CNNs use external rendering pipelines

from computer graphics, we achieve the 3D-to-2D projec-

tion using network layers in a manner similar to ‘X-ray

scanning’.

Key to this network is the use of an elongated anisotropic

kernel which helps capture the global structure of the 3D

volume. As illustrated in Fig 4, the neural network has two

modules: an anisotropic probing module and a network in

network module. The anisotropic probing module contains

three convolutional layers of elongated kernels, each fol-

lowed by a nonlinear ReLU layer. Note that both the input

and output of each layer are 3D tensors.

In contrast to traditional isotropic kernels, an anisotropic

probing module has the advantage of aggregating long-

range interactions in the early feature learning stage with

fewer parameters. As a comparison, with traditional neu-

ral networks constructed from isotropic kernels, introduc-

ing long-range interactions at an early stage can only be

achieved through large kernels, which inevitably introduce

many more parameters. After anisotropic probing, we use

an adapted NIN network [20] to address the classification

problem.

Our anistropic probing network is capable of capturing

internal structures of objects through its X-ray like projec-

tion mechanism. This is an ability not offered by standard

rendering. Combined with multi-orientation pooling (intro-

duced below), it is possible for this probing mechanism to

capture any 3D structure, due to its relationship with the

Radon transform.

In addition, this architecture is scalable to higher res-

olutions, since all its layers can be viewed as 2D. While

3D convolution involves computation at locations of cubic

resolution, we maintain quadratic compute.

4.4. Data Augmentation and Multi­Orientation
Pooling

The two networks proposed above are both sensitive to

model orientation. In the subvolume supervision method,

different model orientations define different local subvol-

umes; in the anisotropic probing method, only voxels of

the same height and along the probing direction can have

interaction in the early feature extraction stage. Thus it

is helpful to augment the training data by varying object

orientation and combining predictions through orientation

pooling.

Similar to Su-MVCNN [29] which aggregates infor-

mation from multiple view inputs through a view-pooling

layer and follow-on fully connected layers, we sample 3D

input from different orientations and aggregate them in a

multi-orientation volumetric CNN (MO-VCNN) as shown

in Fig 5. At training time, we generate different rotations

of the 3D model by changing both azimuth and elevation

angles, sampled randomly. A volumetric CNN is firstly

trained on single rotations. Then we decompose the net-

work to CNN1 (lower layers) and CNN2 (higher layers)

to construct a multi-orientation version. The MO-VCNN’s

weights are initialized by a previously trained volumetric

CNN with CNN1’s weights fixed during fine-tuning. While

a common practice is to extract the highest level features

(features before the last classification linear layer) of mul-

tiple orientations, average/max/concatenate them, and train

a linear SVM on the combined feature, this is just a special

case of the MO-VCNN.

Compared to 3DShapeNets [30] which only augments

data by rotating around vertical axis, our experiment shows

that orientation pooling combined with elevation rotation

ϯD
CNN

ϯD 
CNNϭ

ϯD
CNNϭ

ϯD
CNNϭ

Ori-Pooling

ϯD CNNϮ

…

…

class prediction class prediction

Figure 5. Left: Volumetric CNN (single orientation input). Right:

Multi-orientation volumetric CNN (MO-VCNN), which takes in

various orientations of the 3D input, extracts features from shared

CNN1 and then pass pooled feature through another network

CNN2 to make a prediction.
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can greatly increase performance.

5. Multi-View Convolutional Neural Networks

The multi-view CNN proposed by [29] is a strong al-

ternative to volumetric representations. This multi-view

representation is constructed in three steps: first, a 3D shape

is rendered into multiple images using varying camera ex-

trinsics; then image features (e.g. conv5 feature in VGG

or AlexNet) are extracted for each view; lastly features are

combined across views through a pooling layer, followed

by fully connected layers.

Although the multi-view CNN presented by [29] pro-

duces compelling results, we are able to improve its perfor-

mance through a multi-resolution extension with improved

data augmentation. We introduce multi-resolution 3D filter-

ing to capture information at multiple scales. We perform

sphere rendering (see Sec 3) at different volume resolu-

tions. Note that we use spheres for this discretization as

they are view-invariant. In particular, this helps regularize

out potential noise or irregularities in real-world scanned

data (relative to synthetic training data), enabling robust

performance on real-world scans. Note that our 3D multi-

resolution filtering is different from classical 2D multi-

resolution approaches, since the 3D filtering respects the

distance in 3D.

Additionally, we also augment training data with varia-

tions in both azimuth and elevation, as opposed to azimuth

only. We use AlexNet instead of VGG for efficiency.

6. Experiments

We evaluate our volumetric CNNs and multi-view CNNs

along with current state of the art on the ModelNet

dataset [30] and a new dataset of real-world reconstructions

of 3D objects.

For convenience in following discussions, we define 3D

resolution to be the discretization resolution of a 3D shape.

That is, a 30 × 30 × 30 volume has 3D resolution 30. The

sphere rendering from this volume also has 3D resolution

30, though it may have higher 2D image resolution.

6.1. Datasets

ModelNet We use ModelNet [30] for our training and

testing datasets. ModelNet currently contains 127, 915 3D

CAD models from 662 categories. ModelNet40, a subset

including 12, 311 models from 40 categories, is well anno-

tated and can be downloaded from the web. The authors

also provide a training and testing split on the website, in

which there are 9, 843 training and 2, 468 test models4. We

4VoxNet [21] uses the train/test split provided on the website and report

average class accuracy on the 2, 468 test split. 3DShapeNets [30] and

MVCNN [29] use another train/test split comprising the first 80 shapes of

each category in the “train” folder (or all shapes if there are fewer than 80)

and the first 20 shapes of each category in the “test” folder, respectively.

(a)	bathtub	 (b)	sofa	

(c)	chair	 (d)	monitor	 (e)	bed	

Figure 6. Example models from our real-world dataset. Each

model is a dense 3D reconstruction, annotated, and segmented

from the background.

use this train/test split for our experiments.

By default, we report classification accuracy on all mod-

els in the test set (average instance accuracy). For com-

parisons with previous work we also report average class

accuracy.

Real-world Reconstructions We provide a new real-

world scanning dataset benchmark, comprising 243 objects

of 12 categories; the geometry is captured with an ASUS

Xtion Pro and a dense reconstruction is obtained using the

publicly-available VoxelHashing framework [22]. For each

scan, we have performed a coarse, manual segmentation

of the object of interest. In addition, each scan is aligned

with the world-up vector. While there are existing datasets

captured with commodity range sensors – e.g., [26, 31, 28]

– this is the first containing hundreds of annotated models

from dense 3D reconstructions. The goal of this dataset is

to provide an example of modern real-time 3D reconstruc-

tions; i.e., structured representations more complete than a

single RGB-D frame but still with many occlusions. This

dataset is used as a test set.

6.2. Comparison with State­of­the­Art Methods

We compare our methods with state of the art for shape

classification on the ModelNet40 dataset. In the following,

we discuss the results within volumetric CNN methods and

within multi-view CNN methods.

Volumetric CNNs Fig 7 summarizes the performance of

volumetric CNNs. Ours-MO-SubvolumeSup is the sub-

volume supervision network in Sec 4.2 and Ours-MO-

AniProbing is the anistropic probing network in Sec 4.3.

Data augmentation is applied as described in Sec 6.4 (az-

imuth and elevation rotations). For clarity, we use MO-

to denote that both networks are trained with an additional

multi-orientation pooling step (20 orientations in practice).

For reference of multi-view CNN performance at the same
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Figure 7. Classification accuracy on ModelNet40 (voxelized at res-

olution 30). Our volumetric CNNs have matched the performance

of multi-view CNN at 3D resolution 30 (our implementation of

Su-MVCNN [29], rightmost group).
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Figure 8. Classification acurracy on ModelNet40 (multi-view rep-

resentation). The 3D multi-resolution version is the strongest. It is

worth noting that the simple baseline HoGPyramid-LFD performs

quite well.

3D resolution, we also include Ours-MVCNN-Sphere-30,

the result of our multi-view CNN with sphere rendering at

3D resolution 30. More details of setup can be found in the

supplementary.

As can be seen, both of our proposed volumetric CNNs

significantly outperform state-of-the-art volumetric CNNs.

Moreover, they both match the performance of our multi-

view CNN under the same 3D resolution. That is, the gap

between volumetric CNNs and multi-view CNNs is closed

under 3D resolution 30 on ModelNet40 dataset, an issue

that motivates our study (Sec 3).

Multi-view CNNs Fig 8 summarizes the performance of

multi-view CNNs. Ours-MVCNN-MultiRes is the result

by training an SVM over the concatenation of fc7 features

from Ours-MVCNN-Sphere-30, 60, and Ours-MVCNN.

HoGPyramid-LFD is the result by training an SVM over a

concatenation of HoG features at three 2D resolutions. Here

LFD (lightfield descriptor) simply refers to extracting fea-

tures from renderings. Ours-MVCNN-MultiRes achieves

state-of-the-art.

6.3. Effect of 3D Resolution over Performance

Sec 6.2 shows that our volumetric CNN and multi-view

CNN performs comparably at 3D resolution 30. Here we
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Figure 9. Top: sphere rendering at 3D resolution 10, 30, 60, and

standard rendering. Bottom: performance of image-based CNN

and volumetric CNN with increasing 3D resolution. The two

rightmost points are trained/tested from standard rendering.

study the effect of 3D resolution for both types of networks.

Fig 9 shows the performance of our volumetric CNN

and multi-view CNN at different 3D resolutions (defined

at the beginning of Sec 6). Due to computational cost,

we only test our volumetric CNN at 3D resolutions 10

and 30. The observations are: first, the performance of

our volumetric CNN and multi-view CNN is on par at

tested 3D resolutions; second, the performance of multi-

view CNN increases as the 3D resolution grows up. To

further improve the performance of volumetric CNN, this

experiment suggests that it is worth exploring how to scale

volumetric CNN to higher 3D resolutions.

6.4. More Evaluations

Data Augmentation and Multi-Orientation Pooling

We use the same volumetric CNN model, the end-to-end

learning verion of 3DShapeNets [30], to train and test on

three variations of augmented data (Table 1). Similar trend

is observed for other volumetric CNN variations.

Data Augmentation Single-Ori Multi-Ori ∆

Azimuth rotation (AZ) 84.7 86.1 1.4
AZ + translation 84.8 86.1 1.3
AZ + elevation rotation 83.0 87.8 4.8

Table 1. Effects of data augmentations on multi-orientation vol-

umetric CNN. We report numbers of classification accuracy on

ModelNet40, with (Multi-Ori) or without (Single-Ori) multi-

orientation pooling described in Sec 4.4.

When combined with multi-orientation pooling, apply-

ing both azimuth rotation (AZ) and elevation rotation (EL)

augmentations is extremely effective. Using only azimuth

augmentation (randomly sampled from 0◦ to 360◦) with

orientation pooling, the classification performance is in-

creased by 86.1% − 84.7% = 1.4%; combined with eleva-
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Network Single-Ori Multi-Ori

E2E-[30] 83.0 87.8
VoxNet[21] 83.8 85.9

3D-NIN 86.1 88.5
Ours-SubvolumeSup 87.2 89.2
Ours-AniProbing 84.4 89.9

Table 2. Comparison of performance of volumetric CNN archi-

tectures. Numbers reported are classification accuracy on Model-

Net40. Results from E2E-[30] (end-to-end learning version) and

VoxNet [21] are obtained by ourselves. All experiments are using

the same set of azimuth and elevation augmented data.

tion augmentation (randomly sampled from −45◦ to 45◦),

the improvement becomes more significant – increasing by

87.8% − 83.0% = 4.8%. On the other hand, translation

jittering (randomly sampled shift from 0 to 6 voxels in each

direction) provides only marginal influence.

Comparison of Volumetric CNN Architectures The ar-

chitectures in comparison include VoxNet [21], E2E-[30]

(the end-to-end learning variation of [30] implemented in

Caffe [14] by ourselves), 3D-NIN (a 3D variation of Net-

work in Network [20] designed by ourselves as in Fig 3

without the “Prediction by partial object” branch), Subvol-

umeSup (Sec 4.2) and AniProbing (Sec 4.3). Data augmen-

tation of AZ+EL (Sec 6.4) are applied.

From Table 2, first, the two volumetric CNNs we pro-

pose, SubvolumeSup and AniProbing networks, both show

superior performance, indicating the effectiveness of our

design; second, multi-orientation pooling increases per-

formance for all network variations. This is especially

significant for the anisotropic probing network, since each

orientation usually only carries partial information of the

object.

Comparison of Multi-view Methods We compare differ-

ent methods that are based on multi-view representations

in Table 3. Methods in the second group are trained on

the full ModelNet40 train set. Methods in the first group,

SPH, LFD, FV, and Su-MVCNN, are trained on a subset

Method #Views
Accuracy

(class)

Accuracy

(instance)

SPH (reported by [30]) - 68.2 -

LFD (reported by [30]) - 75.5 -

FV (reported by [29]) 12 84.8 -

Su-MVCNN [29] 80 90.1 -

PyramidHoG-LFD 20 87.2 90.5
Ours-MVCNN 20 89.7 92.0
Ours-MVCNN-MultiRes 20 91.4 93.8

Table 3. Comparison of multi-view based methods. Numbers

reported are classification accuracy (class average and instance

average) on ModelNet40.

Method Classification Retrieval MAP

E2E-[30] 69.6 -

Su-MVCNN [29] 72.4 35.8

Ours-MO-SubvolumeSup 73.3 39.3
Ours-MO-AniProbing 70.8 40.2
Ours-MVCNN-MultiRes 74.5 51.4

Table 4. Classification accuracy and retrieval MAP on recon-

structed meshes of 12-class real-world scans.

of ModelNet40 containing 3,183 training samples. They

are provided for reference. Also note that the MVCNNs

in the second group are our implementations in Caffe with

AlexNet instead of VGG as in Su-MVCNN [29].

We observe that MVCNNs are superior to methods by

SVMs on hand-crafted features.

Evaluation on the Real-World Reconstruction Dataset

We further assess the performance of volumetric CNNs and

multi-view CNNs on real-world reconstructions in Table 4.

All methods are trained on CAD models in ModelNet40 but

tested on real data, which may be highly partial, noisy, or

oversmoothed (Fig 6). Our networks continue to outper-

form state-of-the-art results. In particular, our 3D multi-

resolution filtering is quite effective on real-world data,

possibly because the low 3D resolution component filters

out spurious and noisy micro-structures. Example results

for object retrieval can be found in supplementary.

7. Conclusion and Future work

In this paper, we have addressed the task of object classi-

fication on 3D data using volumetric CNNs and multi-view

CNNs. We have analyzed the performance gap between

volumetric CNNs and multi-view CNNs from perspectives

of network architecture and 3D resolution. The analysis

motivates us to propose two new architectures of volumetric

CNNs, which outperform state-of-the-art volumetric CNNs,

achieving comparable performance to multi-view CNNs at

the same 3D resolution of 30 × 30 × 30. Further evalu-

tion over the influence of 3D resolution indicates that 3D

resolution is likely to be the bottleneck for the performance

of volumetric CNNs. Therefore, it is worth exploring the

design of efficient volumetric CNN architectures that scale

up to higher resolutions.
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