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Abstract

Cascade has been widely used in face detection, where

classifier with low computation cost can be firstly used to

shrink most of the background while keeping the recall. The

cascade in detection is popularized by seminal Viola-Jones

framework and then widely used in other pipelines, such

as DPM and CNN. However, to our best knowledge, most

of the previous detection methods use cascade in a greedy

manner, where previous stages in cascade are fixed when

training a new stage. So optimizations of different CNNs are

isolated. In this paper, we propose joint training to achieve

end-to-end optimization for CNN cascade. We show that

the back propagation algorithm used in training CNN can

be naturally used in training CNN cascade. We present how

jointly training can be conducted on naive CNN cascade

and more sophisticated region proposal network (RPN) and

fast R-CNN. Experiments on face detection benchmarks ver-

ify the advantages of the joint training.

1. Introduction

Face detection plays an important role in face based im-

age analysis and is one of the fundamental problems in com-

puter vision. The performances of various face based ap-

plications, from face identification and verification to face

clustering, tagging and retrieval, rely on accurate and effi-

cient face detection. Recent works in face detection focus

on faces in uncontrolled setting, which is challenging due

to the variations in subject level (e.g., a face can have many

different poses), category level (e.g., adult and baby) and

image level (e.g., illumination and cluttered background).

Given a novel image I , the face detector is expected

to return a bounding box configuration B = (bi, ci){N},

where the bi and ci specify the localization and confidence

of a face. The number of detected faces N always vary in

different images. Considering that the bi can possibly ap-

pear in any scale and position, the face detection problem

has a output space of size
(w∗h)2

2 , where w and h denote

width and height respectively. Considering that it can be
(500∗350)2

2 ≈ 1010 for a typical 500× 350 image, it is actu-

ally impossible to evaluate them all at a acceptable cost. Ac-

tually, only a few of them correspond to faces and most of

the configurations in the output space belongs to the back-

ground.

The previous face detection research can be seen as a his-

tory of more efficiently sampling the output space to a solv-

able scale and more effectively evaluating per configuration.

One natural idea to achieve this is using cascade, where

classifier with low computation cost can be firstly used to

shrink background while keeping the faces. The pioneer-

ing work [27] popularized this, which combined classifiers

in different stages, to allow background regions quickly

discarded while spending more computation on promising

face-like regions. The cascade made efficient detection pos-

sible and was widely used in subsequent works. For exam-

ple, two other detection pipelines DPM [6] and CNN [16]

can both use cascade for acceleration.

Despite the efficiency in testing, the cascade based de-

tectors are always trained greedily. In a typical training pro-

cedure, when training a new stage in the cascade, previous

stages are fixed. The relationship of different stages lies

in that each stage is trained with the hard training samples

which pass through previous stages. It makes the greed-

ily trained cascade not end-to-end optimal with respect to

the final detection score. It leads to performance drop when

compared with non-cascade methods. For example, the cas-

cade version of DPM [6] does not as accurate as the original

version [7].

In this paper, we show that in CNN based cascade de-

tection, other than enjoying the advantages in efficiency as

traditional cascade, different stages in the cascade can be

jointly trained to achieve better performance. We show that

the back propagation algorithm used in training CNN can be

naturally used in training CNN cascade. Joint training can

be conducted on naive CNN cascade and more sophisticated

cascade such as region proposal network (RPN) and fast R-

CNN. We show that the jointly trained cascade CNN as well

as the jointly trained RPN and fast R-CNN can achieve lead-
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ing performance on face detection.

The rest of the paper is organized as follows. Section 2

reviews the related work. Analysis of jointly training is pre-

sented in section 3. Then we present how to jointly train

naive CNN cascade in section 4 and how to jointly train

RPN and Fast RCNN in section 5. Section 6 shows the ex-

perimental results and analysis and section 7 concludes the

paper.

2. Related Work

Numerous works have been proposed for face detection

and some of them have been delivered to real applications.

Similar to many other computer vision tasks, leading algo-

rithms in face detection are based on convolutional neural

network in the 1990s, then based on hand-craft feature and

model, and recently based on convolutional neural network

again. In this part, we briefly review the three kinds of meth-

ods and refer more detailed survey to [33, 37, 35].

2.1. Early CNN based methods

Face detection, as well as MNIST OCR recognition, are

two tasks where CNN based approach achieve success in

1990s. In [26], CNN is used in a sliding window man-

ner to traverse different locations and scales and classify

faces from the background. In [22], CNN is used for frontal

face detection and shows quite good performance. In [23],

CNNs trained on faces from different poses are used for

rotation invariant face detection. These methods are quite

similar to modern CNN methods and get relatively good

performance on easy datasets.

2.2. Handcraft feature based methods

In [27], Viola and Jones proposed to use Haar feature,

Adaboost based learning and cascade based inference for

face detection. It shows advantage in speed when com-

pared with methods (e.g., [22, 24, 19]) at the same pe-

riod and quickly became very popular. Many subsequent

works further improve performance through new local fea-

tures [38, 31], new boosting algorithms [36, 11] and new

cascade structures [1, 28]. The single model in Viola-Jones

framework cannot handle faces from different poses, and

in [17, 14, 11] the authors proposed efficient cascade struc-

tures to use multiple models for pose-invariant face detec-

tion. [2] uses additional landmarks annotations for better

detection performance.

Besides Viola-Jones framework, methods based on

structural models progressively achieve better performance

and becomes more and more efficient, on challenging

benchmarks such as AFW [39] and FDDB [13]. The sem-

inal work deformable part model (DPM) [7] use the de-

formable parts on top of HOG feature to represent objects.

[39, 30, 18, 29, 8] use supervised parts, more pose partition,

better training or more efficient inference to achieve better

performance.

2.3. Modern CNN based methods

In recent two years, CNN based methods show advan-

tages in face detection. [32, 20] use boosting and DPM on

top of CNN features. [5] fine-tune CNN model trained on

1000-way ImageNet classification task for face

background classification task. [34] uses fully convolu-

tional networks (FCN) to generate heat map of facial parts

and then use the heat map to generate face proposals. [12]

uses a unified end-to-end FCN framework to directly predict

bounding boxes and object class confidences. These meth-

ods, however, are relatively slow even on a high-end GPU.

In [16], six CNNs (three stages) are cascaded to efficiently

reject backgrounds.

3. Cascaded Networks

Algorithms using cascaded stages are widely used in de-

tection tasks. The advantage of cascaded stages lies in that

they can handle unbalanced distribution of negative and

positive samples. In the early stages, week classifiers can

reject most false negatives. In the later stages, stronger clas-

sifiers can save computation with less proposals.

With the development of deep CNNs, multi-stage CNNs

are getting popular. State-of-the-art object detection algo-

rithms adopt multi-stage mechanisms. The first stage is

a network for region proposal generation. The following

one or more stages are networks for detection. Cascaded

CNNs [16] and faster R-CNN [21] are such mechanisms.

However, previous methods are not jointly trained. They

use greedy algorithms to optimize. Different from boost-

ing methods, deep CNNs can naturally be jointly optimized.

Recent CNNs are usually deep neural networks using back-

propagation for optimization. So layers of different net-

works can be jointly optimized to share computation and

information. For object detection tasks, we can design a sin-

gle network that includes both region proposal generation

and detection (maybe multi-stage) and optimize it jointly

with back-propagation.

3.1. Cascaded CNNs

The cascaded CNN for face detection in [16] contains

three stages. In each stage, they use one detection network

and one calibration network. There are totally six CNNs. In

practice, this makes the training process quite complicated.

We have to carefully prepare the training samples for all the

stages and optimize the networks one by one.

One natural question is how about we jointly train all the

stages in one network?

Firstly, detection network and calibration network can

share a multi-loss network used for both detection and
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bounding-box regression. Multi-loss optimization has been

proved effective in general objection detection [9, 21].

Secondly, if multi-resolution is used during training the

later stages, as the authors did in [16], the network of the

later stage contains the network of the previous one. So

theoretically, the convolution layers can be shared by three

stages. Meanwhile, shared convolutional layers results in

smaller model size. In the joint training network, the model

size is approximately the same as the final stage in separate

cascaded CNNs.

Thirdly, in cascaded CNNs, the separate first stage used

for generating proposals is only optimized by itself. In

the joint network, it is jointly optimized by larger scale

branches. In this way, each branch benefits from other

branches. Together, the joint network is expected to achieve

end-to-end optimization.

3.2. RPN + fast RCNN

In faster R-CNN, the authors use one CNN called Region

Proposal Network (RPN) for generating proposals, the other

CNN called fast R-CNN [9] for detection.

In order to share convolutional layers between region

proposal network and detection network, the typical train-

ing of RPN and fast R-CNN adopts four separate stages and

uses alternating optimization. In the first step, RPN is ini-

tialized with an ImageNet pre-trained model and fine-tuned

for region proposal. In the second step, fast R-CNN is ini-

tialized with the same pre-trained model and fine-tuned for

detection. In the third step, RPN is initialized with fast R-

CNN model from the second step and fine-tuned for region

proposal. At this point, RPN and fast R-CNN share convo-

lutional layers. Finally, fast R-CNN is fine-tuned from the

second step fast R-CNN with proposals generated by the

third step RPN.

The core idea is to let region proposal and later detec-

tion network share convolutional layers. However, in the

final models, the convolutional layers are dominated by the

second step fast R-CNN. The loss of RPN in the third step

would not back-propagate to the convolutional layers.

RPN and the first stage FCN of cascaded CNNs are

highly similar. They both use fully convolutional neural net-

work to generate proposals. The input image can be of arbi-

trary size. The convolution computations are shared among

proposals. They both use bounding-box (anchor) regres-

sion to refine the proposals. They both can handle various

scales of proposals. The main difference lies in that FCN

uses image pyramids to handle various scales, while RPN

uses pre-set anchor scales to do that. Naturally FCN can

better handle more scales than RPN, while RPN can save

computation with only one input scale.

So the joint training of cascaded CNNs can apply to RPN

and fast R-CNN.

4. Joint Training of Cascaded CNN

We design a joint training architecture to train the net-

work once for all. We call this architecture FaceCraft.

Fig. 1 demonstrates this joint training architecture. Dur-

ing training, the network takes an image of size 48 × 48
as input, and outputs one joint loss of three branches. The

three branches are called x12, x24, x48 respectively, corre-

sponding to the input size of each network. We use ReLU

for non-linear layers and drop-out before classification or

regression layer.

It is optimized through back-propagation. Compared to

separate networks, the joint network also use threshold con-

trol layers to decide which proposals from up branches con-

tribute to the loss of the down branches.

4.1. Training architecture

Branch x12: fully convolutional proposal network The

proposal generation network is a fully convolutional net-

work that has two sibling output layers. Input data is aver-

agely pooled to 12×12. The final convolutional layer before

output layer is of size 1×16×1×1. For the two output lay-

ers, one outputs a probability distribution (per feature map

point) p = (p0, p1), over face v.s. non-face. The other out-

puts bounding-box regression offsets, tk = (tkx, t
k
y , t

k
w, t

k
h),

for each of the predicted face proposal.

Optimization We use a multi-task loss of classifica-

tion and bounding-box regression to jointly optimize this

branch. We use softmax loss for classification and smooth

L1 loss defined in [9] for bounding-box regression:

L(p, u, tu, v) = Lcls(p, u) + λ[u ≥ 1]Lloc(t
u, v), (1)

where Lcls(p, u) = − log pu is log loss for true class u.

We set λ = 1 in our experiment, this is appropriate for

all three separate CNN networks.

For the regression offsets, we set the 4 coordinates de-

fined in [10]:

t∗x = (x∗
− xp)/wp (2)

t∗y = (y∗ − yp)/hp (3)

t∗w = log(w∗/wp) (4)

t∗h = log(h∗/hp), (5)

where x and y denote the two coordinates of the box cen-

ter, w and h denote box width and height respectively . The

variables xp, and x∗ are for the proposal box and ground-

truth box respectively. In this way, we can optimize the

regression targets and regress the bounding-box from a pro-

posal box to a nearby ground-truth box.

During training, the regression offsets are normalized

to have zero mean and unit variance. This optimization

method also applies to the other two branches.
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Figure 1. Joint training architecture. During training, the network takes an image of size 48 × 48 as input, and outputs one joint loss of

three branches. The network is optimized through back-propagation. Compared to separate networks, the joint network also use threshold

control layers, to decide which proposals from up branches contribute to the loss of the down branches.

Branch x12-x24 hard negative sample mining x12-x24

first averagely pools the input data to size 24 × 24, then

outputs a 128 dimensional fc layer called 24fc. 24fc is con-

catenated with 1× 16 fc layer flattened from 1× 16× 1× 1
of x12. We call the new fc layer 12-24fc.

We choose a classification score threshold for the score

threshold layer. Only the passed proposals contribute to the

loss of final layers. In our experiments, 0.1 is an appropri-

ate threshold. This threshold is similar to that in separate

cascaded networks.

x12-x24 also outputs classification loss and bounding-

box regression loss.

Branch x12-x24-x48: harder negative mining x12-x24-

x48 outputs a 256 dimensional fc layer called 48fc. 48fc is

concatenated with 12-24fc.

As in x12-x24, we choose a classification score thresh-

old for the score threshold layer. Only the passed proposals

contribute to the loss of final layers. In our experiments,

0.003 is an appropriate threshold. This threshold is similar

to that in separate cascaded networks.

x12-x24-x48 also outputs classification loss and

bounding-box regression loss.

Joint loss Each branch has a face v.s. non-face classifica-

tion loss and a bounding-box regression loss. Adding them

with loss weights, we get the joint loss function:

Ljoint = λ1Lx12 + λ2Lx24 + λ3Lx48, (6)

where Lx12, Lx24 and Lx48 denote different losses of three

branches. The loss of each branch is calculated by Equation

1. λ1, λ2 and λ3 are loss weights of the three branches.

4.2. Implementation details

Training data To prepare training data, we first use slid-

ing windows on each training image to get face candidates.

The positive samples are chosen from the candidates that

have intersection over union (IoU) overlap with any ground-

truth bounding box of larger than 0.8. The negative samples

are sampled from the face candidates that have a maximum

IoU with ground-truth in the interval [0, 0.5). The samples

are cropped and resized to network input size. To apply data

augmentation, each sample is horizontally flipped. The ul-

timate ratio of positive samples of the whole training data is

about 5%. The input patches are mean removed with mean

image from ImageNet [3]. No other pre-processing is used.

Training procedure Each training image is first built into

image pyramids with interval of 5. The smallest pyramid is

1/25 of the original image. We prepare face proposals by

sliding windows with stride 8 over training images. Positive

samples are chosen from face proposals whose maximum

IoU with ground-truth is larger than 0.8. Negative samples

are chosen from the proposals that have a maximum IoU

with ground-truth in the interval [0, 0.5). For the sample ra-

tio, we keep a very low positive sample ratio during stage

one. Because this can decrease false positives , which also

accelerates the following negative mining stages. In our ex-
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periments, setting the ratio of positive samples as 5% is ap-

propriate. The x12 branch threshold is set as 0.1, x12-x24

branch threshold is set as 0.003. They are set empirically.

Within appropriate threshold range, the training procedure

is quite robust. The principle is to make the threshold as

high as possible while keeping the recall, so as to reject

as many proposals as possible in the earlier stages. Alter-

natively, we can fix the proposal number, which is exactly

what we did in the joint training of RPN and fast R-CNN.

During forward, only face proposals that have x12 branch

scores higher than 0.1 contribute to x12-x24 branch. Only

face proposals that have x12-x24 branch scores higher score

than 0.003 contribute to x12-x24-x48 branch.

We decrease the positive sample thresholds when train-

ing the three stages. So in the later stages, we can train

the networks with harder samples. This in turn results in

stronger models for face v.s. non-face classification.

To make it converge eaisily, we train seperate networks

and initialize the joint network with trained weights.

SGD hyper-parameters. We set global learning rate

0.001. After a number of iterations, we lower the learning

rate to 0.0001 to train more iterations. The specific itera-

tion number is related to the number of training samples.

Generally, 5 to 10 epochs would be appropriate. Following

standard practice, we use a momentum term with weight 0.9
and weight decay factor of 0.0005.

4.3. Testing pipeline

The testing pipeline contains three separate CNNs.

Given an input test image, the fully convolution network

outputs a feature map response. Each point of the fea-

ture map gives a face v.s. non-face classification score and

bounding box regression targets (1×4). The regression tar-

gets are used for bounding-box refinement. Each point is

corresponding to a bounding-box, whose up-left vertex is

the point. After the first stage, we keep the boxes whose

scores are higher than the pre-set threshold. Usually Non-

maximum suppression (NMS) is applied to reject the highly

overlapped boxes. However, NMS is quite time consuming.

We use a novel algorithm to reject the highly overlapped

boxes. Inspired by max pooling, we apply max pooling on

the output feature map. Different from max pooling, the

resolution of the feature map stays unchanged. In detail, we

choose a max pooling kernel k. In the k × k area, only the

point with the highest score is kept, while the others are set

to zero. The stride of the stage one network is 2. So, when

k = 2, the result is comparative to NMS with threshold set

as 0.5.

The remaining boxes are fed to the second stage. We

crop each box region from the original image and resize

them to 24 × 24. For each region, this network outputs a

score and corresponding bounding-box regression targets.

As in the first stage, we reject the boxes whose score is

lower than the pre-set threshold. Then we use the regres-

sion targets to refine the boxes.

After the second stage, in average only dozens of boxes

are remaining. We apply similar procedure as the second

stage. The box regions are cropped and resized to 48 × 48
for input. After score threshold operation, the passed boxes

are refined by bounding box regression targets which is the

output of the third stage.

Finally NMS is applied to all the remaining boxes to get

the final detection results. In practice, the test image is first

built into image pyramids to handle different face scales.

5. Joint Training of RPN and Fast R-CNN

5.1. Training architecture

Considering the disadvantages of RPN + Fast R-CNN

training procedure, we design an alternative joint training

architecture for RPN and fast R-CNN. The architecture is

shown in Fig. 2. In our architecture, we use only one joint

network. In this network, RPN and fast R-CNN share con-

volutional layers. The output of the last shared convolu-

tional layer is fed into two sibling branches. One region

proposal branch for generating candidate proposals with

scores. The other is Region of Interest (RoI) pooling branch

for detection with final scores.

5.2. Training process

The training is a two-step procedure (2× faster than the

original four-step one). We train RPN as in separate train-

ing first, then fine-tune the joint network from RPN model.

The proposals used for fast R-CNN branch are generated

by doing RPN test on the training images. During training

the joint network, the inputs consist of original RPN inputs

plus proposals generated by trained RPN model. The RPN

generated proposals serve as the input RoIs of fast R-CNN

in the joint network. The loss fusion is similar with the joint

training of cascaded CNNs in section 4.1.

Except for cascade of RPN and fast R-CNN, there are

more cascaded CNNs out there. Joint training maybe one

possible solution for end-to-end optimization and convolu-

tional layer sharing.

6. Experiments

We carry out experiments on face detection dataset to

evaluate our joint training pipeline.

6.1. Datasets

In training joint cascaded CNNs, we use Annotated Fa-

cial Landmarks in the Wild (AFLW) [15] and our dataset

called 3R. 3R contains about 26000 images that have faces

and 27000 images that have no faces. 3R is collected from
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Figure 2. In our architecture, we use only one joint network. In this network, RPN and fast R-CNN share convolutional layers. The output

of the last shared convolutional layer is fed into two sibling branches. One region proposal branch for generating candidate proposals with

scores. The other is RoI pooling branch for detection with final scores.
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Figure 3. Face annotation examples.

online social network, the image on which is a reflection

of the real world images in everyday life. To add nega-

tive samples, we also use images in PASCAL VOC2012 [4]

that do not contain persons as background image. In to-

tal, the dataset contain 47211 images with 82987 faces and

about 32000 background images. To avoid confusing cir-

cumstances when it is difficult to judge a patch is ground-

truth or not, we add ignore regions in our training images.

An ignore region is defined as a region where we do not

sample negative samples.

To avoid annotation confusion, we do not annotate using

face rectangles. Instead, each face is annotated by 21 facial

landmarks. The landmarks are slightly different from those

of AFLW official annotations, of which a face may be an-

notated with less than 21 landmarks. We design a transfor-

mation algorithm from facial landmarks to face rectangles.

The face rectangles are square annotations. Face examples

are shown in Fig. 3. We can see that nose is always in the

center of the square annotations.

6.2. AFW results

We evaluate FaceCraft on Annotated Faces in the Wild

(AFW) [39]. AFW contains 205 images collected from

Flickr. The images contain cluttered backgrounds and vari-

ous face viewpoints and appearances.

In ground-truth annotation, one specific problem of face

detection different from general object detection is how to

decide the face bounding box when a face is not frontal.

Different rules in face annotations result in various ground-

truth. So detectors trained with different training data may

get mismatched results on test dataset annotated follow-

ing different rules. This problem has been pointed out be-

fore [18, 16]. In our test results, this is also true. Examples

of detection results are shown in Fig. 4. In our test results,

non-frontal face bounding-box centred on the nose, which

is consistent with our training ground-truth shown in Fig. 3.

While in AFW ground-truth, nose is on the bounding-box

edge.

In previous work [18, 16], the authors use refined detec-

tion results or manual evaluation to evaluate on AFW. We

check all of our detection results and found that setting the

evaluation IoU to 0.3 for all the methods can fairly evalu-

ate the non-frontal faces with almost no impact on frontal

faces. In this way, no post-processing or human interfer-

ence is needed. Practically, 0.3 IoU is enough for following

applications like face alignment.

When we judge a detector, the accuracy of bounding-box

should be one of the indicators. For now, there is no such

evaluation rule on AFW. One reason is that researches use

various training data and various annotations. One possible

solution maybe that we use a uniform transformation from

facial landmarks to face rectangle annotations. Because fa-

cial landmarks can be accurately annotated.

The comparison of Precision-Recall curves generated by

different methods is shown in Fig. 6. As we can see, the

recall of our face detector is higher than all previous re-

sults, approaching 99.75%. The Average Precision (AP) is

98.22%, which is comparable with state-of-the-art methods.

6.3. FDDB results

Face Detection Data Set and Benchmark (FDDB) [13]

contains 2845 images with 5171 face annotations.

We use the evaluation toolbox provided by [18], which

also reports recall at 1000 false positives. This dataset use

two kinds of evaluation method, discontinuous score and

continuous score [13]. As pointed in section 6.2, conti-
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nous score is largely influenced by annotations of training

dataset. Previous works use many tricks to refine the de-

tected face box to get a better score. To reduce comparison

confusion, we only report discontinuous score.

The curve is shown in Fig. 7. As we can see, the joint

training result get a recall of 88.2% (1000 false positives),

which is comparative with the state-of-the-art. This is bet-

ter than Cascaded CNN result (85.7%) reported in [16].
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Figure 7. Comparison with state-of-the-art methods on FDDB.

To make a fair comparison, we also show the result with

the same networks but trained separately. The separately

trained model get a recall of 87.2%, which is lower than

Jointly trained model.

6.4. How larger dataset benefits?

In Faceness [34] the authors used more training data.

To evaluate our method on larger training dataset, we con-

duct experiments with enlarged dataset 3R+. In total, we

use 108000 images with annotated faces. The experiments

prove that our architecture can benefit from enlarged train-
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ing data. Results are shown in Fig. 6 and Fig. 7. AP on

AFW is 98.73%, recall on FDDB is 90.8% (1000 false pos-

itives).

6.5. Detection efficiency

CNN based methods have always been accused of its

runtime efficiency. Recent CNN algorithms are getting

faster on high-end GPUs. However, in most practical ap-

plications, especially mobile applications, they are not fast

enough.

In our testing pipeline, the later two stages are more com-

plicated, while the most time consuming stage is the first

stage. By rejecting most of the face proposals in the first

stage, we make the following two networks very efficient.

The later two stages occupy about half of the whole compu-

tation.

Response map pooling In the first stage, after using score

threshold, there are still nearly 1000 proposals in average.

NMS would be time consuming, so we use max pooling

on the final feature map. This is faster than NMS while

achieving similar result.

Image patch resizing In the later two stages, we need to

resize the image patches to the network input size. Actually

when generating image pyramids, we’ve already resized the

images to 1/2k of the original size. To speed up the com-

putation, for a passed face proposal after stage one, we can

find the corresponding twice larger patch from the upper

scale image pyramid. In this way, we can save the patch

resizing time.

Our fast version method achieves 10 FPS on a single

CPU core while keeping 87.3% (merely decreased com-

pared to previous 88.2%) recall on FDDB. We test on VGA

images, and detect multi-scale faces as small as 24 × 24.

For specific circumstances, we can vary threshold and im-

age pyramids number to accelerate. As comparison, the fast

version of Faceness [34] uses outside methods to generate

proposals, and runs 20 FPS on Titan Black GPU for VGA

images, at the expense of recall rate decreased to 87%. Cas-

cade CNNs [16] runs 14 FPS on CPU at the expense of

recall rate, and it only scans for 80× 80 faces.

6.6. Experiments of jointly trained faster RCNN

For the convolutional layers, we use a network that is

modified from ZF-net, in which we chop off the LRN lay-

ers. All settings in training separate and joint networks

are the same, e.g., loss weights, NMS thresholds, proposal

numbers and learning rates. We train RPN first and fine-

tune the joint network from RPN model. The proposals

used for fast R-CNN branch are generated by doing RPN

testing on the training images. During training the joint net-

work, the joint inputs consist of original RPN inputs and

Table 1. Comparison of training methods of RPN + F-RCNN

Benchmark Separate Joint

AFW 97.0% 98.7%

FDDB 89.7% 91.2%

proposals generated by trained RPN model. The joint net-

work converges easily with improved performance. The ex-

periments are conducted on 3R+.

As shown in Table. 1, with our presented RPN + F-

RCNN (fast R-CNN) joint training pipeline, the AP (aver-

age precision) on AFW is 98.7%, compared to the baseline

result 97.0% trained with 4-stage training method proposed

in [21]. On FDDB, the recall (1000 false positives) is 91.2%
v.s. 89.7%. For the F-RCNN branch, the final joint train-

ing loss decreases 64% compared to separate training. In

joint RPN + F-RCNN, the detection results mostly have

much higher confidence scores than separate training re-

sults, which have lower confidence scores because of F-

RCNN domination in convolution layers.

6.7. Disscussion

Except for the use of jointly trained cascaded CNNs for

face detection, jointly trained RPN and fast R-CNN is also

a promising method for fast and accurate face detection.

RPN is very fast for generating good proposals with large

pre-trained models in general object detection, while it is

not fast enough for face detection. For face detection, we

can design smaller RPN and train from scratch. The advan-

tage is that the use of multi-scale anchors can replace im-

age pyramids used in previous methods. However if trained

with the faster R-CNN four-step procedure, the RPN convo-

lutional layers would be dominated by fast R-CNN. If RPN

is jointly trained with fast R-CNN, the whole network can

get better performance. As the whole computation won’t

add too much compared with RPN only, fast face detection

can be very promising.

7. Conclusion

In this paper, we have presented joint training as a novel

way of training cascaded CNNs. By joint training, CNN

cascade can achieve end-to-end optimization. We show that

the back propagation algorithm used in training CNN can

be naturally used in training CNN cascade. By jointly op-

timizing cascaded stages, the whole network get improved

performance with smaller models for sharing convolutions.

We evaluate joint training on face detection datasets. Our

results achieve the state-of-the-art. Joint training can extend

to general cascaded CNNs, and we show how to jointly train

RPN and fast R-CNN as an example.
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