
 

 

 

Abstract 
 

Aiming at automatically discovering the common objects 

contained in a set of relevant images and segmenting them 

as foreground simultaneously, object co-segmentation has 

become an active research topic in recent years. Although a 

number of approaches have been proposed to address this 

problem, many of them are designed with the misleading 

assumption, unscalable prior, or low flexibility and thus 

still suffer from certain limitations, which reduces their 

capability in the real-world scenarios. To alleviate these 

limitations, we propose a novel two-stage co-segmentation 

framework, which introduces the weak background prior to 

establish a globally close-loop graph to represent the 

common object and union background separately. Then a 

novel graph optimized-flexible manifold ranking algorithm 

is proposed to flexibly optimize the graph connection and 

node labels to co-segment the common objects. 

Experiments on three image datasets demonstrate that our 

method outperforms other state-of-the-art methods. 

1.  Introduction 

Given a set of images containing the same or similar 

objects from the same semantic class, the goal of object 

co-segmentation is to discover and segment out such 

common objects from all images, as shown in Figure 1. The 

problem of object co-segmentation is first proposed by 

Rother et al. [3], which demonstrates that simultaneously 

segmenting out the common objects in an image pair can 

achieve higher accuracy than segmenting in either single 

image alone. Following this work, a number of researchers 

make their efforts to develop more effective computational 

models [4-7] for co-segmenting objects in such image pairs. 

However, these methods only seek to co-segment objects in 

two images at a time, which results in direct limitations 

when extending beyond pairwise relations. By realizing this 

problem, more recent object co-segmentation approaches 

[8-16] propose to discover the common patterns of the 

co-occurring objects in group-level and thus can segment 

out them in more than two images. With such important 

progress, object co-segmentation has become to be more 

practical for the real-world problems because there are rich 

collections of multiple related pictures sharing the common 

objects or events in reality [17], such as the photo-sharing 

websites like Flickr and Facebook. However, when 

performing object co-segmentation in such real-world 

scenarios, the existing methods still suffer from certain 

limitations, which are mainly lied in the following aspects: 

Misleading assumption: Some existing methods are 

based on a misleading assumption that the common regions 

contained by the given image group should be the objects of 

interest. However, lots of real-world image groups 

containing similar objects are collected in similar scenes 

and thus they also contain similar and co-occurring image 

background which may confuse these methods seriously. In 

this case, these methods always wrongly segment out the 

similar co-occurring image backgrounds, as shown in 

Figure 2. For example, Faktor et al. [2] proposed to 

discover the co-occurring regions firstly, and then perform 

co-segmentation by mapping between the co-occurring 
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Figure 2: (a) Several original images from the same object class. 

(b) The co-segmentation results of [1]. (c) The co-segmentation 

results of [2]. (d) Our results. 

 

 
Figure 1: The first row: example images containing similar 

objects from the same semantic class. The second row: the 

co-segmentation results of our framework.  
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regions across the different images, whereas those extracted 

co-occurring regions also contain the common backgrounds. 

The models [7, 9] did not explicitly consider the common 

foreground and background in separate formulations, which 

leads to the failure results where arbitrarily shaped 

background regions (with similar appearance in both 

images) are segmented out as the common objects.  

To solve this problem, we introduce a novel concept in 

this paper, i.e., the union background, which indicates the 

collections of image background regions in each image 

group, and then proposes to formulate the common objects 

and union background separately. Specifically, we 

represent the image group as a globally close-loop graph 

with superpixels as nodes. These nodes are ranked based on 

the similarity to background and foreground queries via a 

novel GO-FMR (graph optimized-flexible manifold ranking) 

algorithm which can infer both the optimal labels and 

connections of the nodes to precisely distinguish the 

common objects from the union background even when 

some background regions are similar and co-occurring in 

the image group (see Figure 2(d)). 

Unscalable prior: For alleviating the confusion of 

common foreground and background, some approaches 

adopt certain prior knowledge, e.g. saliency and objectness 

in co-segmentation. For example, Rubinstein et al. [1] 

proposed to establish reliable correspondences between 

pixels in different images based on the extracted saliency 

regions. Vicente et al. [14] showed that requiring the 

foreground segment to be an object can significantly 

improve the co-segmentation performance and thus they 

introduced the objectness in their model via generating a 

pool of object-like proposal segmentations. However, such 

prior knowledge may not always guarantee to provide 

adequate and precise information when scaling up for the 

real-world scenarios due to the inestimable complexity and 

diversity in real world.  

To solve this problem, we propose a novel two-stage 

framework in this paper, which can weaken the strong prior 

knowledge used in the previous work to a much more 

scalable prior, i.e., the background prior. As mentioned in 

[18, 19], the background prior comes from the basic rule of 

photographic composition, that is, most photographers do 

not crop objects of interest along the view frame. In other 

words, the image boundary is mostly background. Based on 

this prior, we initialize the graph in the first stage by 

connecting the superpixel nodes located in the image 

boundaries of the entire image group, i.e., the union 

background. By inferring via the proposed GO-FMR 

algorithm, we can obtain the image regions which are more 

different from the union background. It further provides 

informative knowledge for co-segmenting the common 

objects in the second stage.  

Low flexibility: Some previous methods rely heavily on 

certain model configurations which are manually designed 

and kept fixed during the exploration of the common objects. 

However, such strategies are typically subjective and cannot 

generalize well to flexibly adapt to various real-world 

scenarios encountered in practice. Take the graph-based 

object co-segmentation approaches as the example. Joulin 

et al. [9] proposed a discriminative clustering algorithm, 

which combined the fixed Laplacian matrix and kernel 

matrix to formulate the spatial consistency and 

discriminative clustering, respectively. For better taking 

advantage of the information available from other images in 

 

Figure 3: Overview of our two-stage object co-segmentation framework. 
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the group, Kim et al. [20] carefully modelled the 

inter-image relationships via connecting the image regions 

of one image to all other images in an image cluster. As can 

be seen, these methods build the graph connections based 

on the certain aspects of human knowledge and keep them 

fixed during the optimization processes. However, the 

limited human knowledge we have may not always 

guarantee an optimal graph connection in various scenarios. 

Thus, such strategies keeping the graph connections 

unchanged during the optimization process may suffer from 

the low flexibility when dealing with the real-world 

scenarios. 

To solve this problem, we propose a novel GO-FMR 

algorithm, which can alternatively optimize the superpixel 

labels as well as the connections in the image group. 

Specifically, given an initialized graph with the nodes 

connected based on certain human knowledge, the proposed 

GO-FMR algorithm can be guided by the human knowledge 

and further flexibly infer the optimal graph connection for 

the specific scenario rather than blindly trusting the human 

knowledge and keeping the manually designed graph 

connection fixed in all cases. Moreover, the prior 

information can also be easily incorporated into the 

proposed GO-FMR algorithm by initializing the seed nodes 

correspondingly. Thus, it can be adapted to the various 

real-world scenarios flexibly. 

The concrete framework proposed in this paper to reduce 

above mentioned problems is shown in Figure 3. Given 

images within an image group, we first decompose each 

image into superpixels. Then, for each superpixel, we 

extract the low-level appearance features and high-level 

semantic features, respectively. Afterwards, the properties 

of the common objects are inferred via the GO-FMR based 

two-stage scheme to generate the probability maps for the 

different types of features separately. Finally, the obtained 

probability maps are integrated to generate the final object 

co-segmentation results. In summary, the contributions of 

this paper are three-folds:  

 We make one of the earliest efforts to formulate the 

common object and union background separately, which 

can effectively suppress the co-segmentation of the 

common background in the real-world scenarios.  

 We proposed a novel two-stage object co-segmentation 

scheme which relies on a much weaker background prior 

and thus can better scale up for more complex scenarios.  

 We propose a novel GO-FMR algorithm to optimize the 

established globally close-loop graph, which can 

simultaneously infer both the labels of all the superpixel 

nodes and the optimal graph connection to best explore 

the relationships among all image regions. 

2. Proposed Approach 

For a set of images  1 2, ,..., mI I I   that contain a 

common object, our goal is to segment the common object 

instance in each image. As a pre-processing step, each 

image 
iI  in   is first over-segmented into 

in  superpixels 

by the SLIC algorithm [21]. Then the whole image set   

contains 
1

m

ii
n n


  superpixels. Our object 

co-segmentation process is performed on superpixel level.  

2.1. The image features 

In this paper, we adopt two kinds of image features, i.e., 

the low-level appearance features and the high-level 

semantic features, to capture different characteristics of 

each superpixel. 

The low-level appearance features are sensitive to the 

appearance variations of images. The common objects 

detected based on this kind of features should have 

consistent appearance and well-defined object boundaries 

within each image, as shown in Figure 4(b). Three kinds of 

low-level appearance features are used in this work, 

including color, texture, and dense SIFT descriptors [22]. 

They are denoted by 1c , 2c  and 3c , respectively. 

As mentioned by Zhang et al. [17], the common objects 

in different images may share strong homogeneity in 

semantic level. Thus, we also apply the deep semantic 

feature in this paper. Specifically, we employ the ‘CNN-S’ 
[23] model which is pre-trained on the ImageNet [24] 

dataset to extract the high-level semantic representations. 

Firstly, we feed each image into the pre-trained CNN and 

extract the responses from the last convolutional layer as the 

higher-level image representations, which consists of 512 

feature maps with size of 17×17. Next, we resize the feature 

maps to the size of the original image, and then use a max 

pooling operation on each superpixel to generate a 512-D 

CNN feature vector. Subsequently, an auto-encoder is 

further used to reduce the feature dimension to 24. The 

 
Figure 4: Illustration of the combination of the two kinds of image 

features. (a) The input images from the same object class. (b) The 

probability maps obtained from the low-level appearance features. 

(c) The probability maps obtained from the high-level semantic 

feature. (d) The probability maps obtained from the combination 

of low-level appearance features and high-level semantic feature. 

(e) The final binary masks of the input images. 
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24-D CNN feature vector is denoted by 4c . With such 

semantic feature, we can precisely locate the common 

objects in each image, as shown in Figure 4(c). However, as 

the original size of the feature maps is very small, even after 

the resizing operation, the feature maps are still very coarse. 

Thus the obtained co-segmentation results based on such 

CNN tend to be somewhat blurry. 

As the low-level appearance features and the high-level 

semantic features describe different attributes of the images 

and play different roles in the co-segmentation process, we 

first perform our co-segmentation framework based on each 

of them separately. Then those two preliminary 

co-segmentation results are integrated into the final one, as 

shown in Figure 4(d). 

2.2.  The graph construction 

We construct a globally close-loop graph  , ,G V E A  

on  , where each node in V  corresponds to a superpixel 

in  , the edges in E  connect all the related superpixels, 

and the affinity matrix A  measures the similarities among 

all superpixels.  

As spatially neighboring nodes with similar features tend 

to belong to the same class, we connect each node with not 

only its spatial neighbors, but also the neighbors of its 

neighbors to model the intra-image constraints in each 

image. In addition, as we formulate the common object and 

union background separately, we connect all the potential 

common object nodes together and union background nodes 

together to model their consistency relationships, 

respectively. The initial node connections in our graph can 

be illustrated in Figure 5. 

The affinity matrix ij
n n

a


   A  measures the weights of 

×
ij

n n
E e    . For each edge ije  that connects two nodes, we 

compute the similarity weight ija  as follows:  

3
2

1

exp i j

ij t t t

t

a 


 
   

 
 c c                       (1) 

 

or 

 2

4 4exp i j

ija   c c                            (2) 

where i
c  is the feature vector of node i . Eq. (1) is used for 

the low-level appearance features and Eq. (2) is used for the 

high-level semantic feature. Empirically, setting 1 1   and 

2 3 0.7    can produce good results in our experiments.  

After obtaining A , we further define the diagonal matrix 

D  as the row sums of A , and the graph Laplacian matrix 

L  as： 

 L D A                                    (3) 

2.3. The GO-FMR algorithm 

After modeling the similarity relationships among all 

superpixels in   through the graph  , ,G V E A , we 

further partition all superpixels into the common object and 

the union background based on the graph. Here we 

formulate the graph labeling problem as a graph-based 

manifold ranking problem [25] and propose a novel 

semi-supervised learning technique called the graph 

optimized-flexible manifold ranking algorithm (GO-FMR), 

to infer the class labels of all superpixels. The graph-based 

manifold ranking problem [25] refers to the problem that 

given a node as query, all other nodes in the graph are 

ranked based on their correlations to the given query. 

Suppose that some superpixels in   have already been 

labelled as 1 (or used as queries). We use the GO-FMR 

algorithm to rank all superpixels based on their relevance to 

the labeled superpixels, where the ranking scores can be 

treated as the probabilities of these superpixels being 

labeled as 1, i.e. their prediction labels corresponding to the 

query superpixels.  

Traditional graph labeling algorithms directly predict the 

class labels of all the superpixels based on the manually 

established affinity matrix A . However, just depending on 

the manually established affinity matrix may not represent 

the real similarity relationships among all the superpixels. 

Even if it can, the process of computing the affinity matrix 

from the original image features itself will lose some 

information. Instead of just depending on the affinity matrix 

A , the proposed GO-FMR algorithm additionally uses a 

projection to directly infer the predict labels from the 

original image features. It also automatically learns the 

optimal graph connection for specific scenario during the 

label prediction process to infer the final predict labels more 

accurately. 

 
Figure 5: Illustration of the node connections in our graph. The 

green lines show that the potential common object nodes of all 

the images are connected together. The blue lines show that the 

potential union background nodes of all the images are connected 

together. The yellow lines within each image show that the 

neighbor nodes within each image are connected. 
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Let us denote   as a sample set 

    

1 2, ,..., t n

n

X = x x x , where each sample   1t

i

x  

corresponds to a superpixel in   and t  is the feature 

dimension. Suppose that some superpixels in   have 

already been labeled. We define a binary indicator vector 

  1

1 2, ,...,
T n

ny y y y = , where 1iy   means that ix  is 

labeled as 1, and 0iy   means that ix  is unlabeled. Then, 

the prediction labels (or ranking scores) of all superpixels 

  1

1 2, ,...,
T n

nf f f f =  can be computed by solving the 

following optimization problem: 

   

     

* * * *

, , ,

, , ,

2 2

2

, , , arg min , , ,

arg min tr tr

b

TT T

b

T

F

b b

b



 



   

    

f w S

S
f w S

f w S f w S

f y U f y f L f

X w 1 f S A

      (4) 

where n nU  is a diagonal matrix with 1iiu   for 

labeled superpixels and 0.001iiu   for unlabeled ones, 

1tw  is a projection vector, b  is a bias term, 
1n1  is a vector with all elements being 1, and 

T bX w +1  is a linear projection that directly maps X  to the 

prediction labels f . ij
n n

s


   S  is the optimal affinity 

matrix used to infer the prediction labels f , where each 

0ijs  . In addition, to simplify the computation, we make a 

constraint that 
1

1
n

iji
s


 . 

S
L  is the graph Laplacian 

matrix computed from S . The two parameters   and   

are used to balance different terms. 

The first two terms in Eq. (4) constrain the label fitness 

(i.e., f  should be close to the given labels of the labeled 

nodes) and manifold smoothness (i.e., f  should be smooth 

on the entire graph of both the unlabeled and labeled nodes), 

respectively, which are normally used in traditional 

manifold ranking algorithms. In addition, the linear 

projection function   Th bX X w +1  is used to directly 

map X  to the prediction labels f . We use both the 

manifold ranking and the linear classification projection to 

predict the labels of all superpixels. The residue between the 

prediction results of these two methods is constrained to be 

as small as possible. 0

T b  f X w 1 f  is the residue 

between f  and  h X , and 
2

0 2
f  is a penalty term for the 

mismatch between them. In addition, the last term 
2

F
S A  

measures the difference between the learned optimal 

affinity matrix S  and the human established affinity matrix 

A . As we infer the optimal affinity matrix S  under the 

guidance of the human established affinity matrix A , this 

term ensures that S  will not change too much from A . 

As those four variables in Eq. (4) cannot be solved 

simultaneously, we use an iterative optimization process to 

alternate between optimizing S  and f , w , b . We first 

initialize the optimal affinity matrix S  as A . The detailed 

iterative process is as follows: 

(1). Fix S , and compute f , w , b . When S  is fixed, 

this label prediction problem can be solved through the 

FME algorithm in [26]. As the objective function is proved 

to be jointly convex with respect to f , w , and b , there 

exists the optimal solutions for them, which are denoted as: 

 

 
 

1

1

1

c

T

c c

T Tb
n

  



   



 

S
f U L H N Uy

w X X X f

f 1 w X1

                 (5) 

where    1 1

2T T T T

c c c c c

     
N X X X X X X X X I , 

c cX XH ,  1/ T

c n H I 11 , and   n nI  is an 

identity matrix. For more details about the computation 

process, please refer to [26]. 

(2). Fix f , w , and b , and compute S . When f , w , b  

are fixed, with the prediction label vector f  computed in 

the last step, S  can be computed by solving the following 

optimization problem:  

  2* arg min tr T

F
  

S
S

S f L f S A              (6) 

which can also be written as: 

1

2
* 2

2
0, 1 1 1 1 1

arg min ( )
n

ij iji

n n n n

i j ij ij ij
s s i j i j

f f s s a


     

   


 S  

(7) 

Then, we can compute each column 
  1n

i

s  of S  via 

solving the following optimization problem: 
2

2, 1
arg min

T
i i

* T

i i i i i
 

  
s 0 1 s

s d s s a                 (8) 

Algorithm 1 The GO-FMR algorithm 

Input: A sample set  1 2, ,..., t n

n

 X x x x , a binary 

indicator vector   1

1 2, ,...,
T n

ny y y y = , and a graph 

 , ,G V E A  constructed on the sample set. 

1: Set 
n nU  as a diagonal matrix with 1iiu   for 

labeled superpixels and 0.001iiu   for unlabeled ones. 

Initialize the optimal similarity matrix S  as A . 

2: repeat 

3:    Compute f , w , b  by Eq. (5) 

4:    Compute S  by Eq. (8) 

5: until the prediction label vector f  stops changing 

Output: The prediction label vector f  
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where 1n

i

a  is the i th column in A , and 1n

i

d  is a 

column vector that measures the label difference between 

each superpixel and the i th superpixel.  

Afterwards, we can obtain the optimal affinity matrix S  

that corresponds to the current prediction label vector f . 

Next, we update f  based on S . These two processes 

alternate until convergence. Algorithm 1 summarizes the 

proposed GO-FMR algorithm. 

2.4. Our two-stage co-segmentation framework 

In our work, we define the common objects as the regions 

in different images that are similar to each other and 

different from the union backgrounds. We develop a 

two-stage co-segmentation framework to first detect some 

potential common objects by comparing with the union 

backgrounds, and then refine the obtained potential 

common objects by further considering the similarity 

between them, as shown in the middle part of Figure 3. 

The first stage: The union backgrounds are first 

initialized as the superpixels on the image boundaries of all 

images. Then we construct a graph  1
G  with all the 

initialized union background nodes connected together and 

all the spatially neighboring nodes connected. Next, by 

treating all the initialized union background nodes as the 

labeled nodes with label 1, we use the GO-FMR algorithm 

to compute all superpixel nodes’ prediction labels 
 1

f . 

As the potential common objects are defined as the 

superpixels that are different from the union backgrounds, 

we extract the potential common object superpixels from 

the prediction labels 
 1

f  as: 

       1 1 1
*mean l f f                    (9) 

where 
   1 1 f 1 f , and   controls the extraction of the 

common objects. A smaller   means that more superpixels 

will be extracted as potential common objects. 

       1 1 1 1

1 2, ,...,
T

nl l l   l  is a binary indication vector with 

 1
1il   means that the i th superpixel belongs to the 

potential common object. 

The second stage. During this stage, we further compute 

the more accurate prediction labels for all superpixels by 

additionally considering the similarity among the common 

objects.  

Specifically, we build a more comprehensive graph  2
G , 

where all potential common object nodes are further 

connected except for the initialized union background 

nodes and the spatially neighboring nodes. Then, we treat 

all potential common object nodes as the labeled nodes with 

label 1, and use the GO-FMR algorithm to infer the final 

label predictions 
 2

f  of all superpixels. Finally, we 

generate a probability map for each image from 
 2

f , where 

each pixel value represents the likelihood of this pixel being 

the common object.  

As shown in Figure 3, we perform our two-stage 

co-segmentation framework based on both the low-level 

appearance features and the high-level semantic features, 

respectively. Consequently, for each image, two probability 

maps are obtained based on these two kinds of image 

features. We multiply these two probability maps to obtain a 

more accurate one, where only the pixels detected as 

common objects by both the low-level appearance features 

and the high-level semantic features can have high 

probability of being labeled as common object. Finally, we 

apply a Grab-cut [27] algorithm to the final probability 

maps to obtain the final binary object co-segmentation 

maps.  

3.  Experiments 

We evaluate our method on a widely used benchmark 

dataset, the iCoseg [28] dataset, and two more challenging 

datasets, the Internet [1] dataset and the PASCAL-VOC 

dataset [2]. Two widely used evaluation metrics are utilized: 

Precision, P (the percentage of correctly labeled pixels of 

both common object and union background), and Jaccard 

index, J (the intersection over union of the resulted 

co-segmentation map and the ground truth segmentation).  

In our experiments, for each object class in the dataset, 

we first divide it into several smaller groups, where each 

group contains images with similar scenes, and then 

perform our co-segmentation framework on each group. 

Specifically, we use a k -means clustering algorithm to 

cluster the images based on their GIST [29] descriptors. 

Here, k  is set to make sure that each group has about ten 

images. 

The two parameters   and   in Eq. (4) are set 

empirically: 0.01   and 5   for the low-level 

appearance features, and 0.05   and 10   for the 

high-level semantic features. The parameter   in Eq. (9) 

controls the extraction of the possible common object 

superpixels from 
 1

f . Empirically, we set   to 2 for the 

low-level appearance features and 1.5 for the high-level 

semantic features. 

3.1. Experiments on the iCoseg dataset 

The iCoseg [28] dataset is a widely used benchmark 

dataset for evaluating co-segmentation approaches. It 

contains 38 object classes of totally 643 images with 

human-given pixel-level segmentation ground-truth. The 

common objects of each class belong to the same object 
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instance under different viewpoints and illumination. The 

images in each object class have the same theme and similar 

backgrounds. Some example images are shown in Figure 6. 

We first evaluate our method on all these 38 object classes 

and then conduct experiments on a subset of the iCoseg 

dataset (16 classes of 122 images). This subset (sub-iCoseg) 

is also often used in previous works [1, 2, 14] to evaluate 

their co-segmentation approaches. 

In Table 1, we show the comparison results of our method 

and two state-of-the-art co-segmentation algorithms of [2] 

and [30] on the whole iCoseg dataset. [30] is a supervised 

co-segmentation approach. Additionally, we also compare 

our results with [1, 2, 14] on the sub-iCoseg dataset, where 

[14] is a supervised co-segmentation method. The 

comparison results are shown in Table 2. 

 
Table 1. Comparison results of the proposed method and two 

state-of-the-art co-segmentation methods on the iCoseg dataset in 

terms of average Precision (denoted by P) and Jaccard index 

(denoted by J). Because [30] does not provide their Jaccard index 

results, we thus do not present them here. 

iCoseg Ours [2] [30] 

P 93.3

% 

92.8

% 

91.4

% J 0.76 0.73 - 

Table 2. Comparison results of the proposed method and three 

state-of-the-art co-segmentation methods on the iCoseg dataset in 

terms of average Precision and Jaccard index. 

sub-iCoseg Ours [2] [1] [14] 

P 94.8

% 

94.4

% 

89.6

% 

85.4

% J 0.82 0.79 0.68 0.62 

 

As shown in Table 1 and Table 2, our method outperform 

all other co-segmentation methods. Compared with the 

second best approach [2], our method has slightly higher 

Precision and much higher Jaccard index. Note that the 

results of [1, 2, 14] are taken from Table 1 in [2]. Some 

results of our co-segmentation method are visualized in 

Figure 6. We can see that our co-segmentation method can 

accurately detect the common object instances in different 

images. Besides, almost no distracting background regions 

are detected as common objects any more.  

3.2. Experiments on the Internet dataset 

The Internet dataset [1] consists of thousands of images 

from the Internet through three query expansions: car, horse, 

and airplane. The common objects of each object class in 

this dataset are similar objects from the same semantic class. 

This dataset is a challenging dataset. Some example images 

are shown in Figure 6. We can see that the common objects 

in different images have quite different colors, scales, poses, 

and viewing-angles, and the backgrounds in each object 

class are also different from each other. In addition, each 

object class in this dataset contains some noisy images that 

do not contain the common objects. In our experiment, we 

follow [1] and [31] to utilize a subset of 100 images per 

class for evaluation. All those images in this subset are with 

human-given segmentation ground-truth.  

We compare our method with four state-of-the-art 

approaches [1, 9, 31, 32] and Table 3 shows the comparison 

results of each object class. The comparison results show 

that our method outperforms all other methods on all three 

object classes. Note that the results of [1, 9, 31, 32] are 

taken from Table 2 in [31]. 

 
Table 3. Comparison results of the proposed method and four 

state-of-the-art co-segmentation methods on the subset of Internet 

dataset in terms of average Precision and Jaccard index. 

 Car Horse Airplane 

P J P J P J 

[9] 58.7

0 

37.1

5 

63.8

4 

30.1

6 

49.2

5 

15.3

6 [32] 68.8

5 

0.04 75.1

2 

6.43 80.2

0 

7.90 

[1] 85.3

8 

64.4

2 

82.8

1 

51.6

5 

88.0

4 

55.8

1 [31] 87.6

5 

64.8

6 

86.1

6 

33.3

9 

90.2

5 

40.3
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Figure 6 shows some sample results. As can be seen, our 

co-segmentation method can accurately detect the common 

objects of each class. However, for the noisy images of each 

object class, we cannot always successfully recognize them. 

For example, the last image of each object class shown in 

the third row of Figure 6 is a noisy image, which does not 

contain the common object. We successfully recognize the 

noisy image in the plane class, but fail in other two object 

classes.  

 
Table 4. Comparison results of the proposed method and [2] on 

the PASCAL-VOC dataset in terms of the average Precision and 

Jaccard index. 

PASCAL-VOC Ours [2] 

P 89 84 

J 0.52 0.46 

3.3. Experiments on the PASCAL-VOC dataset 

The PASCAL-VOC dataset formed in [2] is also a 

benchmark for evaluating co-segmentation approaches. It 

consists of 1037 images of 20 object classes from the 

well-known PASCAL-VOC 2010 dataset. This dataset is 

more challenging due to extremely large intra-class 

variability and distracting background clutter. Figure 6 

shows some example images from this dataset. In this 

database, many common objects have similar colors with 

the backgrounds. For example, in the bird class (the last 
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example in the fifth row of Figure 6), the branches have very 

similar colors with the birds. Table 4 presents the 

comparison results of our method and [2] on the 

PASCAL-VOC dataset. As can be seen from the results, our 

method outperforms [2] and both our average Precision and 

Jaccard index are much higher than [2].  

3.4.  Model component analysis 

In this section, we implement experiments on the 

PASCAL-VOC dataset to further analyze some components 

in the proposed framework. Firstly, we demonstrate the 

effectiveness of integrating both the low-level appearance 

features and high-level semantic features. Specifically, we 

report the performance based on each individual feature in 

Table 5, respectively. As can be seen, the performance of 

integrating both features is significantly better than that of 

using either individual feature, which demonstrates the 

importance of leveraging the complementary information 

existed in different kinds of features as we pointed in 

Section 2.1. 

Secondly, we demonstrate the effectiveness of the graph 

optimization step. Specifically, we report the performance 

of our method without graph optimization in Table 5. As 

can be seen, by executing graph optimization, the 

co-segmentation performance of our method improves a lot. 

This demonstrates that flexibly inferring the optimal graph 

connections to fit different scenarios can obtain much 

encouraging co-segmentation performance. 

Lastly, we compare the performance of our method with a 

baseline method which adopts the conventional manifold 

ranking strategy as used in [25]. As shown in Table 5, the 

baseline method achieves performance much worse than the 

proposed method, which demonstrates the effectiveness of 

the proposed GO-FMR algorithm. 

 
Table 5. The results for model component analysis. Note that 

‘Low’, ‘High’, ‘w/o OP’, ‘MR’ and ‘Ours’ denote the image 

co-segmentation results that only based on the low-level 

appearance features, only based on the high-level semantic 

features, without graph optimization, the conventional manifold 

ranking strategy and our complete framework. 

PASCAL-VOC ‘Low’ ‘High’ ‘w/o 
OP’ ‘MR’ ‘Ours 

P 80.8 85.0 86.9 78.9 89.0 

J 0.45 0.49 0.45 0.41 0.52 

4. Conclusion  

In this paper, we have proposed a novel computational 

framework for object co-segmentation. By introducing a 

new concept of weak background prior, we constructed 

globally close-loop graphs to formulate the common object 

and union background separately. Afterwards, we designed 

a graph optimized-flexible manifold ranking algorithm to 

flexibly optimize the graph connection and node labels, 

which finally yielded the co-segmentation results. The 

comprehensive evaluations on three publically available 

benchmarks and comparisons with a number of 

state-of-the-art approaches have demonstrated the 

superiority of the proposed work.  
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Figure 6. Some visualization results of our cosegmentation framework on the iCoseg (Rows 1-2), Internet (Rows 3-4), and 

PASCAL-VOC dataset (Rows 5-6), respectively. For each image set with three relevant images, we show the original images in the first 

row and the corresponding object segmentation results in the second row. 
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