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Abstract

Discriminative sparse coding has emerged as a promis-

ing technique in image analysis and recognition, which cou-

ples the process of classifier training and the process of

dictionary learning for improving the discriminability of

sparse codes. Many existing approaches consider only a

simple single linear classifier whose discriminative power

is rather weak. In this paper, we proposed a discrimina-

tive sparse coding method which jointly learns a dictionary

for sparse coding and an ensemble classifier for discrim-

ination. The ensemble classifier is composed of a set of

linear predictors and constructed via both subsampling on

data and subspace projection on sparse codes. The ad-

vantages of the proposed method over the existing ones are

multi-fold: better discriminability of sparse codes, weaker

dependence on peculiarities of training data, and more ex-

pressibility of classifier for classification. These advantages

are also justified in the experiments, as our method outper-

formed several recent methods in several recognition tasks.

1. Introduction

In recent years, as a promising technique for efficiently

representing high-dimensional data, sparse coding has seen

its successful usages in a variety of recognition tasks, e.g.,

face recognition [31, 36, 3], object classification [32, 17, 3],

texture classification [26, 25], and action recognition [8,

39]. Given a set of input data, sparse coding aims at express-

ing each input data by a linear combination of only a few

elements from a set of representative patterns. These repre-

sentative patterns are called atoms, the set of all the atoms is

called dictionary, and the coefficients of the linear combi-
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nations are called sparse codes. More specifically, consider

a set of input signals {y1,y2, . . . ,yP } ⊂ R
N , sparse cod-

ing is about determining a set of atoms {d1,d2, . . . ,dM} ⊂
R

N , together with a set of coding vectors {c1, . . . , cP } ⊂
R

M , so that each input vector yj can be approximated by

the linear combination yj ≈ ∑M
ℓ=1 cj(ℓ)dℓ, where most

entries of cj are zeros or close to zeros. Let ‖ ·‖0 denote the

pseudo-norm that counts the number of non-zero elements.

Then, the classic sparse coding problem can be formulated

as the following optimization problem (e.g. [1]):

min
D,C

‖Y −DC‖2F , s.t. ∀i, ‖ci‖0 ≤ T, (1)

where D = [d1,d2, . . . ,dM ] ∈ R
N×M denotes the dictio-

nary to be learned, Y = [y1,y2, . . . ,yP ] ∈ R
N×P denotes

a matrix containing the input samples as column vectors,

C = [c1, . . . , cP ] ∈ R
M×P denotes the matrix contain-

ing the corresponding coding vectors, and the parameter T
controls the sparsity degree on each coding vector. Further-

more, the normalization constraint on each atom is often im-

posed to avoid possible unbounded solutions, which states

‖dj‖2 = 1 for all j.
It can be seen that the dictionary learned using (1) only

cares about the approximation error between the input data

and the resultant succinct expression. In other words, the

sparse codes obtained under the learned dictionary can be

viewed as the cleaned up version of the input data. One

may use such sparse codes as the features for classification.

However, the additional discriminative information pro-

vided by these sparse codes over the original input signals

is limited when being used in complex classification tasks,

as they do not take account of the discriminability needed in

classification. In recent years, there have been an abundant

literature on discriminative sparse coding which is to learn

a dictionary whose resultant sparse codes possess improved

discriminative power; see e.g. [21, 22, 20, 33, 26, 15]. The

basic idea of discriminative sparse coding for classification

is to include some supervised learning processes into sparse

coding. Most existing approaches for discriminative sparse
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coding consider the following variational model:

min
D,C

‖Y −DC‖2F + γJ (C;L) (2)

subject to ‖ci‖0 ≤ T , ‖dj‖2 ≤ 1, for all i and j, where γ
is a weight, L is a matrix that encodes the label informa-

tion of each training sample, and J (·;L) denotes a penalty

function that measures the discriminative error between the

codes and labels.

1.1. Motivation

In recent years, several supervised learning techniques

have been incorporated into discriminative sparse coding,

such as linear prediction in [24, 37, 13], softmax regres-

sion in [21, 22], logistic regression in [22, 20], and max-

imum margin learning in [19, 33]. All these techniques

focus on feeding back classification performance of a sin-

gle classifier, which is rather rudimentary considering the

great advances in supervised learning in recent years. For

example, the powerful ensemble learning [6], a machine

learning paradigm where a set of base classifiers are trained

and combined as an ensemble classifier to gain extra perfor-

mance, has not been fully exploited.

The benefits of introducing ensemble learning to sparse

coding are multi-fold. Firstly, the size of training data is of-

ten limited in real applications, which could be due to the

cost of data collection (e.g. face images [31]) or the compu-

tational cost of using a training set of large size (e.g. clas-

sifying objects of over thousands of categories [7]). As a

result, the dictionary learning, as well as the single classi-

fier training, is often sensitive to the shape of training data.

Ensemble learning allows the combination of multiple clas-

sifiers which can effectively reduce such sensitivity. Sec-

ondly, when using a single classifier, the applicability of dis-

criminative sparse coding is often limited owing to the im-

perfectness of the used learning algorithms, e.g., the linear

classifier used in [24, 37, 14] is inappropriate for linearly in-

separable data, and the fisher discriminant used in [35, 34] is

optimal only when the data from each category are realized

from the normal distribution. In contrast, using ensemble

learning can avoid such imperfectness by integrating multi-

ple classifiers. Lastly, the hypothesis space being searched

might not contain the true target function, while ensembles

can give some good approximation [6].

Motivated by the likely benefits of ensemble learning

over single classifier training, there have been several at-

tempts to incorporate ensemble learning into discriminative

sparse coding; see e.g. [38, 40, 41]. However, there are

plenty of room for further improvement in all these meth-

ods in both theoretical and applied perspectives. For exam-

ple, the supervised information is not fully utilized in [41],

a two-stage scheme used in [40] does not feed back classi-

fication performance for dictionary learning, and an itera-

tive re-sampling scheme is directly used in [38] for learning
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Figure 1. Motivation of sparse coding with discriminative ensem-

ble. (a) Reconstructive sparse coding only considers minimizing

the reconstruction error. Thus, inter-class signals which have high

correlations are likely to share atoms during dictionary leaning,

which yields similar inter-class sparsity patterns and decreases the

discrimination of sparse codes, e.g., green points and black points

are mixed together in the K-SVD [1] coding space. (b) Jointly

learning a linear classifier could address the issue, as labels of sig-

nals are utilized to enforce the separability of inter-class sparsity

patterns, e.g., green points and black points are separated in the

D-KSVD [37] coding space. (c) However, discrimination terms

based on a single linear classifier are insufficient in many scenar-

ios, as inter-class sparsity patterns are unnecessarily linearly sep-

arable due to the multi-modal distribution (e.g. black points or red

points are distributed in two clusters in the D-KSVD [37] cod-

ing space), peculiarity and outliers of training data. On the other

hand, using highly nonlinear classifier would result in complex

optimization models that are challenging to solve. In contrast, in-

tegrating multiple linear classifiers can overcome the weakness of

single linear classifier while keeping the simplicity of the model.

multiple dictionaries and classifiers, which lacks an unified

variational model. All these inspired us to study new vari-

ational approaches for ensemble learning based discrimina-

tive sparse coding. See Figure 1 for an illustration of our

motivation to introduce ensemble learning to sparse coding.

1.2. Main Contributions

This paper aims to develop a new discriminative sparse

coding method which is built upon ensemble learning. We

first construct a new variational model of the form (2) that

embeds ensemble learning into sparse coding by consider-

ing an ensemble classifier in defining the term J . Then,

we propose an alternating iterative scheme to solve the re-

sultant optimization problem. The proposed discriminative

sparse coding method can be applied to classification by

voting the predictions from all base classifiers in the en-

semble. Compared to the classic sparse coding methods,

e.g. the K-SVD method [1] and the proximal method [2, 3],

the sparse codes from the proposed method are much more

discriminative when being used in classification. Compared
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to the single classifier based discriminative sparse coding

methods [24, 37, 14], the proposed method is built upon

multiple classifiers in an ensemble setting, which is capable

to tackle the insufficiency of training data and improve the

robustness of classification. Compared to the methods that

assign labels to atoms for adding discrimination [40, 13],

the proposed method can be regarded as a generalization

which projects the sparse codes to a set of subspaces and

learns a classifier on each subspace, yielding a compact dic-

tionary without explicit label assignment. In comparison

to other existing ensemble-based dictionary learning meth-

ods [38, 40], the proposed method provides a variational

model with better theoretical justification, and avoids learn-

ing multiple dictionaries for ensemble as done in [40, 41].

2. Discriminative Sparse Coding

Nowadays, sparse coding has emerged as one promis-

ing technique in a wide range of applications, including im-

age recovery, analysis, and classification. In classic sparse

modeling problem, the sparse coding aims at finding sparse

representation of input data under an adaptive dictionary.

There has been an abundant literature on its analysis and

algorithms. For example, the SRC method [31] considers

the sparse approximation problem with the dictionary con-

structed by concatenating all training samples. The well-

known K-SVD method [1] considers the model (1) and pro-

vides a fast numerical solver, and the proximal method for

solving the same problem is proposed in [2] with rigorous

convergence analysis. All these methods only concern the

sparse approximation of input data. The label information

of the training samples in supervised setting are ignored.

As a result, the obtained sparse codes often do not provide

additional discriminative information over the input feature

vectors when used for classification. Thus, many methods

have been proposed to utilize the labels of data for discrim-

inative sparse coding, e.g. [21, 37, 26, 35, 13]. In the next,

we give a brief review on the existing discriminative sparse

coding techniques, which can be mainly classified into two

categories based on the usage of label information.

2.1. Joint dictionary learning and classifier training

There are two approaches for combining classification

and sparse coding. One is a two-stage approach which first

runs sparse coding and then uses the obtained sparse codes

as the features to train classifiers; see e.g. [11, 32, 30]. Such

a two-stage scheme is not optimal for discrimination as it

does not relate classifiers to the process of sparse coding.

Thus, a better approach is to simultaneously run classifier

training and sparse coding, which often can be formulated

as a variational model:

min
D,W ,C

‖Y −DC‖2F + γJ (C,W ;L)

s.t. ‖ci‖0 ≤ T, ‖dj‖2 ≤ 1, for all i, j,
(3)

where J (·, ·;L) denotes a classification loss function,

W denotes the classifier parameters related to J , and

L = [l1, l2, . . . , lP ] ∈ R
K×P is the binary label ma-

trix of P training samples from K categories, where lp =
[0, 0, . . . , 1, . . . , 0, 0]⊤ ∈ R

K denotes the binary label vec-

tor of the pth sample yp in which nonzero occurs at the kth

entry if yp belongs to the kth category.

As a discriminative term, the classification loss function

J (C,W ;L) in (3) varies in different methods - softmax

discriminative cost [21, 22], linear prediction error [24, 37,

14, 13], hinge loss [19, 33], and logistic loss [22, 20], to

name a few. Take the linear prediction error for example,

the classification loss function L is defined as

J (C,W ;L) = ‖L−WC‖2F , (4)

where W ∈ R
K×M is a classic multi-class linear predictor.

Such a simple discrimination term has demonstrated moder-

ate performance improvement in face recognition [37]. But

a global linear classifier is often still not powerful enough

in many challenging classification tasks.

Most existing approaches solve the problem (3) via an

alternating iteration scheme which alternatively updates the

estimations in three submodules, i.e. sparse coding, dictio-

nary learning and classifier training.

2.2. Associating dictionary atoms with class labels

The discriminability in sparse codes can be further im-

proved by learning a dictionary with labeled atoms. More

specifically, each dictionary atom is associated with one or

more class labels. During the process of dictionary learn-

ing, each input signal is encouraged to have significant re-

sponses on the atoms whose class labels are shared with

the signal. In this scheme, a dictionary is partitioned into

several discriminative sub-dictionaries, and distinct sparsity

patterns (e.g. positions or magnitude spectrum of non-zero

elements) are induced in the sparse coefficients of inter-

class signals, which is likely to increase the distance of

sparse codes among different classes.

When they are disjoint and learned independently from

inner-class samples, sub-dictionaries become naive class-

specific dictionaries, which have been employed in many

previous studies; see e.g. [21, 28]. The main drawback of

these methods is that the learned class-specific dictionaries

do not encode correlation between classes. On the one hand,

the learned class-specific dictionary in each class might also

represent data from other classes equally well, which results

in decreased discriminative power of sparse codes. On the

other hand, the samples from different classes do not share

any dictionary atom, which makes the resultant representa-

tion less efficient in terms of characterizing the underlying

structures. Several schemes have been proposed to tackle

these issues - adding an additional globally shared pool of

atoms [40, 16], reducing mutual coherence between atoms
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and detecting shared atoms among class-specific dictionar-

ies [26], etc.

A promising alternative to using naive class-specific dic-

tionaries is to jointly learn sub-dictionaries, e.g. [35]. To

induce discriminability in sparse codes according to subdic-

tionaries, one way is to group sparse codes according to the

label consistency between dictionary atoms and data sam-

ples. Then group sparsity is imposed on the grouped sparse

codes, e.g. [10, 12]. The resultant structured sparse codes

are more discriminative for classification than the purely

sparse ones. Another way is to induce separability in sparse

codes with certain class separation criterion, see e.g. [35, 5].

Take the label consistency criterion [14, 13] for example,

the discrimination term is defined as follows:

J (C,A;B) = ‖B −AC‖2F , (5)

where A is a linear transformation matrix to be learned,

B ∈ R
M×P is a predefined binary matrix for label consis-

tency where Bm,p is nonzero if the atom dm is expected to

share class label with the signal yp.

3. Main Body

In this section, we develop an ensemble based discrim-

inative sparse coding method for classification. Instead of

learning a single linear classifier defined in (4), we train

multiple linear classifiers based on different subspaces of

sparse codes from different subsets of input signals dur-

ing dictionary learning. By jointly learning a dictionary for

sparse coding and training an ensemble classifier for classi-

fication, the benefits of the proposed method are two-fold:

better discriminability of sparse coding and better robust-

ness in classification.

3.1. Ensemble based discriminative sparse coding

Let {Wz ∈ R
K×Mz}Zz=1 be a set of multi-class linear

classifiers to be learned. We propose the following varia-

tional model for discriminative sparse coding:

min
D,{Wz}Z

z=1,C
‖Y −DC‖2F +

Z∑

z=1

γz‖Wz‖2F+

Z∑

z=1

βz‖LQz −WzPzC Qz‖2F (6)

s.t. ‖ci‖0 ≤ T, ‖dj‖2 ≤ 1, for all i, j,

where βzs and γzs are the scalars controlling relative con-

tribution of each term, Pz ∈ R
Mz×M is a subspace ensem-

ble constructor which projects coding vector of each sample

(i.e. each column of C) onto certain subspace, and Qz ∈
R

P×P is a subsample ensemble constructor which selects

coding vectors of certain samples ( i.e. some columns of C)

for classification. There are three main terms in (6):

• The first term is a fidelity term for the consistency be-

tween signals and codes;

• The second term is a discrimination term built upon an

ensemble of classifiers, where {Pz}Zz=1 is used for con-

structing subspace ensemble while {Qz}Zz=1 for con-

structing subsample ensemble;

• The last term is to control the energy of the classifiers to

avoid over-fitting.

Compared to the single linear classifier based approaches

(e.g. [37]), by using the ensemble of linear classifiers, the

proposed method is able to reduce the dependence of sparse

codes on peculiarities of training set and learn more expres-

sive concepts for further performance gain in classification.

Remark - An interesting observation on the connection be-

tween label consistency and ensemble learning. The label

consistency term defined in (5) can be also understood from

the viewpoint of ensemble learning. First, assuming each

class shares label with H atoms and each atom only shares

label with one class, it is easy to verify that there exists a

permutation matrix R such that R(1Z ⊗L) = B. Then we

can rewrite (5) as

J (C, Ā;L) =

H∑

h=1

‖L− ĀhC‖2F , (7)

where Āh ∈ R
K×P is the hth block of Ā which is defined

as Ā = [Ā1, Ā2, ..., ĀH ] = RA. Thus, the label consis-

tency term can be viewed as a discrimination term defined

as the summation of prediction errors from a set of linear

classifiers {Ah}Hh=1, which is a special case of the ensem-

ble discrimination term in (6). Note that the base learners

{Ah}Hh=1 learned in LC-KSVD are utilized in learning but

not classification. In comparison, we utilize the base learn-

ers in both learning and classification for improvement.

3.2. Construction of ensemble classifier

We now give a detailed description on the implementa-

tion of the ensemble construction operators {Pz}Zz=1 and

{Qz}Zz=1 in (6). As suggested in [6], the correlation of

each pair of base classifiers in the ensemble should be as

low as possible for promising diversity and improvement.

One often-used technique to form ensemble with indepen-

dent bases is done by random injection. In this paper, we

configure {Pz}Zz=1 and {Qz}Zz=1 as follows1:

• Identical projection: Set P1 = IM and Q1 = IP .

This is an ordinary base which results in (4).

• Feature selection: For z = 2, ..., H1 +1, set Qz = IP
and set Pz ∈ R

K×M to be a feature selection matrix

such that PzC selects K rows from C. More specifi-

cally, Pz is a binary matrix with K nonzeros generated

1Recall that M /P /K are the number of atoms/signals/categories.
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by randomly deleting M −K rows from IM . The row

positions of 1s in Pz indicate the selected dimensions

of sparse codes for training Wz .

• Random projection: For z = H1+2, ..., H2+H1+1,

set Qz = IP and set Pz ∈ R
M
2 ×M to be a random

Gaussian matrix with zero mean. Compared to the fea-

ture selection, the random projection can guarantee a

global preservation of inter-point distances.

• Data subsampling: For z = H2+H1+2, ..., H3+H2+
H1+1, set Pz = IM and set Qz ∈ R

P×P to be a diag-

onal projection matrix that selects sparse codes from a

subset of training samples from each class. More con-

cretely, Qz is a binary diagonal matrix where the pth

diagonal element being 1 indicates that the pth signal

is used for training Wz .2 The Qzs are generated by

thresholding randomly permuted indices.

Empirically, the performance of our method is insensitive

to the randomness from the generation schemes above.

3.3. Algorithm

We use an alternating iterative scheme to solve the

problem (6), which alternatively updates the unknowns

D, C and {Wz}Zz=1 as follows3: for ℓ = 1, 2, . . . ,










































C
(ℓ+1)

= argmin
C

Z
∑

z=1

βz‖L−W
(ℓ)
z PzC

(ℓ)
Qz‖

2
F

+ ‖Y −D(ℓ)C‖2F , s.t. ‖ci‖0 ≤ T for all i;

D
(ℓ+1)

= argmin
D

‖Y −DC
(ℓ)‖2F , s.t. ‖dj‖2 = 1 for all j;

W
(ℓ+1)
z = argmin

W

‖L−WPzC
(ℓ)

Qz‖
2
F +

γz

βz

‖W ‖2F .

3.3.1 Sparse approximation

At the beginning of the (l + 1)th iteration, we update the

sparse codes with the learned dictionary and classifiers from

the previous step by solving the following problem:

C(ℓ+1) = argmin
C

Z∑

z=1

βz‖L−W (ℓ)
z PzCQz‖2F

+ ‖Y −D(ℓ)C‖2F s.t. ∀i, ‖ci‖0 ≤ T.

This problem is column separable with respect to C. Thus,

we update C = [c1, . . . , cP ] column by column as follows:

for i = 1, . . . , P ,

c
(ℓ+1)
i = argmin

c

Z∑

z=1
Qz(i)=1

βz‖li −W (ℓ)
z Pzc‖22

+‖yi −D(ℓ)c‖22, s.t. ‖c‖0 ≤ T

(8)

2Setting Qz rectangular instead of square is more succinct. However, we

adopt the square case for the convenience of presenting our algorithm.
3In the following parts, we omit Qz in LQz for the convenience of pre-

senting our algorithm. This does not affect the optimization procedure

due to the nature of Qz .

where Qz(i) denotes the ith diagonal element of Q. This

problem can be rewritten as

c
(ℓ+1)
i = argmin

c

‖x−U
(ℓ)
i c‖2F , s.t. ‖c‖0 ≤ T, (9)

where U
(ℓ)
i = (D⊤(ℓ), . . . ,

√
βz(W

(ℓ)
z Pz)

⊤, . . . )⊤ and

x = (y⊤
i , . . . ,

√
βzl

⊤
i , . . . )

⊤ for all possible zs subject to

Qz(i) = 1. This is a classic sparse coding problem which

is solved by OMP [29].

3.3.2 Dictionary refinement

After the sparse codes have been updated, the refinement of

dictionary becomes the following problem:

D(ℓ+1) = argmin
D

‖Y −DC(ℓ)‖2F , s.t. ∀j, ‖dj‖2 = 1.

By applying projected gradient descent, we update the dic-

tionary atom by atom as follows: for j = 1, . . . ,M ,





s
(ℓ)
j = d

(ℓ)
j − 1

µℓ
j

∇dj
F(C(ℓ+1), D̃

(ℓ)
j ;Y ),

d
(ℓ+1)
j = argmin

‖dj‖2=1

‖dj − s
(ℓ)
j ‖2, (10)

where µℓ
j is the step size, F(C,D;Y ) = ‖Y −DC‖2F ,

D̃
(ℓ)
j = [d

(ℓ+1)
1 , · · · ,d(ℓ+1)

j−1 ,d
(ℓ)
j ,d

(ℓ)
j+1, · · · ,d(ℓ)

m ],

The problem (10) has a closed-form solution

d
(ℓ+1)
j = s

(ℓ)
j /‖s(ℓ)j ‖2. (11)

3.3.3 Classifier training

With the sparse codes fixed, the training of classifiers is

about solving the following problem:

W (ℓ+1)
z = argmin

W

‖L−WM (ℓ)
z ‖2F +

γz
βz

‖W ‖2F ,

where M
(ℓ)
z = PzC

(ℓ)Qz . This is a ridge regression prob-

lem with the explicit solution given by

W (ℓ+1)
z = LM (ℓ)⊤

z (M (ℓ)
z M (ℓ)⊤

z +
γz
βz

I)−1, (12)

which can be efficiently computed by the conjugate gradient

method as (M
(ℓ)
z M

(ℓ)⊤
z + γz

βz
I) is positive definite.

3.4. Classification strategy

Once the dictionary D and the classifiers {Wz}Zz=1 have

been learned, the classification is done as follows. Given

a test sample ytest, we compute the corresponding sparse

code ctest by solving the sparse approximation problem

ctest = argmin
c

‖ytest −Dc‖22, s.t. ‖c‖0 ≤ T, (13)
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using OMP [29]. Then the prediction score of ctest on the

zth classifier Wz is computed by

stest
z = WzPzc

test, (14)

and all the scores are voted as follows:

stest =

Z∑

z=1

βz(V ◦ stest
z ), (15)

where V is an operator that sets the maximum element of

the input vector to 1 and sets the remaining elements to 0s.

The label of ytest is finally determined by taking the class

index which corresponds to the maximal value in stest.

Remark - The convergence of the above algorithm cannot

be guaranteed. In fact, the proximal method [2] with theo-

retically guaranteed convergence can be adapted to our set-

tings with very little modifications. However, the theoreti-

cal convergence does not provide any practical benefit and

it indeed performs slightly worse than our algorithm.

4. Experiments

In existing literature, there are various protocols for eval-

uating discriminative sparse coding methods. We adopted

the experimental setting from [13], which uses five datasets

and covers a variety of recognition tasks ranging from face

recognition and object classification to scene classification

and action recognition. The datasets and protocols are de-

tailed in the next subsection.

Throughout the experiments, we set H1 = H2 = H3 =
H for simplicity. The resultant number of base classifiers

is Z = 3H + 1. The weights of all the classifiers are set

the same, i.e. βz = β and γz = γ for all possible z. Then,

the parameters of our method are reduced to five scalars:

the number of base classifiers Z, the discrimination weights

β and γ, the sparsity degree T , and the dictionary size M .

The parameters β and γ are determined by cross-validation,

M is set to be a multiple of the number of categories on the

dataset, T is set according to [13], and H is set 10 when the

dimensions of input signals are over 1000 and set 8 other-

wise. For initialization, we calculate D(0) and C(0) using

K-SVD and initialize W (0) using (12) with C(0).

4.1. Datasets and protocols

• Ex. YaleB [9]: The extended YaleB dataset contains 2414
images of 38 human frontal faces. There are about 64
images taken under different illumination conditions and

expressions for each person. Each original face image

is cropped to 192 × 168 pixels and then projected onto

a 504-dimensional feature vector by random projection.

The dataset is randomly split into two halves. One half

which contains 32 images per person is used for training,

and the other half for test. We set T = 40 and M = 532.

• AR Face [13]: The AR Face dataset consists of over 4000
frontal images from 126 individuals, in which 26 pictures

were taken in two separate sessions for each individual.

A subset with 2600 images from 50 male subjects and 50
female subjects is used. Each image is cropped to 165×
120 and then projected onto a 540-dimensional feature

vector by random projection. For each person, 20 images

are collected for training and the rest are for test. We set

T = 40 and M = 500.

• Caltech-101 [7]: The Caltech-101 dataset is composed

of 8677 images from 101 object categories and 467 im-

ages from an additional background category. The num-

ber of samples per category is greatly unbalanced, vary-

ing from 31 to 800. The 3000-dimensional SIFT-based

spatial pyramid feature [18] is used to represent each im-

age. We trained on 15 samples per category and tested

on the rest. The dictionary size is set equal to the size of

training set (i.e. 1530). The parameter T is set to 45.

• Scene-15 [18]: The Scene-15 dataset contains 4485 im-

ages of 15 categories of scenes. The number of sam-

ples per category varies from 210 to 410. Similar to the

case in Caltech-101, a 3000-dimensional SIFT-based spa-

tial pyramid feature [18] is extracted from each image.

From each category, 100 images are collected for training

and the rest for test. The parameters are set as follows:

T = 50 and M = 600.

• UCF Action [23]: The UCF Sports Action dataset con-

sists of 150 action videos of 10 categories. The number

of samples per category varies from 14 to 35. The ac-

tion bank feature [27] is extracted from each sample and

then projected onto a 100-dimensional vector by PCA.

The performance is measured by the five-fold cross vali-

dation (i.e. one fold for test and the remaining four folds

for training). We set M = 50 and T = 10.

4.2. Methods for comparison

Our purpose here is not to compete with the top recog-

nition systems like deep networks, but to demonstrate the

improvement of the proposed method over the related ones.

Thus, our method is compared against some recent sparse

coding methods that are closely-related to ours, including4

• SRC [31], sparse representation based classification via

stacking training samples as a dictionary, which was im-

plemented with two different dictionary configurations:

SRC for the case where all training samples are used for

dictionary construction, and SRC* for the case where the

dictionary size is the same as ours;

• K-SVD [1], reconstructive sparse coding via solving (1),

which is applied to classification via a two-stage strategy:

sparse coding followed by single linear classifier training;

4We observed noticeable improvement from state-of-the-art deep networks

over our method. But such a comparison is not fair, as deep networks

learn features from the data while our method uses handcrafted features.
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• Joint [24], unifying classifier learning and sparse repre-

sentation into one optimization framework;

• D-KSVD [37], simultaneously learning a dictionary and

a linear classifier by solving (3) and (4) via K-SVD;

• L0DL [2], a convergent sparse coding method that jointly

learns a single classifier and a dictionary;

• LC-KSVD [13], sparse coding with label consistency reg-

ularization (5) and single linear classifier training (4);

• DLSI [26], class-specific dictionary learning with inco-

herence control on dictionary atoms;

• FDDL [35], Fisher discriminant dictionary learning;

• LLC [30], coding with locality but not sparsity of codes.

In the next, we denote our method by EasyDL (Ensemble

Classifier based Dictionary Learning; ’EC’ and ’easy’ are

homophones). For fair comparison, the dictionary sizes of

all the compared methods except SRC are set the same.

4.3. Results and analysis

Overall performance. The classification accuracies of all

the compared methods are summarized in Table 1. It can

be seen that our method is very competitive among all the

compared methods. In the evaluation on face recognition,

EasyDL outperformed all other compared methods except

SRC. The impressive performance of SRC is attributed to

its large dictionary size. It can be found from the results of

SRC* that, the performance of SRC decreases dramatically

when the dictionary size gets small.

Regarding object classification, our method achieved the

best result. We tested the performance on the smaller-size

training sets. The results show that EasyDL performs con-

sistently well, even in the case where training samples are

insufficient, e.g., accuracy of 54.4% is achieved using 5

samples for training. The most competitive method to ours

is LC-KSVD, which can be viewed as an ensemble-based

method during learning, as shown in Section 3.1. In com-

parison, EasyDL achieved better results by integrating all

base learners for classification and learning compact dictio-

naries without explicit assignment of labels. We also tested

the performance of our method on Caltech with 30 train-

ing samples per class and compared it with all the meth-

ods reviewed in [4]. The results show that our method per-

forms worse than [4] with a gap of 1.86%, but outperforms

other compared methods. It is noted that [4] tackles the fea-

ture pooling stage in image classification, which is different

from ours, and our method can be used as a classification

module and combined with [4] for improvement.

On Scene-15 and UCF, EasyDL performs slightly better

than FDDL and shows noticeable improvement over other

compared methods. The Fisher discriminant used in FDDL

is optimal only when signals from each category are sam-

pled from the normal distribution, implying that FDDL is

vulnerable to outliers presented in training data. In con-

trast, EasyDL tackles imperfectness of data by using ensem-

ble classifiers. Therefore, noticeable performance improve-

ment of EasyDL over FDDL is observed on other datasets.

In summary, all the experimental results demonstrate the

effectiveness of our method.

Contribution of ensemble components. The performance

of EasyDL was tested with the identical projection plus

different combinations of the other three ensemble com-

ponents (i.e. feature selection, random projection and data

subsampling). The results on Extended YaleB are listed in

Table 3. It is seen that a single component yields moderately

good results, and further performance improvement can be

gained by combining different ensemble components. This

verifies the necessity of using different types of ensemble in

EasyDL. Notice that the improvement by the combination

of feature selection and random projection is very marginal,

as these two components are similar in that they are both for

subspace ensemble. Also notice that the subspace ensemble

and subsample ensemble are complementary in EasyDL, as

noticeable improvement can be observed from the combina-

tion of data subsampling and feature selection (or random

projection). We also varied the value of H and tested the

performance changes of EasyDL. The results are shown in

Fig. 2(d). We can see that the performance of EasyDL in-

creases with more classifiers involved, and it becomes satu-

rate when H is sufficiently large.
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Figure 2. Influence of parameter selection in EasyDL.

Influence of parameters. We analyze the influence of the

parameters β, T and M by alternatively adjusting one while

fixing the other two. The results on Extended YaleB are

shown in Fig. 2. We can see from Figure 2(a) that the perfor-

mance of EasyDL is not sensitive to β within a small range,

but exhibits some disturbances due to the non-convexity of

the learning model. As β becomes larger, the discrimination
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Table 1. Classification accuracies (%) of the compared methods on the test datasets

Dataset SRC SRC* K-SVD Joint D-KSVD L0DL LC-KSVD DLSI FDDL LLC EasyDL

Ex. YaleB 97.20 80.50 93.10 93.88 94.10 95.66 95.00 89.00 91.90 90.70 96.22

AR Face 97.50 68.50 86.50 88.24 88.80 94.40 93.70 89.80 92.00 88.70 94.40

Caltech-101 64.90 64.90 65.20 52.10 65.10 67.58 67.70 61.39 66.80 65.43 68.40

Scene-15 91.80 77.62 86.70 88.20 89.10 88.84 92.90 92.46 98.35 89.20 98.46

UCF Action 90.40 80.62 86.80 86.00 88.10 86.85 91.20 88.74 91.32 87.50 91.40

Table 2. Training time (seconds per iteration) and test time (milliseconds per sample) of the tested methods on five datasets.

Dataset Training time (s) per iteration Test time (ms) per sample

Name Dim×#Sample #Training #Class D-KSVD LC-KSVD FDDL EasyDL D-KSVD LC-KSVD SRC EasyDL

Ext. YaleB 504× 2414 1216 38 2.39 0.83 80.22 21.79 0.10 0.25 30.34 0.43

AR Face 540× 2600 2000 100 2.64 1.20 153.1 64.80 0.06 0.24 91.12 0.50

Caltech-101 3000× 9144 1515 102 14.82 8.52 9891 601.83 0.84 0.85 247.54 1.37

Scene-15 3000× 4485 1500 15 28.47 3.24 60.75 44.64 0.34 0.34 202.83 0.43

UCF Action 100× 150 140 10 0.14 0.01 0.31 0.16 0.04 0.03 0.53 0.30

of sparse codes increases while the representative power of

the dictionary decreases. Thus, an acceptable β should bal-

ance the discrimination and representation. In Fig. 2(b), the

performance of EasyDL drops a lot when T is small. The

reason is obvious: the subspaces of data cannot be fully

characterized by a limited number of atoms, making the

sparse codes lose discriminability. When T is larger than

50, the performance of EasyDL decreases slightly. This

is not surprising as representing samples by many atoms

might cause over-fitting. From Fig. 2(c) we can see that the

classification accuracy increases as the dictionary becomes

larger. But the increment becomes ignorable when the dic-

tionary is sufficiently large.

Table 3. Classification results on the extended YaleB dataset ob-

tained by using different combinations of ensembles.

Ensemble type Switch [Y=Yes, N=No]

Feature selection Y N N Y Y N Y

Random projection N N Y N Y Y Y

Data subsampling N Y N Y N Y Y

Accuracy (%) 94.6 94.8 94.2 96.0 94.7 95.7 96.2

4.4. Efficiency

The computational efficiency of EasyDL is compared to

D-KSVD, LC-KSVD, SRC, and FDDL. All the compared

methods are tested under the same environment: MATLAB

on an Intel Quad-Core CPU. Both the time costs of dic-

tionary learning and classification are reported in Table 2.

In dictionary learning, EasyDL is slower than LC-KSVD

and D-KSVD. The time cost of EasyDL on Extended YaleB

is around seven times of D-KSVD on average, yet accept-

able. In classification, the time cost of EasyDL is slightly

worse than D-KSVD and LC-KSVD but significantly less

than SRC. The scalability of EasyDL is better than FDDL

and SRC, but still with noticeable increase of the computa-

tional time as the scale of problem gets large.

5. Conclusion

As the proverb goes, the wisdom of the masses exceeds

that of the wisest individual. We introduced ensemble clas-

sifier to discriminative sparse coding, where an ensemble

classifier composed of multiple linear predictors is learned

during dictionary learning. The integration of sparse coding

and ensemble classifier learning not only reduces the bias

of classifier but also improves the discriminability of dic-

tionary. The proposed method was tested on several image

classification tasks, and it consistently outperformed many

existing sparse coding approaches. In future, we would like

to further investigate the integration of ensemble learning

and sparse coding, such as ensemble of nonlinear classi-

fiers, iterative ensemble construction during learning, and

unsupervised ensemble learning with dictionary learning.
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