
Unbiased Photometric Stereo for Colored Surfaces: A Variational Approach

Yvain Quéau
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Abstract

3D shape recovery using photometric stereo (PS) gained

increasing attention in the computer vision community in

the last three decades due to its ability to recover the

thinnest geometric structures. Yet, the reliabiliy of PS

for color images is difficult to guarantee, because existing

methods are usually formulated as the sequential estimation

of the colored albedos, the normals and the depth. Hence,

the overall reliability depends on that of each subtask. In

this work we propose a new formulation of color photomet-

ric stereo, based on image ratios, that makes the technique

independent from the albedos. This allows the unbiased 3D-

reconstruction of colored surfaces in a single step, by solv-

ing a system of linear PDEs using a variational approach.

1. Introduction

The photometric stereo (PS) technique [54] consists in

inferring the shape (and, optionally, the reflectance) of a sur-

face from a set of m images obtained from the same point of

view, while changing the illumination. It is a classical com-

puter vision task which has caught the attention of many

researchers, one of the reasons being the simplicity of its

formulation.

Achieving 3D-reconstruction by PS requires inverting a

known photometric model. Formulating this inverse prob-

lem brings out to play important factors influencing the ac-

tual physics involved in the formation of digital images.

These factors are the surface shape, its material, the lighting

and the camera. To provide high-quality shape reconstruc-

tion, both latter factors are usually calibrated [55], hence PS

is mainly a technique for laboratory purposes which is used

in very controlled environment [51].

In most of works on PS, the surface reflectance is sup-

posed to be Lambertian. The m lightings are usually mod-

elled by known vectors s
i ∈ R

3, i ∈ [1,m], considering
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the directional model. It is also frequently assumed that the

camera captures graylevels. Under these assumptions, the

PS problem can be formulated as the inversion of the fol-

lowing linear photometric model:

Ii(u, v) = ρ(u, v)n(u, v)︸ ︷︷ ︸
m(u,v)

·si, i ∈ [1,m] (1)

where Ii(u, v) is the graylevel, ρ(u, v) the albedo, and

n(u, v) the unit outward normal to the surface. As long

as m ≥ 3 non-coplanar lightings are used, system (1) is a

full-rank linear system in m(u, v), which can be estimated

before deducing the albedo and the normal.

Current research on PS includes relaxing the assump-

tions above on the Lambertian reflectance [46], the direc-

tionality of the lightings [57], and the need for lighting cal-

ibration [38], as well as robustness enforcement [21], depth

inference from the estimated normals [16], outdoor photo-

metric stereo [23], and scattering medium modelling [33].

In this work, we propose an unbiased variational formula-

tion of PS for colored surfaces, while also considering ex-

tensions to perspective projection and non-directional light-

ings, and avoiding the need for normal integration. An ex-

ample of result obtained using this new approach is pre-

sented in Figure 1.

Overview of the contribution. With the aim to provide

an unbiased solution to the PS problem, we derive a new

framework exploiting all the photometric clues available in

color images. In particular, we move beyond the classical

approach to PS by suggesting a simple formulation that is

independent from surface color and provides us with a sin-

gle step procedure for approximating the depicted surface.

After showing the limits of existing color PS methods in

Section 2, we show in Section 3 how to use image ratios to

eliminate the dependency on the albedo, yielding a single

system of linear PDEs having the depth as unknown. We

suggest in Section 4 an efficient variational method for the

resolution of these PDEs. Eventually, we show in Section 5

the ductility of the new formulation, extending our frame-

work to realistic acquisition setups such as perspective pro-

jection and non-directional lightings.

14359



Figure 1. 3D-reconstruction of a part of a 10 euros banknote

(≈ 0.5 cm wide) by variational color photometric stereo. Top:

Two out of m = 5 RGB images of size 550 × 650. Bottom:

3D-reconstruction result. Our PDE-based approach to photometric

stereo is able to recover the very thin surrows (around ten microm-

eters wide) which are part of the “unfalsifiable” structure of the

banknote, contrarily to lower depth frequencies which only show

that the banknote has been creased.

2. Color Photometric Stereo

The photometric model (1) describes the formation of

graylevels, meaning that RGB color images provided by

common cameras have to be converted into a single color

level. Mallick et al. [28] showed that such conversion

yielded by an appropriate rotation of the color space could

reduce the amount of specular effects. Nevertheless, con-

verting RGB images to single channel images consists in

loosing information. To avoid this drawback, we deal with

RGB images as they are, enforcing the shape reconstruction

from the colored shadings. In this case, we consider Eq. (1)

as wavelength-dependent, where both the reflectance pa-

rameter ρ and the lightings si may be color-dependent. For

Lambertian materials, a physically plausible relation for the

measured color level ⋆ ∈ {R,G,B} reads:

Ii⋆ =

∫ +∞

0

c⋆(λ)ρ(λ)n · si(λ) dλ (2)

where λ is the wavelength, c⋆ describes the camera response

depending on the color channel ⋆, and where we omit space

dependencies for better readability. Although the normal

vector n can obviously be taken out of the integral, the for-

mulation (2) is too difficult to handle, hence several partic-

ular cases were suggested in the literature. They are briefly

reviewed in the next paragraphs.

White surface lit by colored sources. One of the most

well-known applications of color photometric stereo is

the single-shot approach involving simultaneously a red,

a green and a blue lightings. This idea, which dates

back to the 90s [25], was popularized by real-time 3D-

reconstructions of deforming surfaces [9]. Assuming m =
1 and the surface is white (ρ(λ) = ρ), Eq. (2) simplifies:

I⋆ = ρn ·

∫ +∞

0

c⋆(λ)s(λ) dλ

︸ ︷︷ ︸
∆
=s⋆

(3)

where ⋆ ∈ {R,G,B}, and s⋆ combines the camera re-

sponse and the lighting. Then, the PS problem simplifies to

the classical model (1) with three images. To relax the as-

sumption that the surface is white, recent studies suggested

to use RGBD-sensing [3], complementary lights [45], a

prior on the reflectance piecewise-uniformness [4], or to ex-

ploit the dynamicity of the scene [24]. Yet, it seems impos-

sible to deal with a colored surface lit by colored sources,

without resorting to such priors. The only case where the

integral (2) can be simplified into the product of a material-

dependent term and a lighting-dependent one:

Ii⋆ = ρ⋆n · si⋆ (4)

without further assumptions, is when the camera response

c⋆(λ) is a Dirac delta function. This hypothesis may be

acceptable in hyper-spectral imagery, which has interesting

properties for PS related to interreflections removal [34],

but it remains too empirical for consumer RGB sensors,

hence we focus in this paper on the case of white sources,

to guarantee theoretical validity1.

Colored surface lit by white sources. To deal with col-

ored surfaces without introducing a prior or an external sen-

sor, another possibility is to consider m ≥ 3 white sources,

i.e. s
i(λ) = s

i, i ∈ [1,m], while dealing with color-

dependent material. In this case, Eq. (2) becomes:

Ii⋆ =

[∫ +∞

0

c⋆(λ)ρ(λ) dλ

︸ ︷︷ ︸
∆
=ρ⋆

]
n · si (5)

1Let us note that, despite having no theoretical justification, the empir-

ical model (4) can be numerically handled by the proposed framework.

4360



where the ρ⋆, ⋆ ∈ {R,G,B}, will be abusively referred to

as albedos, though they include the camera response. Es-

timating the normals in an optimal manner from a set of

equations such as (5) is not an easy task. Applying the clas-

sical grayscale PS approach to each color channel provides

the desired color albedos, but the three estimated normals

have no reason to match. Barsky and Petrou [7] showed

how to use linear least-squares to simultaneously estimate

the three albedos ρ⋆ and the shading terms n · si, followed

by PCA to extract the normal from the shadings. Ikeda et

al. [20] remarked that integrability is not ensured estimat-

ing normals in this way, hence they suggested an alternative

two-steps procedure, approximating first the albedo triplets,

and then the shape by solving a nonlinear PDE. This in-

deed prevents propagation of errors on the normals during

the integration step, but on the other hand solving such non-

linear PDE is not straightforward. Furthermore, both these

approaches suffer from the same bias: the shape estimation

is reliable as long as the albedo estimation is good enough.

Hence, there is still a need for an unbiased method re-

garding PS for colored surfaces. We present in the next

section an original solution for this problem, that simultane-

ously eliminates the nonlinearity of the PDEs and the need

for albedo estimation.

3. PS as a System of Linear PDEs

When using a two-steps approach such as those de-

scribed in the previous section, the accuracy of the shape es-

timation strongly depends on that of the albedo. We tackle

this problem by eliminating the albedo dependency from

the unknowns through photometric ratios, which are well-

known to yield photometric invariants [17, 27, 53], and were

recently considered by Mecca and Falcone [29] to prove

uniqueness of the solution for a linearized PS problem, by

Chandraker et al. [12] to deal with more general reflectance

models, and by Alldrin and Kriegman [1] to describe the

surface through its isocontours. To the best of our knowl-

edge, the potential of dealing with ratios rather than sin-

gle irradiance equations for each image has never been ex-

ploited with respect to PS for colored surfaces. We will

show that such ratios allow us to extend the linearity of clas-

sical PS resolution, without having to resort to the change

of variables m = ρn (avoiding bias due to bad albedo es-

timation), and without relying on the two-steps procedure

consisting in estimating the normals and integrating them

afterwards (avoiding bias due to integration).

Colored ratios. Assuming, for the moment, orthographic

projection, we denote:

n(u, v) =
1√

∥∇z(u, v)∥2 + 1

[
−∇z(u, v)

1

]

︸ ︷︷ ︸
n(u,v)

(6)

as the unit normal to the surface pointing outward, where

∇z is the gradient of the depth map. Dividing the irradiance

equations in (5) coming from the ith and jth light sources

w.r.t. the same channel ⋆ ∈ {R,G,B}, we obtain the fol-

lowing equation: Equation for Ij
⋆(u, v)︷ ︸︸ ︷

Ii⋆(u, v)

n(u, v) · si
=

ρ⋆(u, v)

∥n(u, v)∥︸ ︷︷ ︸
Equation for Ii

⋆(u, v)

=
Ij⋆(u, v)

n(u, v) · sj
(7)

which gives:

[
Ii⋆(u, v)s

j − Ij⋆(u, v)s
i
]
· n(u, v) = 0. (8)

Each color channel provides
(
m
2

)
linear equations such

as (8), meaning that the number of equations increases

quadratically w.r.t. the number m of images. In the case of

graylevel images, Wu and Tang suggested in [56] to solve

the homogeneous linear system (8) in n(u, v) by SVD. Yet,

integrability of estimated normals has no reason to be satis-

fied, hence we suggest another route, based on PDEs.

From local to global formulation. We remark that the

previous formulation (8) provides a local description of the

shape, through normal vectors. Inferring the depth from the

normals is not a trivial task, since the estimated normal field

may be non-integrable [15].

To avoid such problems, a PDE-based PS model is pre-

ferred to the classical formulation which has the normal as

unknown. Replacing the n vector in (8) by its definition

given in (6), we obtain:

[
Ii⋆(u, v)s

j
1 − Ij⋆(u, v)s

i
1

Ii⋆(u, v)s
j
2 − Ij⋆(u, v)s

i
2

]
· ∇z(u, v)

= Ii⋆(u, v)s
j
3 − Ij⋆(u, v)s

i
3 (9)

so that, stacking these 3
(
m
2

)
equations, we eventually obtain

the following system of linear PDEs:

A(u, v)⊤∇z(u, v) = b(u, v), (u, v) ∈ Ω (10)

where A is a field of R2×3(m2 ) matrices, b is a field of R3(m2 )

vectors, and Ω is the reconstruction domain.

Relevance with previous work. If only one color chan-

nel is used in the image acquisition, our approach sim-

ply consists in a new formulation of the classical PS prob-

lem [54] as a system of linear PDEs which is independent

from the albedo. Such a formulation was recently consid-

ered in [30, 48]. Its advantage is to be global, thus implic-

itly ensuring some regularity, having the depth rather than

the normals as unknown. It is simpler than other PDE-based

variational formulations which do not rely on the ratio pro-

cedure [11, 20, 42], since the resulting PDEs are linear in

our case.
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From a theoretical side, our single-stage approach is

more optimal than approaches relying on separation of

albedo from shading, followed by an estimation of the

shape [7, 20]. Indeed, it avoids both biases due to albedo

estimation and normal integration. Note that the idea of

using a single formulation for the recovery problem, in-

stead of a sequence of estimations, was also successfuly

applied to other inverse problems such as feature-specific

imaging [35] or material unmixing [2].

Although the idea of coupling image ratios with a PDE

formulation of PS is not novel [1, 12, 32, 31], our ap-

proach goes beyond these works for the following reasons.

1) These work deal with graylevel images, so color im-

ages need to be converted to grayscale (loss of informa-

tion), while we show that ratios provide an unbiased solu-

tion to color photometric stereo. 2) To solve the resulting

PDE, they rely on the knowledge of a boundary condition,

which is rarely available in practice. Our approach does

not require such boundary condition. 3) Numerical schemes

used in [1, 32, 31] rely on propagation of information from

the boundaries, accumulating errors during the propagation

(see Figure 7-d in [1], and Figure 7-c in [32]). The approach

presented in Section 4 solves for all depth values simultane-

ously, avoiding this bias. 4) These approaches do not deal

with the images as they are: they require preprocessing. In

comparison, our approach is single-stage, avoiding bias due

to error propagation between pre-processing and resolution

of the PDE. Indeed, Mecca et al. [32, 31] require determin-

ing a single pair of images rather than all the possible ratios;

Alldrin et al. [1] require detecting additional cues for disam-

biguation, such as shadows or highlights; and Chandraker et

al. [12] require pre-smoothing the ratios to estimate first two

parameters (λ and κ), before actually solving a PDE. The

solution we develop in the next section provides an answer

to these numerical issues. Note that a similar formulation

was also proposed very recently by another group, in the

case of graylevel images [48].

4. Variational Resolution

Our formulation of PS for colored surfaces, resumed in

the system of linear PDEs (10), requires a robust resolu-

tion method due to the high number of equations which is

quadratic w.r.t. m. This suggests the use of a minimiza-

tion framework, in order to reduce the discrepancy from the

theoretical formulation to the real world data.

Least-squares formulation. If we assume that the real

images differ from the Lambertian model (5) by a zero-

mean, homoskedastic Gaussian noise (dealing with outliers

such as shadows and highlights is left as future work), then

the residuals between the observed ratios and the theoreti-

cal ones follow a Cauchy distribution [19]. The best linear

unbiased estimator (BLUE) is hence the least-squares esti-

mator, so we should solve (10) by computing:

min
z

∫∫

Ω⊂R2

∥∥A(u,v)⊤∇z(u,v)− b(u,v)
∥∥2 du dv

︸ ︷︷ ︸
=∥A⊤∇z−b∥2

L2(Ω)

(11)

which differs from propagation schemes [1, 12, 29, 32, 31]

due to the global nature of minimization, linearizes the vari-

ational approaches presented in [11, 42], and extends the

recent approaches [30, 48] to RGB-valued images. In order

to write Eq. (11) meaningfully, it is enough to assume that

z ∈ W1,2(Ω), W1,2(Ω) being the Sobolev space of func-

tions whose gradient is L2-integrable over Ω. Hence, the re-

covered surface will be smooth without explicitly enforcing

integrability. Eventually, let us remark that, although (11)

provides the statistical BLUE estimator, this is not the effi-

cient one since the variance of the estimator is not minimal.

This optimal estimator would be obtained by replacing ∥·∥2

in (11) by log(s2 + ∥ · ∥2), for some well-chosen s ∈ R.

Unfortunately, the optimization would become non-convex,

hence much more difficult. Yet, robustness would be im-

proved, and the surface would even be allowed to be only

piecewise smooth (e.g., discontinuity jumps) [14].

Regularization. The minimization problem (11) does not

admit a unique solution, because the functional to mini-

mize is not coercive. This is a consequence of Eq. (10)

where if z is a solution, then z + k (k ∈ R) is another one.

Hence, the solution can be computed only up to an additive

constant. To deal with this issue, we introduce an artifi-

cial least-squares prior z0 on the solution, turning the initial

problem (11) into its zero-order Tikhonov regularized ver-

sion, as proposed recently in other PDE-based variational

approaches [30, 42]. The regularized problem is given by:

min
z

∥∥A⊤∇z − b
∥∥2
L2(Ω)

+ λ ∥z − z0∥
2
L2(Ω) . (12)

An interesting application of this regularization would con-

sist in taking non-uniform functions z0 since this could be

used to handle priors on the solution, obtained for instance

using a RGBD-sensor [3, 37]. In our case, we chose z0 ≡ 0
and λ = 10−9 if no prior information is available, which

suffices to ensure a unique solution. The parameter λ should

thus not be considered as critical.

Discretization. In order to avoid involving explicit

boundary conditions, we discretize the functional (12) and

then write the discrete optimality condition associated to

each z(u, v), rather than discretizing the continuous opti-

mality conditions (Euler-Lagrange equations). This way,

we obtain a sparse system of |Ω| linear equations having

as unknowns the depth values (|Ω| denotes the cardinality,

4362



i.e. the number of pixels, of the discretized image domain).

The matrix of this system is symmetric, positive definite and

strictly diagonal dominant as soon as λ > 0, which guaran-

tees the existence and uniqueness of a solution. Eventually,

taking λ = 0, the matrix would be rank-1 deficient, positive

but only semi-definite, diagonal dominant but not strictly.

We solve the resulting linear system using either

Cholesky factorization, or conjugate gradient if the recon-

struction domain is too large to allow direct resolution.

As a consequence, least-squares surface reconstruction (12)

comes at an O(|Ω| log |Ω|) cost [26]. For comparison, this

is the same order of complexity as least-squares surface nor-

mal integration by DCT [47]. Let us remark that no hypoth-

esis on the shape of the reconstruction domain needs to be

introduced, unlike most integration methods which are de-

signed for rectangular domains [15, 16, 47].

Experimental validation. For quantitatively evaluating

the benefits of using our approach, we considered a syn-

thetic dataset (cf. Figure 2) consisting of a smooth surface

having as albedo the mandrill RGB image. This surface was

successively illuminated by m = 10 directional lightings

with zenithal angles all equal to 20◦ and evenly distributed

azimuthal angles (ring-light setup [59] with small angular

variations [52]). A zero-mean Gaussian noise with standard

deviation σ = 10% of the maximum RGB value was added

to the simulated images. The dataset is illustrated in Fig-

ure 2. Quantitative comparison of our approach, converting

the images to grayscale (using Matlab’s rgb2gray func-

tion) or using RGB images as they are, was performed w.r.t.

the classical PS approach [54], w.r.t. the two-steps proce-

dure building on PCA from [7], and w.r.t. the estimation of

surface normals using non-differential ratios [56].

Figure 2. Synthetic dataset used for quantitative evaluation. From

left to right: shape, albedo, and two images of the surface under

directional lightings.

We illustrate on this dataset the main advantages of the

proposed PDE approach: it is more robust, requires less

images and is faster than existing approaches. All exper-

iments were run in Matlab, on a I7 processor at 2.9GHz
with 32GB of memory.

First, we compared the mean angular errors on the nor-

mals (MAE = E
[
cos−1

(
n
⊤
n̂

)]
, n being the ground truth

normal and n̂ the estimated one), for different numbers m of

images and different least-squares strategies, for graylevel

PS (classical pseudo-inverse approach [54], non-differential

ratios by solving (8) by SVD [56], and the proposed frame-

work) and for color PS (two-steps PCA procedure [7] and

the proposed framework). The results are shown in Fig-

ure 3-a. It is worth emphasizing, by comparing the classical

approach [54] with the PCA approach [7], and both versions

of our framework, that dealing with RGB images as they are

(i.e., avoid the conversion to graylevels) provides a substan-

tial improvement of the results. One can also remark that

non-differential ratios [56] provide results which seem less

accurate than the classical approach [54]: this is because

the efficient estimator in the presence of additive Gaussian

noise to the images is the least-squares one with the classi-

cal approach, but not with ratios (although it is the BLUE).

Eventually, these results indisputably show the advantage of

using a differential approach: its improved consistency re-

garding the regularity of the surfaces improves the results.

The experiments shown in Figure 3-b prove that, besides

being more robust, the new framework is faster than existing

approaches. Indeed, the PCA [7] and the non-differential

ratios [56] approaches require performing, respectively, one

PCA or one SVD per pixel, resulting in slow performances.

Our approach is obviously slower than the classical ap-

proach [54] requiring only to compute the pseudo-inverse of

a m× 3 matrix, but on the other hand it is much faster than

local approaches [7, 56]. This is because we need to solve a

single linear system in order to estimate simultaneously all

depth values, and this system is well-conditioned thanks to

the regularization term. Moreover, since our discretization

strategy allows us to use a fast solver (conjugate gradient

or Cholesky factorization), our approach is probably also

faster than the other state-of-the-art differential ratios ap-

proach from [48], which uses QR factorization and no reg-

ularization. In fact, we observed that most of the CPU time

in our approach is spent constructing the A and b fields, not

actually solving the resulting linear system.

These simple experiments on synthetic datasets confirm

that the proposed approach is a relevant step forward with

respect to state-of-the-art. In Figure 1, we show the 3D-

reconstruction of a small piece of a banknote, obtained us-

ing m = 5 RGB images, of size 550 × 650, recorded by

a microgeometry capture device2 (a HD camera with high

focal length and calibrated lightings) similar to those pre-

sented in [22, 49]. This example confirms the ability of PS

to separate the shape from the color of a surface without any

prior, unlike single-image methods [5, 6].

In the next section we move forward the limits of our

PS formulation considering orthographic viewing geometry

and uniform lightings. To this end, we show how to handle

more realistic assumptions related to perspective viewing

geometry and non-directional lightings.

2We used the device developed by the Pixience company (Toulouse,

France). The integration of the PS technology to this device was funded

by the Toulouse Tech Transfer company.
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Figure 3. (a) Mean angular error (MAE, in degrees) on the esti-

mated normals, as a function of the number m of input images.

(b) CPU time (in seconds) with respect to the size |Ω| of the re-

construction domain.

5. Extensions to Realistic Acquisition Setups

In order to derive a more realistic PS formulation, we

need to move beyond the limits imposed by not consider-

ing perspective deformation and non-directional lightings.

We leave as future work the important problem of deal-

ing with shadows and non-negligible specular component

in the reflectance model. A possible direction towards this

goal would be to improve the robustness of our numerical

solver by switching from the least-squares estimation (11)

to a sparsity-enhancing one [21, 30, 42]. We rather focus on

both the other aspects: the camera and the lightings, which

are the parameters involved in the formation of color levels

that the user can control.

Perspective projection. Perspective viewing geometry

for photometric 3D-reconstruction has been introduced by

Bruckstein in the shape-from-shading (SfS) context [10]

and later developed by Prados and Faugeras [41] (see [8]

for a recent review of perspective SfS algorithms). Regard-

ing the classical PS problem aiming at estimating the nor-

mals [54], perspective modelling has influence neither on

well-posedness, nor on the estimation method, since the es-

timation of normals from a set of equations such as (1) is

independent from the projection model. It is only when in-

tegrating the normals that perspective must be considered,

see e.g. [14, 50]. Note that perspective modelling may be

used in the PS context for better constraining the uncali-

brated photometric stereo problem [38], and may also be

mandatory in applications involving cameras with strong

perspective effects such as endoscopic imagery [13].

In our case, the PDE approach explicitly depends on the

projection model. Considering the standard pinhole model,

we assume the 3D points x(u, v) are conjugated to the pix-

els (u, v) according to:

x(u, v) =




uz(u,v)
f

vz(u,v)
f

z(u, v)


 (13)

where f is the focal length of the camera, and the (u, v)
coordinates are now expressed w.r.t. the principal point

position (the intrinsic camera parameters (f, u0, v0) are as-

sumed to be calibrated). According to this parameterization,

the non-unit direction of the outgoing normal to the surface

is given by:

n(u, v) =

[
−∇z(u, v)

1
f

(
z(u, v) + [u,v]

⊤
· ∇z(u, v)

)
]

(14)

so that Eq. (9) must be replaced by:



Ii⋆(u, v)
(
sj1−

s
j
3u

f

)
−Ij⋆(u, v)

(
si1−

si3u

f

)

Ii⋆(u, v)
(
sj2−

s
j
3v

f

)
−Ij⋆(u, v)

(
si2−

si3v

f

)

− 1
f

(
Ii⋆(u, v)s

j
3 − Ij⋆(u, v)s

i
3

)


 ·

[
∇z(u, v)
z(u, v)

]

= 0 (15)

and finally, the system of linear PDEs (10) is replaced by a

new system of linear PDEs:

P(u, v)⊤
[
∇z(u, v)
z(u, v)

]
= 0, (u, v) ∈ Ω (16)

with P a Ω → R
3×3(m2 ) matrix field. As previously done

while dealing with the orthographic parameterization, we

use zero-order regularized least-squares to ensure robust-

ness and fix the integration constant (Eq. (16) can be solved

only up to a scale factor). This yields the following least-

squares problem:

min
z

∥∥∥P⊤
[
∇z⊤, z

]⊤∥∥∥
2

L2(Ω)
+ λ ∥z − z0∥

2
L2(Ω) (17)

consistently with Problem (12) used in Section 4. This time,

λ must be chosen high enough to avoid the trivial solution

z ≡ 0. We experimentally found that λ = 10−3 was a

satisfactory value.
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Spatially-varying lightings. Real-world lightings used in

PS data acquisition such as pointwise [32] or extended [44]

sources may not be well approximated using a directional

model. The lightings s
i should rather be considered as

tridimensional vector fields over Ω. If we adopt this strat-

egy in the classical approach to PS, |Ω| pseudo-inverses of

m × 3 matrices have to be calculated rather than only one

under the directional assumption. Consequently, the com-

plexity dramatically increases. Instead, since our approach

only requires additional space dependency to the lightings

in Eqs. (9) and (15), computational cost does not increase.

Another issue regarding spatially-varying lightings is

due to the correct parameterization depending on the depth

of the surface itself. For instance, pointwise sources induce

an attenuation of the luminous flux density which is propor-

tional to the squared source-surface distance:

s
i(u, v) =

ϕi

∥xi
s − x(u, v)∥2

x
i
s − x(u, v)

∥xi
s − x(u, v)∥

(18)

where ϕi is the source intensity and x
i
s its location.

State-of-the-art approaches dealing with nonlinear light-

ing models such as (18) adopt methods based on alternating

estimation of normals and integration steps [39], mesh de-

formation [57] or nonlinear PDEs [32]. We believe that the

linear PDEs solution we put forward may be an interesting

alternative for solving the near-light PS problem. Yet, sys-

tem (16) becomes a system of quasilinear PDEs, i.e. the P

matrix in (16) depends on the unknown depth, hence we de-

note it Pz . To deal with this issue, we suggest the following

fixed-point strategy, which turns the non-linear variational

problem into a series of linear problems of the form (17):

zk+1=argmin
z

∥∥∥P⊤
zk

[
∇z⊤, z

]⊤∥∥∥
2

L2(Ω)
+λ∥z−z0∥

2
L2(Ω) .

(19)

We experimentally observed this fixed-point scheme always

converges, though we leave the proof as perspective. Theo-

retical results on well-posedness of PS under nearby light-

ings [32] would probably help understanding this conver-

gent behavior: they would guarantee the existence of a

global minimizer for the functional, while the fixed point

strategy could be interpreted as a gradient descent with fixed

stepsize, iteratively driving the estimate towards this mini-

mizer.

Experimental validation. To verify the applicability of

these extensions to perspective projection and spatially-

varying lightings, we tested our approach on a dataset con-

sisting of m = 8 RGB images, of size 1260 × 1600. They

have been captured using a consumer camera (Canon EOS

7D) at a distance of around 50 cm (we set z0 to this rough

prior, along with λ = 10−3) from a colored scene made of

several colored objects: two cuddy toys, two plaster busts

and a plastic Tintin character. White LEDs were placed

between the camera and the scene as light sources ensur-

ing the nearby lightings setup. The camera was calibrated

using Matlab’s built-in procedure, and the positions and in-

tensities of the light sources were estimated by a procedure

similar to the one described in [40]. Figure 4 shows the re-

sults of our new scheme, without and with perspective ge-

ometry and spatially-varying lightings modelling. Despite

the strong shadowing effects and depth discontinuities, we

were able to achieve a very satisfactory 3D-reconstruction

in a reasonable time (4 iterations (19), which required ap-

proximately 30 seconds).

Figure 4. Top: two out of m = 8 RGB images recorded under

nearby lightings. Bottom-left: reconstructed shape using the direc-

tional lightings and the orthographic projection models. Bottom-

right: rendering of the shape reconstructed using the pointwise

lightings (18) and the perspective projection (13) models, seen un-

der the same angle.

Off-Lambertian reflectance. As final experiments, we

question the robustness of the method with respect to off-

Lambertian reflectances. To this purpose, we considered

challenging datasets consisting of 5 RGB pictures of metal-

lic coins (Figure 5) and synthetic human skin samples (Fig-

ure 6), obtained using the same device as in the experiment

of Figure 1. While the approach presented in [22] intro-

duced a chemical gel between the camera and the object,

in order to make the reflectance of the object as diffuse

as possible, we were able to obtain very reasonable 3D-

reconstructions dealing with the images as they are. To

compensate off-Lambertian reflectance by regularization,

we simply set λ = 100. We also emphasize that these re-

sults were obtained in only 5 seconds using non-optimized

Matlab codes without any kind of parallelization.

These experiments show that our approach, although

limited to the Lambertian reflectance model, provides re-

alistic results even in the presence of strong deviations from

this model, with as few as m = 5 images. For comparison,

state-of-the-art PS methods such as [18] use around 50 im-

ages. Of course, our results would probably be further im-

proved by relaxing the Lambertian assumption [18, 30, 46],

or by using more robust estimators [14, 21, 30, 42].
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Figure 5. 3D-reconstructions of three metallic coins: an Italian euro, a Spanish 50 cents coin and a Chinese yuan. Each reconstruction

domain is around 1 cm
2. Top: one of the m = 5 input images. Bottom: 3D-reconstruction result. Metals are successfully handled, despite

the Lambertian assumption and the choice of least-squares estimation.

6. Conclusion and Perspectives

In this work we exploited important features of colored

image ratios, moving beyond the state-of-the-art regarding

3D shape recovery using PS. In particular, instead of locally

solving a system of graylevel irradiance equations mixing

the albedo and the normal, we considered a single system

of linear PDEs obtained by considering the ratios of color

irradiance equations. Doing so, we take advantage of three

fundamental aspects. Firstly, we avoid the loss of infor-

mation due to conversion from RGB to grayscale. Sec-

ondly, formulating the recovery problem as a system of lin-

ear PDEs yields an implicit regularity assumption on the

surface, avoiding integrability concerns about the normals.

Thirdly, since the PDEs derived by the ratios are photomet-

ric invariants, we obtained our variational formulation while

eliminating the usual accumulation of biases in color PS,

due to the sequence albedo estimation / normal estimation

/ normal integration.

We foresee exciting extensions of this framework, re-

garding the PS problems where integrability plays a ma-

jor role to ensure well-posedness, e.g. when m = 2 [36]

or when the lightings are unknown (UPS, for uncalibrated

PS). For instance, since it is enough to ensure integrability

of the normals to make perspective UPS well-posed [38],

and since integrability is implicitely granted in our (dif-

ferential) framework, a rather simple extension of our ap-

proach estimating in an alternating way the shape and the

lightings may actually yield a well-posed formulation of

perspective UPS. Regarding orthographic UPS which is

prone to the GBR ambiguity [58], one could introduce reg-

ularization terms penalizing the variations of the depth or of

the albedo inside the objective function. Using one or the

other regularization, along with integrability enforcement,

ensures well-posedness of orthographic UPS [43].

Figure 6. 3D-reconstructions of two samples of synthetic human

skin. Top: one image of each dataset, out of m = 5. Bottom: 3D-

reconstruction result. Despite the high level of subsurface scatter-

ing, the 3D-reconstruction is very satisfactory.
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Analyse non linéaire, 10(4):363–375, 1993. 3, 4

[12] M. Chandraker, J. Bai, and R. Ramamoorthi. On Differential

Photometric Reconstruction for Unknown, Isotropic BRDFs.

IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 35(12):2941–2955, 2013. 3, 4

[13] T. Collins and A. Bartoli. 3D Reconstruction in Laparoscopy

with Close-Range Photometric Stereo. In Medical Image

Computing and Computer-Assisted Intervention (MICCAI),

Nice, France, 2012. 6

[14] J.-D. Durou, J.-F. Aujol, and F. Courteille. Integrating the

normal field of a surface in the presence of discontinuities. In

Energy Minimization Methods in Computer Vision and Pat-

tern Recognition (EMMCVPR). Bonn, Germany, 2009. 4, 6,

7

[15] R. Frankot and R. Chellappa. A method for enforc-

ing integrability in shape from shading algorithms. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

10(4):439–451, 1988. 3, 5

[16] M. Harker and P. O’Leary. Least squares surface reconstruc-

tion from gradients: Direct algebraic methods with spectral,

Tikhonov, and constrained regularization. In IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

Colorado Springs, USA, 2011. 1, 5

[17] C. Hernández, G. Vogiatzis, and R. Cipolla. Overcoming

shadows in 3-source photometric stereo. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 33(2):419–

426, 2011. 3

[18] T. Higo, Y. Matsushita, and K. Ikeuchi. Consensus photo-

metric stereo. In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), San Francisco, USA, 2010. 7

[19] D. V. Hinkley. On the ratio of two correlated normal random

variables. Biometrika, 56(3):635–639, 1969. 4

[20] O. Ikeda and Y. Duan. Color Photometric Stereo for Albedo

and Shape Reconstruction. In IEEE Workshop on Applica-

tions of Computer Vision (WACV), Copper Mountain, USA,

2008. 3, 4

[21] S. Ikehata, D. Wipf, Y. Matsushita, and K. Aizawa. Robust

photometric stereo using sparse regression. In IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

Providence, USA, 2012. 1, 6, 7

[22] M. K. Johnson, F. Cole, A. Raj, and E. H. Adelson. Micro-

geometry capture using an elastomeric sensor. ACM Trans-

actions on Graphics, 30(4):46:1–46:8, 2011. 5, 7

[23] J. Jung, J.-Y. Lee, and I. S. Kweon. One-day outdoor photo-

metric stereo via skylight estimation. In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Boston,

USA, 2015. 1

[24] H. Kim, B. Wilburn, and M. Ben-Ezra. Photometric stereo

for dynamic surface orientations. In European Conference

on Computer Vision (ECCV). Heraklion, Greece, 2010. 2

[25] L. L. Kontsevich, A. P. Petrov, and I. S. Vergelskaya. Recon-

struction of shape from shading in color images. Journal of

the Optical Society of America A, 11(3):1047–1052, 1994. 2

[26] I. Koutis, G. L. Miller, and R. Peng. A Nearly-m log n Time

Solver for SDD Linear Systems. In IEEE Annual Symposium

on Foundations of Computer Science (FOCS), Palm Springs,

USA, 2011. 5

[27] S. Lee and M. Brady. Integrating stereo and photometric

stereo to monitor the development of glaucoma. Image and

Vision Computing, 9(1):39–44, 1991. 3

[28] S. Mallick, T. Zickler, D. Kriegman, and P. Belhumeur.

Beyond Lambert: Reconstructing Specular Surfaces Using

Color. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), San Diego, USA, 2005. 2

[29] R. Mecca and M. Falcone. Uniqueness and approximation

of a photometric shape-from-shading model. SIAM Journal

on Imaging Sciences, 6(1):616–659, 2013. 3, 4
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