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Abstract

Undoing the image formation process and therefore de-

composing appearance into its intrinsic properties is a chal-

lenging task due to the under-constrained nature of this

inverse problem. While significant progress has been made

on inferring shape, materials and illumination from images

only, progress in an unconstrained setting is still limited.

We propose a convolutional neural architecture to estimate

reflectance maps of specular materials in natural lighting

conditions. We achieve this in an end-to-end learning formu-

lation that directly predicts a reflectance map from the image

itself. We show how to improve estimates by facilitating ad-

ditional supervision in an indirect scheme that first predicts

surface orientation and afterwards predicts the reflectance

map by a learning-based sparse data interpolation.

In order to analyze performance on this difficult task, we

propose a new challenge of Specular MAterials on SHapes

with complex IllumiNation (SMASHINg) using both synthetic

and real images. Furthermore, we show the application of

our method to a range of image editing tasks on real images.

1. Introduction

A classic computer vision task is the decomposition of

an image into its intrinsic shape, material and illumination.

The physics of image formation are well-understood: the

light hits a scene surface with specific orientation and mate-

rial properties and is reflected to the camera. Factoring an

image into its intrinsic properties, however, is very difficult,

as the same visual result might be due to many different

combinations of intrinsic object properties.

For the estimation of those properties, a common practice

is to assume one or more properties as known or simpli-

fied and try to estimate the others. For example, traditional

Project: http://homes.cs.washington.edu/˜krematas/

DRM/

Figure 1. Top: Input 2D image with three cars of unknown shape

and material under unknown natural illumination. Right: Our

automatically extracted reflectance map and the reference. Bottom:

Transfer of reflectance maps between the objects.

approaches to intrinsic images or shape-from-shading as-

sume lambertian materials, or point lights. Furthermore, to

simplify the problem, shape is often either assumed to be

known in the form of a 3D model, or it is restricted to simple

geometry such as spheres.

In this work, we extract reflectance maps [14] from im-

ages of objects with complex shapes and specular material,

under complex natural illumination. A reflectance map holds

the orientation-dependent appearance of a fixed material un-

der a fixed illumination. It does not attempt to factor out

material and/or illuminant and should not be confused with a

reflection map that contains illumination [6] or with surface

reflectance [5].

Under the assumptions of a constant material, no shadows,

a distant light source and a distant viewer, the relation of

surface orientation and appearance is fully described by the

reflectance map. It can represent all illuminants and all ma-

terials, in particular specular materials under high-frequency

natural illumination. Therefore, besides allowing for a bet-

ter understanding and analysis of 2D imagery, the ability
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to estimate reflectance maps lends itself to a broad spec-

trum of applications, including material transfer, inpainting,

augmented reality and a range of image editing methods.

The input of our system is a 2D image where an object

from a known class, (e.g., cars), was segmented (Fig 1) and

output is a reflectance map. To this end, we propose two

different approaches: The first approach directly estimates a

reflectance map from the input image using an end-to-end

learning framework based on CNNs and upconvolutions.

The second approach decomposes the process in two steps,

enabling the use of additional supervision in form of object

surface normals at training time. For the second approach

we first predict per-pixel surface normals, which we use to

compute sparse reflectance maps from the visible normals

of the objects. Given the sparse reflectance map, we intro-

duce a learned sparse data-interpolation scheme in order to

arrive at the final reflectance map. In summary, we make the

following five key contributions:

• First end-to-end approach to infer reflectance maps

from a 2D image of complex shapes of specular materi-

als under natural illumination.

• Dataset based on synthetic images and real photographs

that facilitates the study of this task.

• A CNNs/upconvolutional architecture to learn the com-

plex mapping from the spatial 2D image to the spherical

domain.

• A CNN addressing a data-interpolation task of sparse

unstructured data.

• Demonstration of our approach on a range of real im-

ages and a range of image-based editing tasks.

2. Related Work

Factoring images into their constituting components is an

important goal of computer vision. It is inherently hard, as

many combinations of factors can result in the same image.

Having a decomposition available would help solving several

important computer graphics and computer vision problems.

Factoring Images. Classic intrinsic images factor an im-

age into illuminant and reflectance [3]. Similarly, shape-

from-shading decomposes into reflectance and shading, even-

tually leading to an orientation map or even a full 3D shape.

Larger-scale acquisition of reflectance [5] and illumination

[6] have allowed to compute their statistics [7] helping to

better solve inverse and synthesis problems.

Recently, factoring images has received renewed inter-

est. Lombardi and Nishino [24] as well as Johnson and

Adelson [15] have studied the relation of shape, reflectance

and natural illumination. A key idea in their work is, that

under natural illumination, appearance and orientation are

in a much more specific relation (as used in Photometric

stereo [13]) than for a single point light, where many similar

appearance for totally different orientations can be present.

They present different optimization approaches that allow

for high-quality estimation of one component if at least one

other component is known. In this work, we assume that

the object is made of a single material and its object class

and its segmentation mask are known. However, we do not

aim at factoring out illuminant, reflectance and shape, but

keep the combination of reflectance and illuminant and only

factor it from the shape. Further factoring the reflectance

map produced in our approach into material and illuminant

would be complemented by methods such as [24] or [15].

Baron and Malik [2] factors shaded images into shape,

reflectance and lighting, but only for scalar reflectance, i.e.

diffuse albedo and for limited illumination frequencies. In

a very different vein, Internet photo collections of diffuse

objects can be used to produce a rough 3D shape that serves

extracting reflectance maps in a second step [11].

A recent approach by Richter et al. [31] first estimates a

diffuse reflectance map using approximate normals and then

refines the normal map using the reflectance map as a guide.

Different from our approach, they assume diffuse surfaces to

be approximated using 2nd-order spherical harmonics (SH)

and learn to refine the normals from the reflectance map

using a regression forest. We compare the reflectance maps

produced by our approach to reflectance maps using an SH

basis which are limited to diffuse materials.

Computer Graphics. While appearance is considered

view-independent in intrinsic images, view-dependent shad-

ing is described by reflectance maps [14]. In computer graph-

ics, reflectance maps are popular and known as lit spheres

[33] or MatCaps [32]. They are used to capture, transfer and

manipulate the orientation-dependent appearance of photore-

alistic or artistic shading. A special user interface is required,

to map surface orientation to appearance at sparse points

in an image, from which orientations are interpolated for

in-between pixels to fill the lit sphere (e.g. [30] manually

aligned a 3D model with an image to generate lit spheres).

Small diffuse objects in a single cluttered image were made

to appear specular or transparent using image manipula-

tions with manual intervention [16]. Our approach shares

the simple and effective lit half-sphere parametrization but

automates the task of matching orientation and appearance.

Deep Learning. In recent years convolutional neural net-

works (CNNs) have shown strong performance across dif-

ferent domains. In particular, the strong models for ob-

ject recognition [18] and detection [10] can be seen as

a layer-wise encoder of successively improved features.

Based on ideas of encoding-decoding strategies similar to

auto-encoders, convolutional decoders have been developed

[37, 20] to decode condensed representations back to images.
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Figure 2. Overview of our approach, that comprises two variants: A direct one and an indirect one extracting surface orientations.

This has led to fully convolutional or deconvolutional tech-

niques that have seen wide applicability for tasks where there

is a per-pixel prediction target. In [25, 12], this paradigm has

been applied to semantic image segmentation. In [1] image

synthesis was proposed given object class, view and view

transformations as input and synthesizing segmented new

object instances as output. Similarly, [19] propose the deep

convolutional inverse graphics networks with an encoder-

decoder architecture, that given an image can synthesize

novel views. In contrast, our approach achieves a new map-

ping to an intrinsic property – the reflectance map.

Deep lambertian networks [34] apply deep belief net-

works to the joint estimation of a reflectance, an orientation

map and the direction of a single point light source. They

rely on Gaussian Restricted Boltzmann Machines to model

the prior of the albedo and the surface normals for inference

from a single image. In contrast, we address specular materi-

als under general illumination, but without factoring material

and illuminant.

Another branch of research proposes to use neural net-

works for depth estimation [9, 21, 23], normal estima-

tion [8, 35, 21], intrinsic image decomposition[27, 38] and

lightness[28]. Wang et al. [35] show that a careful mixture

of deep architectures with hand-engineered models allow

for accurate surface normal estimation. Observing that nor-

mals, depth and segmentations are related tasks, [8] propose

a coarse-to-fine, multi-scale and multi-purpose deep network

that jointly optimizes depth and normal estimation and se-

mantic segmentation. Likewise, [21] apply deep regression

using convolutional neural networks for depth and normal

estimation, whose output is further refined by a conditional

random field. Going one step further, [23] propose to embed

both the unary and the pairwise potentials of a conditional

random field in a unified deep network. In contrast, our

goal is not normal, but rather reflectance map estimation.

In particular, our “direct approach” makes do without any

supervision of normal information, while the “indirect ap-

proach” has normals as a by-product. In addition, our new

challenge dataset captures reflectance maps and normals for

the specular case, which are not well represented in prior

recordings – in particular as also range sensors have difficul-

ties on specular surfaces.

3. Model

Motivation We address a challenging inverse problem that

is highly underconstrained. Therefore, any solution needs

to mediate between evidence from the data and prior expec-

tations – in our case over reflectance maps. In the general

settings of specular materials and natural illuminations, mod-

eling prior expectations over reflectance maps – let alone

obtaining a parametric representation – seems problematic.

This motivated us to follow a data-driven approach in an

end-to-end learning framework, where the dependence of

reflectance maps on object appearances is learnt from a sub-

stantial number of synthesized images of a given object

class.

Overview The goal of our network is the estimation of the

reflectance map of an object depicted in a single RGB image

(Fig. 2). This is equivalent to estimating how a sphere [33]

with the same material as the object would look like from

the same camera position and the same illumination. From

the estimated reflectance map, we can make the association

between surface orientation and appearance. This allows sur-

face manipulation and transfer of materials and illumination

between objects or even scenes.

We propose two approaches to estimate reflectance maps:

a direct (Sec. 3.2) and an indirect one (Sec. 3.3). Both have

a general RGB image as input and a reflectance map as

an output. The indirect method also produces a conjoint

per-pixel normal map.

Both variants are trained from and evaluated on the

SMASHINg dataset introduced in detail in Sec. 4.1. For

now, we can assume the training data to consists of pairs of

2D RGB images (domain) and reflection maps (range) in

the parametrization explained in Sec. 3.1. This section now

explains the two alternative approaches in detail.

3.1. Reflectance Map Representation

A reflectance map L(ω) ∈ S+ → R
3 [14] is a map from

orientations ω in the positive half-sphere S+ to the RGB

radiance value L leaving that surface to a distant viewer. It

combines the effect of illumination and material. For the

case of a mirror sphere it captures illumination [6] but is not

limited to it. It also does not capture surface reflectance [5],

which would be independent of illumination, but joins the

two.
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There are multiple ways to parameterize orientation ω.

Here Horn [14] used positional gradients which are suitable

for an analytic derivation but less attractive for computa-

tion as they are defined on the infinite real line. We instead

parameterize the orientation simply by s, t the normalized

surface normal’s x and y components. Dropping the z coor-

dinate is equivalent to drawing a sphere under orthographic

projection with exactly this reflectance map as seen right in

Fig. 2. Note, that orientations of surfaces in an image only

cover the upper half-sphere, so we only need to parameterize

a half-sphere, avoiding to deal with spherical functions, e.g.

spherical harmonics [31], that reduce the maximal frequency,

only allowing for diffuse materials.

3.2. Direct approach: End­to­end model for predic­
tion of reflectance maps

In the direct approach, we learn a mapping between

the object image and its reflectance map, following a

convolutional-upconvolutional architecture.
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Figure 3. Architecture of the direct approach. The yellow boxes

represent the filters’ size.

The full architecture can be seen if figure Fig. 3. Starting

from a series of convolutional layers, followed by batch

normalization, ReLU and pooling layers, the size of the

input feature maps is reduced to 1×1. After continuing with

two fully connected layers, the feature maps are upsampled

until the output size is 32× 32 pixels. In all convolutional

layers a stride of 1 is used and padded with zeros such that

the output has the same size as the input. The final layer uses

an euclidean loss between the RGB values for the predicted

and the ground truth reflectance map.

In a typical CNN regression architecture, there is a spatial

correspondence between input and output, e.g. in normal or

depth estimation or semantic segmentation. In our case, the

network needs to learn how to “encode” the input image so it

can correspond to a specific reflectance map. This task is par-

ticularly challenging as the model has to learn not only how

to place the image pixels to locations in the sphere (change

from image to directional domain), but also to impute and

interpolate appearance for unobserved normals.

3.3. Indirect approach: Reflectance maps from in­
ferred normals and sparse interpolation

The indirect approach proceeds in four steps: i) estimat-

ing per-pixel orientation maps from the RGB image. ii)

upsampling the orientation map to the full available input

image resolution. iii) changing from the image domain into

the directional domain, producing a sparse reflectance map.

iv) predicting a dense reflectance map from the sparse one.

The first and fourth step are model by CNN architectures,

while the second and third step are prescribed transforma-

tions, related to the parametrization of the reflectance map.

We will detail each step in the following paragraph.
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Figure 4. Architecture of the normal step of our indirect approach.

The middle elements correspond to the fully convolutional filters.

Orientation estimation Our goal in the first step is to pre-

dict a surface orientation map from the RGB image. Thanks

to our parametrization of the directional domain to coordi-

nates in a flat 2D image of a lit sphere, the task is slightly

simpler than finding full orientation. We seek to find the s

and t parameters according to our reflectance map parame-

terization.

We train a CNN to learn the s, t coordinates. The archi-

tecture of the network is shown in Fig. 4. The network is

fully convolutional as in [25] and it consist of a series of

convolutional layers followed by ReLU and pooling layers

that reduce the spatial extend of the feature maps. After

the fully convolutional layers, there is a series of upconvolu-

tional layers that upscale the feature representation to half the

original size. Finally, we use two euclidean losses between

the prediction and the L2 normalized ground truth normals.

The first one takes into account the x, y, z coordinates of the

normals, while the second only the x, y.

Orientation upsampling The orientations are estimated

at a resolution of n = 128× 128, so the number of appear-

ance samples is in the order of ten-thousands. Most input

images however are of much higher resolution with millions

of pixels. A full-resolution orientation map is useful for

resolving all appearance details in the orientation domain.

The appearance of one orientation in the reflectance map

can be related to all high-resolution image pixels (millions).

Also intended applications performing shape manipulation

in the 2D image (cf. Sec. 5.2) will benefit from a refined map.

To produce a high-resolution orientation map, we used joint

bilateral upsampling [17] as also done in range image [4].

Once we have an estimation of the object’s normals, they

can be mapped to a sphere and associated with appearance.

Change-of-domain We now reconstruct a sparse re-

flectance map from the orientation map and the input image.
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This is a prescribed mapping transformation: The pairs of

appearance Li and orientation ωi in every pixel are unstruc-

tured samples of the continuous reflectance map function

L(ω) we seek to recover. Our goal now is to map these sam-

ples from the image to the directional domain, constituting

the reflectance map. The most straightforward solution is to

perform scattered data interpolation, such as

L(ω) = (

n
∑

i=1

w(〈ω, ωi〉))
−1

n
∑

i=1

w(〈ω, ωi〉)Li, (1)

where w(x) = exp(−(σ cos−1(x))2) is an RBF kernel.

In practice however, the orientation estimates are noisy

and the requirements of a global reflectance map (infinite

illumination, orthographic view, no shadows) are never fully

met, asking for a more robust estimate. We found darkening

due to shadows to be the largest issue in practice. Therefore,

we perform a max operation over all samples closer than a

threshold ǫ = cos(5◦) instead of an average, as in

L(ω) = max{w(〈ω, ωi〉)Li}, w(x) =

{

1 if x > ǫ

0 otherwise.

If one orientation is observed under different amounts of

shadow, only the one that is not in shadow will contribute

– which is the intended effect. Still, the map resulting from

this step is sparse due to normals that were not observed in

the image as seen in Fig. 5 (left). This requires imputing

and interpolating the sparse data in order to arrive at a dense

estimate.

SparseNet: (Sparse-to-dense) Learning-based approach

to sparse data interpolation The result of the previous

step is a sparse reflectance map. It is noisy due to errors from

incorrect normal estimation and has missing information at

orientations that were not observed in the image. Note, that

the latter is not a limitation of the normal estimation, but even

occurs for ground truth surface orientations: If an orientation

is not present, its appearance remains unknown.

A simple solution is to use Eq. 1 which already provides

a dense output. We propose a learning-based approach to

predict a dense reflectance maps from a sparse and noisy

one. Accordingly, the network is trained on pairs of sparse

and dense reflectance maps. The sparse ones are created

using the first three steps explained (orientation from CNN,

upsampling, Change-of-domain) on synthetic data where the

target reflectance map is known by rendering a sphere.

The employed CNN architecture is shown in Fig. 5. Input

is the sparse reflectance map and output the dense one. We

use the output of the convolutional layers as additional cue.

After each upconvolution layer, we concatenate its output

with the feature map from the respective convolution layer.

Again an L2 loss between the output and the dense reference

reflectance map is used.
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Figure 5. Architecture of the reflectance map step of our indirect

approach.

4. The SMASHINg Challenge

We propose the Specular MAterials on SHapes with

complex IllumiNation (SMASHINg) challenge. It includes

a dataset (Sec. 4.1) of real as well as synthetic images,

groundtruth reflectance maps and normals (where available),

results from different methods to reconstruct and a set of

metrics (Sec. 4.2) that we propose to evaluate and compare

performance. At the time of publication we will make the

data, baselines, our methods as well as the performance

metrics publicly available.

4.1. Dataset

Our dataset combines synthetic images (Sec. 4.1.1), pho-

tographs (Sec. 4.1.2) and images from the web (Sec. 4.1.3)

of cars. All images are segmented into foreground and back-

ground.

4.1.1 Synthetic images

Synthetic images are produced with random i) views, ii)

3D shapes, iii) materials, iv) illumination and v) exposure

(Fig. 6) . The view is sampled from a random position around

the object, looking at the center of the object with a FOV of

40◦. The 140 3D shapes come from the free 3D Warehouse

repository, indexed by Shapenet [22]. For each sample the

object orientation around the y axis is randomized. Illumi-

nation is provided by 40 free HDR environment maps. The

exposure is sampled over the “key” parameter of Reinhard

et al.’s photographic tone mapper [29] between 0.4 and 0.6.

For materials, the MERL BRDF database [26] containing

100 materials is used. Overall 60 k sample images from that

space are generated. We define a training-test split so that no

shape, material or illumination is shared between the training

and test set.

Illumination BRDF 3D shape

Figure 6. Our dataset comprises synthetic images with random

view, 3D shape, material, illumination and exposure.
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4.1.2 Photographs

As real test images, we have recorded photos of six toy

cars that were completely painted with a single car lacquer,

placed in four different lighting conditions and photographed

from five different views, resulting a total of 120 images. For

the corresponding ground truth reflectance maps, we placed

in the same locations spheres painted with the same material.

A qualitative evaluation, including examples of such real

images is found in Sec. 5.2.

4.1.3 Internet Images

In order to provide an even more challenging test set, we

collect an additional 32 car images from Internet search.

Here we do not have access to groundtruth normals or re-

flectance maps, but the test provides a realistic test case for

imaged-based editing methods. Again, we have manually

segmented out the body of the car. This allows the study of

single material normal and reflectance map prediction1.

4.2. Methods and Metrics

i) ii) iii) iv) v) vi)

We include six different methods to reconstruct reflectance

maps: i) ground truth, ii) our direct , iii) our indirect ap-

proach, iv) an approach that follows our indirect one, but

does not use a CNN for sparse interpolation but an RBF

reconstruction as described in Eq. 1 (RBF), v) spherical

harmonics (SH) where project the ground truth reflectance

map to the SH domain, vi) an indirect approach where the

estimated normals are replaced by ground truth normals.

We employ two different metrics to assess the quality

of reflectance map estimation. The first is plain L2 error

between all defined pixels of the reflectance map in RGB

and the second the SSIM structural difference [36].

5. Experiments

We evaluate our proposed end-to-end direct approach to

reflectance maps on the new SMASHINg Challenge and

compare it to the indirect approach in its different variants.

We start with a quantitative evaluation (Sec. 5.1) followed by

qualitative results in (Sec. 5.2) including a range of image-

based editing tasks.

5.1. Quantitative Results

Setup. Our quantitative results are summarized in Tbl. 1.

We provide results for our Direct method that learns to pre-

dict reflectance maps directly from the image in an end-

to-end scheme, as well as several variants of our Indirect

1For the Internet Images we used networks that were trained on synthetic

data from segmented meshes to contain only the body.

approach that utilizes intermediate result facilitated by su-

pervision through normals at training time. The variants

of the indirect scheme are based on our normal estimate,

but differ in their second stage that has to perform a type

of data interpolation to arrive at a dense reflectance map,

given the sparse estimate. For such interpolation scheme, we

investigate the proposed learning-based approach Indirect

(SparseNet) as well as using radial basis function interpo-

lation Indirect (RBF). Furthermore, we provide best case

analysis by using ground-truth normals in the indirect ap-

proach Indirect (GT Normals) (only possible for synthetic

data) and computing a diffuse version of the ground-truth by

means of spherical harmonics GT (SH). The latter gives an

upper bound on the result that could be achieved by methods

relying on a diffuse material assumption.

Table 1. Results for the different methods defined in Sec. 4.2.
Synthetic Real

Method MSE DSSIM MSE DSSIM

Direct .0019 .0209 .0120 .0976

Indirect (SparseNet) .0018 .0180 .0143 .0991

Indirect (RBF) .0038 .0250 .0116 .0814

Indirect (GT Normals) .0008 .0111 — —

GT (SH) .0044 .0301 .0114 .0914

Reflectance Map Analysis. Overall, we observe consis-

tency among the two investigated metrics in how they rank

approaches. We obtain accurate estimations for the synthetic

challenge set for our direct as well as the best indirect meth-

ods. The quantitative findings are underpinned by the visual

results, e.g. showing the predicted reflectance maps in Fig. 7.

The performance on the real images is generally lower with

the error roughly increasing by one order of magnitude. Yet,

the reconstruction still preserve rich specular structures and

give a truthful reconstruction of the represented material.

In more detail, we observe that the best direct and indi-

rect approach perform similar on the synthetic data, although

direct did not use the normal information during training.

For the real examples, this form of additional supervision

seems to pay off more and even the simpler interpolations

scheme RBF achieves best results in the considered metrics.

Closer inspection of the results clearly shows limitations of

image-based metrics. While the RBF-based technique yields

a low error, it frequently fails to generate well localized high-

light features on the reflectance map (see also illustration

in Sec. 4.2). We encourage the reader to visit the supple-

mentary material, where a detailed visual comparison for all

methods is provided.

The ground-truth baselines give further insights into im-

provements over prior diffuse material assumptions and the

future potential of the method. The GT (SH) baseline shows

that our best methods improve over a best-case diffuse esti-

mate with a large margin on in the DSSIM metric – highlight-
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ing the importance of considering more general reflectance

maps. The error metric is again affected by the aforemen-

tioned issues. The Indirect (GT Normals) illustrates a best

case analysis of the indirect approach where we provide

ground-truth normals. The results show that there is po-

tential to double the performance by having better normal

estimation in the first stage.

Table 2. Normals estimation of indirect approach on synthetic data.

Mean Median RMSE

L2 14.3 9.1 20.6

Dual 13.4 8.2 19.8

Dual up 13.3 8.2 19.9

Normal Analysis. Tbl. 2 quantifies the error in the normal

estimate by the first stage of our indirect approach. This

experiment is facilitated by the synthetic data where normals

are available by the rendering pipeline. L2 corresponds to a

network using the euclidean loss on the x, y, z components

of the normals, while dual uses the two losses described

in Sec. 3.3. Up refers to a network trained on upsampled

normals. Both, the dual loss and joint upsampling improve

the estimation of normals. Despite providing more data to

the down-stream computation, the employed upsampling

procedure does not decrease – but rather slightly increase the

accuracy of the normals. While this analysis is conducted

on synthetic data, we found that our models predict very

convincing normal estimation even in the most challenging

scenario that we consider, e.g. Fig. 7 and Fig. 9.

5.2. Qualitative Results

Automatically extracting reflectance maps – together with

the normal information we get as a by-product – facilitate

a range of image-based editing applications, such as mate-

rial acquisition, material transfer and shape manipulation.

In the following, we present several example applications.

The supplementary material contains images and videos that

complement our following presentation.

Reflectance Map and Normal Estimation. Typical re-

sults of estimated reflectance maps are presented in Fig. 7,

also showing the quality of the predicted normals. The first

row shows two examples on synthetic images, the second

and third row show examples on real images and the last row

shows examples of web images (no reference reflectance

map is available here). Notice how the overall appearance,

reflecting the interplay between material and the complex

illumination, is captured by our estimates. In most examples,

highlights are reproduced and even a schematic structure of

the environment can be seen in the case of very specular

materials.

Material Acquisition for Virtual Objects. Fig. 8 shows

synthesize image (column 2-5) that we have rendered from

3D models using the reflectance map automatically acquired

from the images in column 1. Here, we use ambient oc-

clusion [39] to produce virtual shadows. This application

shows how material representations can be acquired from

real objects and transferred to a virtual object. Notice how

the virtual objects match in material, specularity and illumi-

nation to the source image on the left.

Appearance Transfer. In order to transfer appearance be-

tween objects of a scene, we estimate reflectance maps for

each object independently, swapped the maps, and then use

the estimated normals to re-render the objects using a nor-

mal lookup from the new map. To preserve details such

as shadows and textures, we first re-synthesize each object

with its original reflectance map, save the per-pixel differ-

ence in LAB color space, re-synthesize with the swapped

reflectance map and add back the difference in LAB. An

example is shown in Fig. 9. Despite the uncontrolled condi-

tions, we achieve photorealistic transfer of the appearance –

making it hard to distinguish source from target.

Shape Manipulation. As we estimate reflectance maps

and surface normals, this enables various manipulation and

re-synthesis approaches that work in the directional or nor-

mal domain. Here, the surface orientation is changed, e.g.

using a painting interface and new appearance for the new

orientation can be sampled from the reflectance map. Again,

we save and restore the delta of the original reflectance map

value and the re-synthesized one to keep details and shad-

ows. An example is shown in Fig. 10. The final result gives

a strong sense of 3D structure while maintaining an overall

consistent appearance w.r.t. material and scene illumination.

6. Discussion

While our approach addresses a more general setting than

previous methods, we still make certain assumptions and

observe limitations: i) Up to now, all our experiments were

conducted on cars and we assume that the car is segmented

or in uniform background. Yet, our approach is learning-

based and should – in principle – adapt to other classes in

particular given dedicated training data. ii) We assume that

the object is made out of a single material and up to now

we cannot handle multiple parts or textures. iii) We assume

distant illumination and therefore light interaction of close by

objects or support surfaces (e.g. road) cannot be accurately

handled by our model. iv) Due to our target representation of

reflectance maps, the illumination is “baked in” and surface

reflectance and illumination cannot be edited separately. v)

Our quantitative evaluations are limited due to the absence

of reliable (e.g. perceptual) metrics of reflectance maps.
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Figure 7. Results of different variants and steps of our approach (left to right). Input image, GT RM, RM result of the direct approach, RM

result of the indirect approach, the sparse RM input produced in the indirect variant, and the normals produced by the indirect variant as well.

Each result is annotated to come from the synthetic, photographed or Internet part of our database. For the Internet-based part, no reference

RM is available. Please see the supplemental material for exhaustive results in this form.

Figure 8. Transfer of reflectance maps from real photographs (1st

col.) to virtual objects (other col.’s) of the same and other shape.

The supplemental video shows animations of those figures.

Figure 9. Appearance transfer application: Images on the diagonal

are the original input. Off-diagonal images have the appearance of

the input in its column combined with the input shape of its row.

7. Conclusion

We have presented an approach to estimate reflectance

maps from images of complex shapes with specular materials

under complex natural illumination. Our study is facilitated

by a new benchmark of synthetic, real and web images of in-

Figure 10. Shape manipulation application. A user has drawn to

manipulate the normal map extracted from our indirect approach.

The reflectance map and the new normal map can be used to simu-

late the new shape’s appearance.

creasing difficulty, that we will make available to the public.

Our approach features the first mapping using end-to-end

learning from image to the directional domain as well as

an application of neural networks to learning-based sparse

data interpolation. We show how to incorporate additional

supervision by normal information that increase accuracy as

well as results in normal estimations as a byproduct. Our re-

sults show truthful reflectance maps in all three investigated

scenarios and we demonstrate the applicability on several

image-based editing tasks.
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