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Abstract

The rule of perspectivity that ‘straight-lines-must-

remain-straight’ is easily inflected in CMOS cameras by

distortions introduced by motion. Lines can be rendered

as curves due to the row-wise exposure mechanism known

as rolling shutter (RS). We solve the problem of correcting

distortions arising from handheld cameras due to RS effect

from a single image free from motion blur with special rel-

evance to urban scenes. We develop a procedure to extract

prominent curves from the RS image since this is essential

for deciphering the varying row-wise motion. We pose an

optimization problem with line desirability costs based on

straightness, angle, and length, to resolve the geometric

ambiguities while estimating the camera motion based on a

rotation-only model assuming known camera intrinsic ma-

trix. Finally, we rectify the RS image based on the estimated

camera trajectory using inverse mapping. We show rectifi-

cation results for RS images captured using mobile phone

cameras. We also compare our single image method against

existing video and nonblind RS rectification methods that

typically require multiple images.

1. Introduction

In recent years, inferring scene geometry has become

possible from as little as a single image [13, 7, 18, 33].

The images of interest are often man-made structures (e.g.

in the Manhattan world) which have predominant straight

lines. From the knowledge of these lines, properties such as

vanishing points, horizon, and zenith can be estimated [33]

to aid in applications such as scene classification [14] and

depth estimation [29]. For the single image scenario, cam-

era motion is a hindrance to scene understanding. It intro-

duces image distortions which are increasingly becoming

commonplace. The CMOS mobile phone cameras employ

a shutter mechanism in which the pixels on the sensor plane

are exposed in a row-wise manner from top to bottom with

a constant inter-row delay. Hence, even a small camera mo-

tion due to handshake can cause visible distortions in the

captured image, a phenomenon referred to as the rolling

(a) RS image (b) Our rectification (c) Lens rectification

Figure 1. (a) Image curved due to RS effect, (b) rectified image

in which curves are corrected to lines respecting the orthogonality

of vertical and horizontal edges using the proposed method, and

(c) rectified image using the lens correction method [35]

shutter (RS) effect [19, 4, 26, 25, 31]. In a high exposure

setting, motion blur further complicates the distortions, but

in typical daylight scenarios, the blur is negligible and only

the RS distortion is most perceivable.

The RS effect is more prominent in imaging urban

scenes, since the row-varying camera motion alters the

straightness of lines in the scene. This results in the man-

ifestation of curves in the captured image in place of lines

which can be problematic for scene inference methods that

rely on line properties. The image shown in Fig. 1(a) is cap-

tured using a Motorola Moto G2 camera with handshake

during exposure. The vertical lines in the 3D scene are

affected by the row-varying camera motion and appear as

curves.

Video rectification (i.e. correction of RS distortions) has

been studied elaborately in RS imaging [19, 4, 26, 10, 32];

however, these methods are not applicable for the case

of single image RS removal, since the RS motion is es-

timated by using the correspondences between successive

video frames. While there are works for absolute RS camera

pose estimation that use only a single image [1, 22, 2], they

assume known correspondences between image and world

points. It is also possible to use inertial sensor information

to infer RS motion especially for videos [11, 16, 23, 24]

and for long exposure motion blur images [30], but the low

acquisition rate of inertial sensors prohibits usage on a sin-

gle RS image. A combined RS and motion blur framework

without the inertial information is proposed for change de-

tection in [25]. Though the camera motion experienced by

the RS image is actually estimated, it is carried out in a non-
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blind fashion by assuming knowledge of a clean image with

no RS artifacts. In [31], a single image deblurring algorithm

is proposed for images affected by both RS and motion blur.

The camera motion is inferred through the spatial variation

of blur across rows by backprojecting the local point spread

functions (PSFs) to a higher dimensional camera trajectory.

However, it cannot handle the RS-only case (i.e. without

motion blur), since the PSFs will all be identical impulses

leading to no RS correction.

To the best of our knowledge, no work exists that cor-

rects RS geometric distortions using the information from

only a single observation. It is this challenging scenario that

we tackle in this paper. We address the case where the ex-

posure time of each row is short enough to ignore the pres-

ence of motion blur, while at the same time, the RS effect

is unavoidable due to inter-row exposure delay. Without

the availability of any other information (from additional

images or from inertial sensors), the problem is very ill-

posed. We do not have the liberty to use image correspon-

dences as in a multi-image scenario; nor can we impose im-

age priors such as gradient sparsity as in deblurring prob-

lems, since the RS image is already free of blur. Hence,

we propose to exploit the presence of lines in man-made

structures to impose constraints that enable camera motion

estimation. Specifically, we use the ‘straight-lines-must-

be-straight rule’ for perspective cameras [8] on RS curves.

Even for small motion, vertical lines are affected by the RS

mechanism. The resultant curves can potentially reveal the

underlying camera motion.

Incidentally, studies on curve extraction exist in the

realm of lens distortion. In one of the earliest works [8],

curves are formed by linking spatially closer edge pixels. In

a recent work [5], the distorted lines are modelled as circu-

lar arcs. In [3], small arcs are detected by using a modified

Hough transform embedding the radial distortion parame-

ter. An important distinction between methods extracting

curves for lens and for RS distortions is that the former ben-

efits from apriori knowledge of the lens distortion model

which helps in tailoring the algorithm to treat curves that

can be expected to occur in the captured image. In contrast,

in the case of RS distortions, the extent and the properties of

curves completely depend on the camera trajectory during

the exposure and cannot be predicted beforehand. In ad-

dition, while it is well known that wide-angle lens defects

can be handled with camera pre-calibration, this is not ap-

plicable here, since the RS effect depends on the amount

of camera motion which essentially is unique for each cap-

ture. In [35], automatic calibration of intrinsic parameters

of a camera including lens properties is performed exploit-

ing low-rank textures from images. Correcting the curva-

ture of the RS image in Fig. 1(a) using [35] results in partial

curvature corrections as shown in Fig. 1(c), since the nature

of the two distortions are completely different.

We develop a curve detection method that automatically

links local line segments into curves based on spatial and

angular proximities. Since we are interested only within a

single image exposure, we model the row-wise variation of

rotation-only RS motion as a polynomial similar to the one

used in [31] which suits the camera motion adequately for

short exposures. We propose an optimization problem with

line, angle, and length constraints on the detected curves to

estimate the camera motion thus enabling us to rectify the

RS effect. We devise an inverse mapping procedure that

assigns an intensity value to every pixel in the rectified im-

age from its corresponding RS pixel based on the estimated

camera motion. The rectified RS image using the proposed

method is shown in Fig. 1(b). The curves are corrected to

lines, and in addition, the orthogonality of the ceiling, wall,

and ground planes is preserved.

1.1. Main Contributions

• This is the first work of its kind to address the prob-

lem of correcting geometric distortions due to the RS

mechanism from a single image devoid of motion blur

and lens distortions. The key idea is to exploit the in-

formation embedded in the curves of the RS image to

reveal the underlying RS camera motion.

• This is also the first work to study geometric ambi-

guities while estimating row-wise rotation-only cam-

era motion and suggest remedies to resolve them using

line properties.

2. RS Rectification

After describing our RS motion model in Section 2.1,

we proceed to describe curve detection procedure in Sec-

tion 2.2, camera motion estimation in Section 2.3, and im-

age rectification algorithm in Section 2.4.

2.1. Camera Model

For a static CMOS camera located at the world origin,

the scene point X is related to the image point through the

camera intrinsic matrix K [12]. We refer this image as the

global shutter (GS) image. The image point in the homoge-

neous representation is given by

x̃GS = KX. (1)

When the CMOS camera moves during exposure, each

row of the image sensor plane experiences its own camera

pose due to the row-wise sequential acquisition. This re-

sults in distortions in the captured image which is referred

to as the RS image. For images captured with hand-held

cameras, only the rotations play a major role, as noted in

works dealing with camera motion in conventional global

exposure cameras [34] as well as in RS cameras [26, 31].
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Hence, we employ a rotation-only model for the camera

motion. Let the number of rows in the RS image be M , and

let the row number be indexed by y. The camera pose for

the yth row is given by the 3D rotation angles rx(y), ry(y),
and rz(y), and the equivalent orthogonal rotational matrix

is denoted by R(y). Thus, the series of rotation matrices

{R(y)}My=1
represents the camera motion during exposure.

During RS acquisition, the scene point X is mapped on the

image plane due to the camera motion R(y) as follows [12]:

x̃RS = KR(y)X, (2)

where x̃RS is the homogeneous representation of the RS

image point and x̃RS(2)/x̃RS(3) = y.

For a same scene point X, the relationship between the

image points in the GS and RS images is written using (1)

and (2) as

x̃GS = KR
−1(y)K−1

x̃RS . (3)

Given an RS image distorted by camera motion, our aim is

to recover the undistorted GS image. This is not possible

without estimating the underlying camera trajectory.

Recovering the motion of each row independently is very

ill-posed given only a single image. The number of un-

knowns to be estimated for 3D camera motion is 3M which

is very high. To alleviate this problem, we adopt a poly-

nomial model for camera motion during exposure. Using

a simpler model such as a spherical linear interpolation

model [26] restricts the trajectory to be piecewise-linear,

while higher order camera models such as B-splines [24]

are more suitable for modelling video frames, but complex

and unnecessary for a single RS image.

We model the rotation trajectory along each axis ri(y)
where i ∈ {x, y, z} as a polynomial of degree n. Hence, we

have

ri(y) =

{
αi0, y = 1
∑n

j=0
αij

(
y−1

M

)j
, 2 ≤ y ≤M

(4)

where αij is the jth polynomial coefficient for the ith axis

motion. These coefficients are denoted by α, and equiva-

lently, we obtain R(y) for all y. In this model, the num-

ber of unknowns to be estimated reduces to 3(n + 1) (with

known camera matrix K). We use n = 3, and hence, the

number of unknowns is 12. The validity of this model is

discussed further in the experiments section. While a sim-

ilar model was used earlier for the RS deblurring problem

in [31], unlike that work, our model does not require the

knowledge of the inter-row delay time of the RS camera.

For a high exposure time setting, a polynomial model may

not suffice due to the complex camera motion. However,

this setting would also lead to motion blur which is be-

yond the scope of this paper. We also do not handle depth-

dependent RS effect [28] caused by translations of fast mov-

ing cameras (e.g. mounted on vehicles) in this work.

2.2. Curve Detection

In this section, we develop a procedure to detect both

curves and lines which serve as features for camera motion

estimation.

Line segment extraction We first extract edges from the

RS image using the Canny detector [6]. Let θ denote the an-

gle of a line with respect to the horizontal axis. To detect

line segments, we discretize the angle space (−90◦, 90◦] in

steps of 1◦ and denote it by S. For each angle θ ∈ S, we

map edge pixels to the Hough domain [15, 27] and detect

lines from the peaks of the Hough accumulator matrix [9].

We then extract local line segments based on the edge pix-

els situated near the Hough lines. We fix a minimum length

for line segments to avoid trivial edges. Each edge pixel is

assigned to one of the line segments based on its Euclidean

distance. Pixels that are at a distance greater than a thresh-

old to all line segments are ignored.

Curve grouping Our next step attempts to link these

line segments into curves (where possible) based on their

spatial proximity. In addition, we classify the RS curves

into three groups corresponding to horizontal, vertical, and

slanted lines in the unknown GS image. These groups are

denoted by Gh, Gv and Gs, respectively. Instead of man-

ually binning the angle space to group curves, we follow a

greedy approach in which we start with a seed angle and

progressively increase the size of the bin to link more and

more line segments that have proximal angles. We continue

this process until a stopping point which is determined by

the longest curve length along the vertical axis.

To create the vertical group Gv , we consider a bin Bθs ⊂
S of angles around the seed angle θs = 90◦. Let the bin size

be B. We consider only the line segments which belong

to Bθs , and join them into curves based on their endpoint

and angle proximities. As the bin size B is increased to

include more line segments, longer curves are formed (see

Fig. 2(a1) to (a4)). This continues until the point after which

there are no more line segments to link to get longer curves.

This stopping point is determined by the saturation in the

maximum curve length with increasing bin size, which is

shown as a red point in Fig. 2(b). To detect curves for the

horizontal group Gh, we repeat this process with seed angle

θs = 0◦.

For scenes which lack long edges, the stopping point is

difficult to determine. Hence, we fix the maximum bin size

as 30◦ for Gv and a smaller value of 10◦ for Gh, since lines

closer to horizontal are least affected (as they are exposed to

just one homography), and lines closer to vertical are most

affected (as they are acted upon by many homographies).

Once a subset of line segments are linked and classified to

form the vertical and horizontal groups, Gv and Gh, the

remaining ones are considered for the slanted group Gs.

These are linked to form curves corresponding to GS lines

at angles other than 90◦ and 0◦.
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Figure 2. Curve detection (best viewed in PDF). (a1-a4) Curve linking by increasing the bin size for vertical group (Gv) detection. Line

segments grouped into curves are shown in same color. (b) Maximum curve length vs. bin size. (c) Final curve detection for all groups

Gv , Gh, and Gs after outlier removal.

Outlier removal There is a possibility that some of the

edge pixels have been wrongly grouped as curves, while in

reality they are not. As this will affect our camera motion

estimation, we follow a curve rejection procedure. We fit a

third degree polynomial using the edge pixels correspond-

ing to each curve independently, and the ones which result

in a large error are removed from further consideration. De-

tected curves post outlier removal are shown in Fig. 2(c).

Note that many of the small edge groups on the rightmost

red wall have been discarded.

The final set of curves is denoted by {ci}
Nc

i=1
, where Nc

is the total number of curves. Each ci is a set of edge pixels,

and it belongs to one of the groups Gv , Gh, or Gs.

2.3. Camera Motion Estimation

The edge pixel locations belonging to the RS curve ci are

denoted by xRS = {(xij , yij)}
Ni

j=1
, where Ni is the number

of pixels in ci, xij is the column index and yij is the row in-

dex. Let α̂ (equivalently, R̂(y) or [r̂x(y), r̂y(y), r̂z(y)]) be a

camera motion estimate. Considering x̃RS = [xij , yij , 1]
T ,

applying (3) would result in the estimated RS-corrected

point, x̃GS . Let (x′

ij , y
′

ij) be the corresponding 2D point

where x′

ij = x̃GS(1)/x̃GS(3) and y′ij = x̃GS(2)/x̃GS(3).
If α is the ground-truth motion, then the points (x′

ij , y
′

ij)
will lie on a line at a particular angle. Hence, to evaluate

the goodness of an estimate α̂, we develop a line desirabil-

ity cost that penalizes higher curvatures.

Line Desirability Cost We fit a line through

{(x′

ij , y
′

ij)}
Ni

j=1
using least squares which results in a

line with parameters (ρi, θi), where ρi is the orthogonal

distance of the line from the origin, and θi is the angle of

the line with respect to the horizontal axis. We formulate

the error due to this line fitting for curve ci as

eline
i =

1

Ni

Ni∑

j=1

(x′

ij sin θi + y′ij cos θi − ρi)
2. (5)

The total line cost for this camera motion estimate is the

sum of the above cost value for all the curves. We make

an important note that, since the camera exposure sequence

is row-wise, the motion information is better embedded in

curves that span longer along the vertical axis. Hence, we

weight the individual curve costs by a factor based on the

length in pixels that the original curve spans along the ver-

tical axis. Thus, the total cost based on the line constraint

for all curves is given by

Eline =
1

Nc

Nc∑

i=1

wie
line
i , (6)

where wi is the normalized weight of ci calculated based on

its length along the vertical axis. The length of the row span

of ci is given by ui = maxj(yij)−minj(yij)+1. We then

calculate the normalized weight as wi = ui/
∑Nc

k=1
uk.

Geometric Ambiguities Minimizing the line desirabil-

ity cost (6) would correct curves into lines, but there can be

multiple solutions as shown in Fig. 3. It is straightforward

to observe that multiple solutions can result from a global

rotation rz since it preserves the straightness of lines (first

column in Fig. 3). Due to the row-wise variation, ambigui-

ties arise in motion estimation that are unique to RS images.

Since a global ry corresponds to horizontal translation, a

row-wise increase or decrease in ry causes horizontal shear-

ing (third column in Fig. 3). Correspondingly, a global rx
translates image up or down, and hence a row-wise change

in rx causes vertical stretching or shrinking (rows in Fig. 3).

Therefore, all these transformations do not disrupt straight-

ness of lines and potentially pose problems in minimizing

the line cost. To arrive at a preferred solution, we addition-

ally impose constraints involving the angles and the lengths.

Angle Desirability Cost To control arbitrary inplane ro-

tation and horizontal shearing, we introduce a desirability

cost to control the angles of lines. Ideally, we want the

points on the curve ci to be corrected to a GS line with

an angle that it actually exhibits in the scene. Though it is

not possible to know the exact angles of all GS lines, we

note that the confidence of assuring a vertically (or horizon-

tally) oriented RS curve as a vertical (or horizontal) line in

the scene is presumably higher as compared to lines at any

other angles. Hence, we add an angle cost for curves only

in the groups Gv and Gh. The angle desirability cost for a

curve is defined as the squared error between the angle of

the least squares fit line (ρi, θi) and the angle corresponding
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Figure 3. Visualization of our optimization problem.

to the curve. This cost for the curve ci is given by

eang
i = bi(θi − θi)

2, (7)

where bi = 1 for ci ∈ {Gv,Gh}, and 0 otherwise, and

θi = 90◦ for ci ∈ Gv , and θi = 0◦ for ci ∈ Gh. The total

angle desirability cost is thus written as

Eang =
1

∑Nc

k=1
bk

Nc∑

i=1

eang
i . (8)

Minimizing the line cost (6) subject to a low value for the

angle desirability cost (8) will ensure that the solution lies

in the angle constrained subspace shown in Fig. 3.

Length Desirability Cost To avoid the vertical scaling

ambiguity, we add a cost to control the length of the RS

corrected curves due to only rx. Even though rz also af-

fects the length of the row-span of lines, it does not lead to

complete vertical shrinkage of lines, since rz is controlled

by angle cost. Let (xr
ij , y

r
ij) be the RS corrected point of

(xij , yij) using only r̂x(y) considering r̂y(y) and r̂z(y) to

be 0. Then, the length of the row span of the r̂x-corrected

ci is given by ur
i = maxj(y

r
ij)−minj(y

r
ij)+1. The length

desirability cost is thus written as

Elen =
1

Nc

Nc∑

i=1

(ui − ur
i )

2, (9)

where ui is the length of the RS curve ci as defined earlier.

A low value of this cost limits arbitrary vertical scaling, thus

restricting the solution to lie within the length constrained

subspace indicated in Fig. 3.

Optimization We estimate the polynomial coefficients

of the camera motion in an iterative manner by minimizing

the line desirability cost (6) subject to the constraints that

the angle cost (8) and the length cost (9) be smaller than

preset thresholds. In Fig. 3, this is equivalent to locating the

intersection of the angle and length constrained subspaces.

Thus, we have

α
∗ = argmin

α

{
Eline

}
subject to Eang< ǫ1, E

len< ǫ2, (10)

where we set ǫ1 = 10−4 and ǫ2 = 1. Initialized with

zero camera motion, the constrained nonlinear least squares

problem (10) is solved iteratively which converges to a final

solution α
∗. We use the fmincon function in MATLAB

to solve (10). Corresponding to the polynomial coefficient

vector α∗, the resultant rotation matrix R
∗(y) can be ob-

tained for any y using (4).

To avoid global perspective correction in certain images,

zeroth degree motion parameters (global rx and ry rotation)

can be left out during optimization, and only the coeffi-

cients from first degree could be estimated for these two

rotations. Employing global rz in optimization will dero-

tate slanted lines to be vertical (which is visually pleasing)

even if the user captures with z-rotation. Not estimating rx
at all would leave small curvature in slanted lines, though

the result might be visually acceptable in most scenarios.

We estimate only nonlinear rx trajectory; linear rx motion

(which does not cause curvature) cannot be estimated with-

out very strong priors (e.g. building windows are square).

2.4. Image Rectification

Once the camera motion is estimated, our task is to es-

timate an intensity for every pixel of the GS image (i.e. the

rectified image). The size of the GS image is assumed to be

the same as that of the RS image. A forward mapping proce-

dure could be applied using (3) to map intensities from RS

pixel locations to GS pixel locations. The drawback of this

approach is that due to the row-wise camera motion, not all

pixels in the GS image might get an intensity value. Hence,

we follow an inverse mapping procedure in which we map

every GS pixel to an RS coordinate through the polynomial

camera motion.

For every pixel xGS = (x′, y′), we find a real num-

ber y∗ such that applying the motion corresponding to y∗

on xGS (using the estimated motion R
∗(y∗) obtained from

α
∗) would result in vertical RS coordinate y∗ after warping.

This is a nonlinear least squares problem of a continuous

variable, and we use Levenberg-Marquardt algorithm [20]

to solve for y∗. This algorithm is iterative, and is initialized

with y′ for faster convergence. Let this estimated RS co-

ordinate location be (x∗, y∗). We then assign the intensity

IRS(x
∗, y∗) from the RS image as the intensity ÎGS(x

′, y′)
in the estimated GS image. We bilinearly interpolate the in-

tensity values of four nearest integer locations while arriv-

ing at IRS(x
∗, y∗). The rectification steps are summarized

in Algorithm 1.
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Figure 4. Results of our optimization over iterations (best viewed in PDF). (a) first iteration, (b-e) intermediate iterations, and (f) final

iteration. Top row. Rectified images using the current motion estimate overlaid with vertical (green), horizontal (blue), and slanted (yellow)

edges. Bottom row. Estimated camera trajectories.

Algorithm 1 RS rectification using inverse mapping.

Inputs: Estimated motion R
∗, RS image IRS

for all xGS = (x′, y′) in GS image do

x̃GS ← [x′, y′, 1]T

y∗ = argminy(y − y)2 , where{
x̃RS ← KR

∗(y)K−1
x̃GS ,

xRS = (x, y)← [x̃RS(1), x̃RS(2)]/x̃RS(3)

x̃RS ← KR
∗(y∗)K−1

x̃GS , and

xRS = (x∗, y∗)← [x̃RS(1), x̃RS(2)]/x̃RS(3)

ÎGS(x
′, y′)← IRS(x

∗, y∗)
end for

Output: GS image ÎGS

3. Experiments

In this section, we demonstrate our motion estimation

and image rectification results. We also evaluate the per-

formance of the polynomial model against other existing

models for an RS image affected by camera motion in the

publicly available handshake dataset [17]. Finally, we com-

pare the performance of our single image method against

video as well as nonblind RS rectification methods.

Motion Estimation and Rectification The RS image in

Fig. 1(a) was taken with a MotoG2 mobile phone. Fig. 4(a)

shows the detected curves in vertical (green), horizon-

tal (blue), and slanted (yellow) directions. The vertically

oriented edges are curved the most, followed by slanted

curves, while the horizontal curves are the least affected.

The blue lines are not exactly horizontal in this case. We

solve (10) using the edge pixels along the curves to estimate

camera motion that straightens the curves while respecting

angle and length constraints. The RS image is rectified us-

ing the final motion estimate as described in Algorithm 1.

The rectified image, that was shown in Fig. 1(b), is repro-

duced in Fig. 4(f) but with overlaid edges. Observe that

the RS curves are successfully corrected with green lines
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Successive MSD of α

Figure 5. The line cost reduces

in each iteration. Initially, the

mean squared difference be-

tween α of successive itera-

tions is large when the opti-

mization takes large steps, and

it decreases when approaching

the final solution.

aligned to vertical, blue lines aligned to horizontal, and

yellow lines retaining their straightness, without disrupting

global vertical scaling.

In Fig. 4, we also show the motion trajectory estimates

and the corresponding rectified images over iterations while

solving (10). The algorithm initially corrects the curvatures

by varying the rotational motion trajectories. It then pro-

ceeds to vary the inplane rotation rz to impose orthogonal-

ity between vertical and horizontal lines. The blue lines in

Fig. 4(f) are closer to horizontal than in Fig. 4(a). The esti-

mated rx motion is minimal without affecting vertical scale,

and at the same time, suffices to correct the curvature of

slanted lines. It is therefore clear that our method is able to

rectify the distortions due to RS effect. The variation of the

objective value in (10) and the estimated α
∗ over iterations

is shown in Fig. 5. The importance of RS rectification for

geometric analysis based on vanishing points is provided in

the supplementary material.

Comparison of Motion Models We have modelled the

camera trajectory during sequential exposure of rows by a

polynomial. This is unlike other works that use weighted

row-wise motion based on the motion of certain fixed rows

(known as key rows). To study the suitability of the poly-

nomial model, we compare its performance against two

other RS models, namely, spherical linear interpolation

model [26] (with five equally spaced key rows) and Gaus-

sian interpolation model [10] (with ten equally spaced key

rows). We generate the RS image using a camera trajectory
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Figure 6. Motion model analysis. Top row. (a) RS image simulated using handshake motion from the dataset of [17], rectified images using

(b) polynomial, (c) linear interpolation [26], and (d) Gaussian interpolation [10] models. Bottom row shows zoomed-in patches and the

plots of ground truth and estimated trajectories.

picked from the handshake camera motion dataset of [17].

We employ the same cost function for all the three models

to estimate camera motion.

The RS image, and the rectified images using polyno-

mial, linear, and Gaussian interpolation models are shown,

respectively, in Figs. 6(a), (b), (c), and (d). The estimated

motion trajectories are shown in Figs. 6(b2), (c2), and (d2),

in which the continuous green path denotes the ground truth

trajectory and the dotted paths denote estimated trajectories.

Note that the polynomial model closely follows the hand-

shake dataset motion, while the linear interpolation model

uses piecewise approximation, and the Gaussian interpola-

tion model exhibits a residual throughout the trajectory. The

average angular error for ry ∈ (−0.1, 0.2)◦ between the

ground truth and estimated trajectories for the three models

are 0.0012◦, 0.0050◦, 0.0069◦, respectively. The polyno-

mial model exhibits the least estimation error. Though the

errors for the other two models are small in value, the resid-

ual effect is strikingly visible in the rectified image. The

zoomed-in patch in Fig. 6(a1) shows a high curvature region

of the RS image. While the rectified patch (b1) correspond-

ing to the polynomial model is visually better, the other two

patches (c1) and (d1) show wavy artifacts.

Comparison with Video and Nonblind RS Rectification

To the best of our knowledge, there are no existing works

that deal with RS rectification given a single image. While

[31] uses a single image, it works only in the presence

of motion blur. Nevertheless, we compare our method

against two contemporary video RS rectification and sta-

bilization methods [26, 10] and a non-blind GS-RS regis-

tration method [25]. For [26] and [10], we use the RS video

dataset (captured using mobile phones) as well as the out-

puts provided by them. For [25], the authors sent us their

estimated camera motion between the GS and RS images

that we captured using a Google Nexus 4 phone and made

available to them. Subsequently, we rectified the RS image

using our Algorithm 1 (instead of the polynomial model, we

directly used their estimated row-wise motion). We must

mention here that the aim of these three comparisons is to

only gauge whether our blind RS image rectification mea-

sures up to the performance of these video and non-blind

methods, and not whether our proposed method outper-

forms them. While [26] and [10] use an RS-affected video

sequence, [25] needs the original GS image. In contrast, our

method is blind and works on a single RS image.

Fig. 7(a) shows a frame of an RS video from the dataset

of [26]; this video is chosen as it has heavy RS distortions.

The video suffers mainly from inplane rotations. The verti-

cal posts in the scene appear bent during the capture. The

method of [26] rectifies and stabilizes the video, and the

output frame corresponding to (a) is shown in Fig. 7(b), in

which the bent poles are correctly straightened. The global

shift is due to video stabilization. In our proposed method,

we use only the image (a) to detect curves and to estimate

motion. Our single image RS rectification output is shown

in Fig. 7(c). It can be seen that the performance of our

method is comparable to [26] in correcting the RS curves.

A skew-distorted frame from an RS video of the dataset

from [10] is shown in Fig. 7(d). The corresponding frame

from the rectified video [10] is shown in Fig. 7(e), and the

result of our single image rectification is shown in Fig. 7(f).

Note that our method corrects the distortions very well;

slanted pillars are correctly rendered as vertical.

Finally, we compare our method with the nonblind recti-

fication of [25]. We captured two images of the same scene,

one without motion (GS image in Fig. 7(g)) and one with

motion (RS image in Fig. 7(h)). We then estimated the

camera motion using [25], and corrected the RS effect us-

ing Algorithm 1. The nonblind rectified image is shown

in Fig. 7(i). We then use our proposed method to esti-
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Figure 7. Comparison with video rectification. (a) RS video frame, (b) rectified video frame [26], (c) our single image rectification output,

(d) RS video frame, (e) rectified video frame [10], and (f) our single image rectification output. Comparison with non-blind rectification.

(g) GS reference image, (h) RS image, (i) rectified output through the camera motion estimated between (g) and (h) using [25], and (j) our

single image RS rectification output of (h).

mate motion from only the RS image, and our blind rec-

tification output is shown in Fig. 7(j). The performance of

our method is clearly on par with the two-image nonblind

method. To quantify the rectification, we calculated the er-

ror during global homography estimation between the GS

image and the other three images using 4-point RANSAC

estimation based on SIFT correspondences [21]. The errors

for the RS, nonblind, and blind rectified images are 1.4226,

0.3031, and 0.3854, respectively. Our blind rectified output

matches the GS image through a global homography (since

the row-wise variations are rectified) as good as the non-

blind rectified image.

Presence of Curved Objects Although our method as-

sumes the scene to contain man-made structures with

straight lines, it can handle the presence of few natural ob-

jects too. Fig. 8(a) shows an image of a scene with a tree

that is naturally curved and jagged. The RS effect is visually

less in this image, but there is a vertical misalignment as can

be seen from the marked red line. The presence of the tree

affects our cost minimization only marginally, since there

are a number of other lines that exert a greater influence on

the cost. The rectification rotates the image to closely align

with the vertical as shown in Fig. 8(b). Fig. 8(c) shows an

RS image with many natural curves (white boards) and our

method leaves some RS residuals in the rectified image as

shown in Fig. 8(d). We have further discussed the effect of

the presence of curves and curve breaks in the supplemen-

tary material.

Run-time We implemented our method in MATLAB with

warping operations accelerated by C-mex. Our method

takes approximately 25 seconds for curve detection, 10 sec-

onds to estimate camera motion, and 5 seconds for RS rec-

tification, for an 816x612 image on a 3.4GHz machine with

8GB RAM. More RS rectification examples are provided in

the supplementary material.

(a) (b)

(c) (d)
Figure 8. The presence of curved objects (a) Input image contain-

ing a tree that is misaligned with the vertical axis, and (b) rectified

image. (c) An RS image with many natural curves (white boards),

and (d) rectified image with incomplete rectification.
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4. Conclusions

In this paper, we handled the challenging task of cor-

recting RS distortions from a single image of urban scenes.

Using the proposed curve detection procedure, we automat-

ically picked good lines and curves as features. We then

formulated an optimization problem based on line, angle,

and length desirability costs on these features to solve for

the underlying (rotation-only) camera motion using which

we finally rectify the RS image through inverse mapping.

With video and nonblind RS rectification methods being the

state-of-the-art, our work opens up new vistas for tackling

the RS effect in single images. Experiments reveal that our

method, despite being single-image based, performs com-

mendably against existing multi-image methods.
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