
Sparse to Dense 3D Reconstruction from Rolling Shutter Images

Olivier Saurer1, Marc Pollefeys1, Gim Hee Lee2

Department of Computer Science1
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Abstract

It is well known that the rolling shutter effect in images

captured with a moving rolling shutter camera causes inac-

curacies to 3D reconstructions. The problem is further ag-

gravated with weak visual connectivity from wide baseline

images captured with a fast moving camera. In this paper,

we propose and implement a pipeline for sparse to dense

3D construction with wide baseline images captured from a

fast moving rolling shutter camera. Specifically, we propose

a cost function for Bundle Adjustment (BA) that models the

rolling shutter effect, incorporates GPS/INS readings, and

enforces pairwise smoothness between neighboring poses.

We optimize over the 3D structures, camera poses and ve-

locities. We also introduce a novel interpolation scheme for

the rolling shutter plane sweep stereo algorithm that allows

us to achieve a 7× speed up in the depth map computations

for dense reconstruction without losing accuracy. We eval-

uate our proposed pipeline over a 2.6km image sequence

captured with a rolling shutter camera mounted on a mov-

ing car.

1. Introduction

The majority of image sensors on the market today

(found in mobile phones, and compact cameras etc.) are

CMOS sensors. In contrast to standard CCD sensors which

have global sensor readout, classical CMOS sensors have

sequential readout. This leads to sequential exposures of

each image row or column - commonly known as rolling

shutter. For example, typical readout times in todays mo-

bile phones are around 10-40ms [23, 28]. Given such a

delay, significant deformations appear in the image when

the camera is in motion. Assuming a camera with a read-

out time of 35ms and moving at 5km/h, objects which are

closer than 25m will show deformations due to the rolling

shutter [26] effects.

In the last decade, Structure from Motion (SfM) tech-

niques have been used to build 3D models from both or-

dered and unordered image sequences [29, 1, 9, 16]. These

Figure 1. Sparse and dense 3D reconstructions from wide base-

line images captured with a rolling shutter camera mounted on a

moving car.

SfM techniques rely on a global shutter camera model and

become brittle when used on rolling shutter images [18, 19].

Hedbors [12] introduced a BA method which provides accu-

rate structure and motion from a rolling shutter video stream

by using a continuous time parametrization of the camera

pose. It is however limited to continuous image streams

with small baselines and does not work on sparse images

with wide baselines. Moreover, none of the existing works

showed a full pipeline that does full sparse to dense 3D re-

construction from rolling shutter images with wide base-

lines.

In this paper, we propose and implement a pipeline for

sparse to dense 3D construction with wide baseline images

captured from a fast moving rolling shutter camera. Fig. 1

shows an example of the sparse and dense 3D reconstruc-

tions obtained from our proposed pipeline. Wide baseline

images are captured at a low frame rate of 4Hz by a rolling

shutter camera mounted on a moving car, driven at 17km/h.
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Specifically, we propose a cost function for BA that mod-

els the rolling shutter effect, incorporates GPS/INS read-

ings, and enforces pairwise smoothness between neighbor-

ing poses. We optimize over the 3D structures, camera

poses and velocities. In contrast to [15] that minimizes the

absolute difference of the GPS/INS and camera poses, our

smoothness term minimizes the difference between neigh-

boring camera relative poses and their corresponding neigh-

boring GPS/INS relative poses. As a result, our BA is able

to compensate for the drifts that are accumulated in large

scenes from the weak visual connectivity of wide baseline

images without the risk of causing discontinuities in the

poses.

The optimized camera poses are used to compute dense

motion stereo. We adopt the plane sweep algorithm for

rolling shutter camera proposed by [26]. We show that

we can achieve a 7× speed up in the depth map computa-

tion without losing accuracy with our novel interpolation

scheme for the rolling shutter plane sweep stereo algorithm.

We evaluate and show the feasibility of our approach on

a 2.6km sequence, and compare our sparse and dense

3D reconstructions to those obtained from global shutter

reconstructions.

Our contributions can be summarized as follow:

• Propose and show a working pipeline for full sparse to

dense 3D reconstruction from large scale wide baseline

rolling shutter images.

• New cost function for BA that models the rolling

shutter effect, incorporates GPS/INS readings, and

enforces pairwise smoothness between neighboring

poses.

• Achieved 7× speed up in depth map computation

without losing accuracy with our novel interpolation

scheme on the 3D planes for the rolling shutter plane

sweep stereo algorithm.

2. Related Work

In the recent years, an increasing number of 3D vision al-

gorithms originally designed for global shutter cameras are

reformulated to include the rolling shutter camera model.

These algorithms cover many aspects of 3D vision from

camera calibration, pose estimation, bundle adjustment to

dense motion stereo etc. However, none of these existing

works showed a full sparse to dense 3D reconstruction from

wide baseline rolling shutter images.

The authors of [10, 23] suggested algorithms for the cal-

ibration of rolling shutter timing. Others [17, 25, 8, 11, 5]

have looked into rolling shutter wobble corrections using

additional sensors such as gyroscopes or assuming that a

rolling shutter wobble is induced by only a pure rotational

motion. [27, 4] addressed the rolling shutter pose estima-

tion problem with the minimal solutions from different vari-

ants of rolling shutter camera model. Meilland et al. [22]

proposed a RGB-D SfM algorithm which simultaneously

solves for motion blur and rolling shutter deformations. In

[21], the authors proposed an iterative algorithm to solve for

the camera pose and velocity.

A rolling shutter camera bundle adjustment for a contin-

uous stream of small baseline images was shown in [12].

They reformulate the bundle adjustment problem such that

it requires 6 additional parameters compared to the global

shutter version. These 6 additional parameters are due to the

exploitation of the fact that the pose of the last scanline cor-

responds to the pose of the first scanline in the next frame.

In [14], the authors modelled a rolling shutter camera rig as

a generalized camera, where relative poses between cam-

eras are obtained from a GPS/INS system. In the bundle

adjustment, they optimized for one global camera rig pose,

while using a rolling shutter aware reprojection error.

Ait-Aider et al. [3] proposed a stereo algorithm for a

rolling shutter stereo rig. Given a set of point correspon-

dences, they recover the object pose and velocity by opti-

mizing a non-linear system of equations. A challenge of

finding pixel correspondences between image pairs arises

in the monocular setup. While this is done by searching

along the epipolar line for global shutter stereo, the search

becomes difficult for the rolling shutter stereo where the

pixel correspondence lies on an epipolar curve. The cur-

vature of the epipolar curve depends on the motion and lens

distortion of both cameras. In [26], the authors addressed

this problem with a monocular rolling shutter plane sweep

stereo algorithm. The main drawback of the algorithm is

that it is computationally expensive to solve a high order

polynomial for each pixel at various depths. We built upon

their findings and proposed a novel algorithm which is 7×
faster in speed and provides similar accuracy in depth esti-

mation.

3. Reconstruction Pipeline

Fig. 2 illustrates our proposed pipeline for sparse to

dense 3D reconstruction from rolling shutter images. Our

proposed reconstruction pipeline follows the standard SfM

approach [24] with modifications made for wide baseline

rolling shutter images. In detail:

Data Acquisition: Images are captured with a rolling

shutter camera rig mounted on a car. The rig consists of

15 cameras arranged such that they cover over 80% of a

sphere. In this work, we consider only 8 cameras which

point sideways to the driving direction. Images from con-

secutive frames have wide baseline because our cameras are

recording at a low frame rate of 4Hz. Each image is also

synchronized with a GPS/INS position.
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Figure 2. Overview of the reconstruction pipeline.

Tracking: We start by extracting SIFT [20] features us-

ing [30] on the radially distorted images. Features are then

matched between neighboring images using a GPU brute-

force matcher creating tracks between consecutive frames.

Frames which show little parallax (< 50 pixels) are re-

moved from the tracks.

Loop closure: Loop closures are detected by comparing

the GPS/INS poses. Images that are within a radius of 15m

are considered as potential loop closures. Potential loop

closures are verified geometrically using a rolling shutter

pose estimation algorithm similar to [27]. We consider a

loop closure to valid if it is within the vicinity of their orig-

inal GPS/INS pose (within 15m) and there is enough in-

liers (> 100) from the geometric verification. Each detected

loop closure is added to BA in the form of a pose graph as

an additional constraint (see Section 4 for more details).

Rolling Shutter BA: Tracks are first radially undistorted

with the standard radial/tangential distortion model pro-

posed by Brown [6]. Next, the undistorted keypoints are tri-

angulated with the camera poses provided by the GPS/INS

system. It is important to note that the camera poses pro-

vided by the GPS/INS system are not perfect due to sys-

tematic errors in calibration and multi-path problems in the

urban environment. We use the GPS/INS system for a rough

pose estimate of each scanline in the image. We then use

our proposed rolling shutter aware BA to optimize over the

3D points, and camera extrinsics i.e. poses and velocities,

while enforcing smoothness constraints between neighbor-

ing poses in the pose graph. The BA refinement process is

further discussed in Section 4.

Rolling Shutter Stereo: The refined poses are then used

to compute a dense 3D model using a multi-view and multi-

resolution rolling shutter plane sweeping stereo algorithm

similar to [26]. Here, we show that our novel interpola-

tion scheme on the 3D planes for the rolling shutter plane

sweep stereo algorithm allows us to achieve a 7× speed

up in the depth map computations for dense reconstruction

without losing accuracy. The depth maps are regularized

using Semi-Global matching [13]. More details are given in

Section 5.

Depth map Fusion: Finally, all 3D models are merged

into a single coordinate frame. Only depth values which

obtained support from at least 3 or more views are kept and

used to render a dense point cloud.

4. Rolling Shutter Bundle Adjustment (BA)

Traditional BA [29] that minimizes the total re-

projection errors is formulated as:

argmin
R,t

∑

m

∑

n

||xm,n −K ·D(π(Pm,Xn))||2, (1)

where K is the camera intrinsics parameter, D is the radial

distortion function, P = [R,−Rt] is the camera extrinsics,

i.e. rotation and translation, xm,n is the feature point cor-

responding to the 3D point Xn observed by the camera m,

and π(.) : P3 → P
2 denotes the projection function. This

formulation assumes a global shutter camera model. For a

moving rolling shutter camera, each scanline gets exposed

at a different place in space along the motion trajectory. As

a result, Eq. 1 no longer holds.

Similar to [10, 4] we propose to use a constant transla-

tional and rotational velocity parametrization for the camera

pose:

t(τ) = t0 + vτ, (2a)

R(τ) = exp(Ωτ)R0, (2b)

where v denotes the translational velocity, Ω denotes the

angular velocity and τ the time of exposure (time delay be-

tween first an current scanline). R0 and t0 are the camera

pose at the first scanline. The function exp(.) : so(3) →
SO(3) denotes the exponential map that transforms the

angle-axis rotation representation to a corresponding rota-

tion matrix. The pose of a given scanline exposed at time

τ can be linearly interpolated from Eq. 2, which yields the

following parametrized transformation matrix:

P(τ) =
[

R(τ) −R(τ)t(τ)
]

. (3)

Given the continuous time pose parametrization in Eq. 3,

we can rewrite the global shutter reprojection error in Eq. 1

as:
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argmin
v,Ω,R0,t0,X

∑

m

∑

n

||xm,n −K ·D(π(Pm(τ) ·Xn))||2,

(4)

where we optimize over the camera pose at the first scan-

line of each image (R0, t0), velocities (v, Ω) and 3D struc-

tures X. Unfortunately, the optimization based on Eq. 4

often breaks for our wide baseline images with weak vi-

sual connectivity. This problem is made worst at the end

of façades in the scene where feature tracks drop tremen-

dously. To overcome this problem, we introduce an addi-

tional smoothness term that enforces pairwise smoothness

between neighboring poses:

∑

(i,j)∈G

||P−1
i (0) ·Pj(0)−Mi,j ||2. (5)

Pi(0) is the ith camera extrinsics parameters at the first

scanline we optimize over, and represented as a 6 dimen-

sional vector [log(R0)
⊤, t⊤0 ] where log(.) : SO(3) →

so(3). (i, j) ∈ G denotes all pairs of neighboring poses

in the pose graph G. Here, j = i + 1 denotes consecu-

tive neighboring poses, and j 6= i+ 1 denotes loop closure

neighboring poses mentioned in Section 3. For consecutive

neighboring poses, i.e. j = i+1, Mi,j is the corresponding

relative pose obtained from the GPS/INS reading:

Mi,j = P̃−1
i (0)P̃j(0), (6)

where P̃i(0) and P̃j(0) are the absolute poses from the

GPS/INS at the first image scanline. It becomes obvious

now that Eq. 6 penalizes deviation from the GPS/INS poses

and preserves smoothness between neighboring poses. For

non-consecutive neighboring poses, i.e. j 6= i + 1, Mi,j is

the relative pose computed from the pose estimation during

the geometric verification in the loop closure mentioned in

Section 3. Consequently, our BA formulation is also capa-

ble of closing large loop closure errors.

Our final objective function then writes as follows:

argmin
v,Ω,R0,t0,X

{

∑

m

∑

n

||xm,n−K ·D(π(Pm(τ) ·Xn))||2

+ λ
∑

(i,j)∈G

||P−1
i (0) ·Pj(0)−Mi,j ||2

}

, (7)

where λ is a weighting factor we estimated empirically and

set to 1e6 in all our experiments. We proposed an alter-

nating optimization approach to minimize the cost function

in Eq. 7. First, we optimize over the parameters R0, t0,X
while keeping the parameters v,Ω fixed. Next, we optimize

over v,Ω while keeping R0, t0,X fixed. We alternate be-

tween the two configurations until we reach convergence.

In all our experiments, the solution converged after a max-

imum of two iterations, and in most cases one iteration is

enough for convergence. We use the Ceres [2] optimization

framework to solve for the non-linear least squares problem.

5. Time Continuous Rolling Shutter Stereo

We adopt and improve upon the plane sweep stereo al-

gorithm proposed in [26] for rolling shutter cameras. The

main difference between the plane sweep algorithm for

global and rolling shutter cameras is the way that a pixel

gets warped from a target image into a reference image for

the evaluation of the photo-consistency cost. This can be

done easily with homography for the global shutter cam-

eras. Unfortunately, simple homography is not applicable

for the rolling shutter cameras since each scanline has a dif-

ferent pose and therefore the plane parameters vary accord-

ing to the scanlines. [26] incorporates the rolling shutter

camera model into the plane sweep algorithm to achieve the

warping of a pixel from a target to reference image. This

results in the need to solve for the time of exposure τ that

corresponds to the time (scanline) a given 3D point is im-

aged by the sensor. More precisely, the time of exposure τ
is obtained by solving the following fix-point function:

s ·K ·D(π(P(τ) ·X)) = τ, (8)

where K denotes the camera intrinsics matrix, D is the lens

distortion function, P(τ) is the camera extrinsic at time τ
and X is the 3D point and π(.) : P

3 → P
2 denotes the

projection function. s is the scanline selection operator that

selects either the top or bottom row of the left hand side

of Eq. 8, i.e. we set s = [1, 0] for a shutter that moves

horizontally, and s = [0, 1] for a shutter that moves ver-

tically. Note that solving for τ in Eq. 8 requires solving

for the roots of a high order polynomial, where the order

depends on the lens distortion model and motion parame-

terization. Using the motion parametrization presented in

Section 4, we get a 9th order polynomial in τ , where τ is

solved using the Gauss-Newton minimization. The need

to solve a 9th order polynomial for every pixel in the im-

age quickly becomes computationally expensive. Authors

of [26] reported a processing time of 27ms per image with

the Graphics Processing Unit (GPU). In addition, they pro-

posed an alternative approach that first solves the τ values

for a subset of pixels on the target image, and next obtain

the τ values for all other pixels from interpolations of the

subset of pixels with known τ that are warped onto the ref-

erence image. However, this technique comes with the cost

of interpolation artefacts. Here we propose an alternative in-

terpolation scheme where we process every pixel on the tar-

get image, but solve τ for a subset of the plane intersections

(each plane corresponds to the depth that is searched for

pixel correspondence in the plane sweep stereo algorithm)

with each back-projected ray from every pixel on the target

image. We solve for all the τ values by interpolating be-

tween the τ values solved from the subset of plane intersec-

tions projected onto the reference image. Fig. 4 shows how

τ(d) changes with increasing plane depth d over a range of
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Figure 3. Evaluation of τ interpolation error for four different pixels. The first row shows the different approximations of τ in dependence

of the depth d, i.e., τ(d). The second row shows the error to the ground truth. Only piecewise quadratic interpolation gives an error below

1e-3 pixel, while all other interpolation - quadratic, cubic, quartic and cubic spline give at least 1.0 pixel error.
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Figure 4. Representation of τ(d) at different pixel locations over a

plane depth range of 9m, d ∈ [4m, 13m].

4m to 9m. It should be noted that the closer the intersection

point of the ray with the plane gets to the camera, the more

rapidly (can be increasing or decreasing depending on the

pixel location and camera motion) the time of exposure τ
(scanline) changes with increasing velocity.

Finding a suitable parametrization for the interpolation

of τ can be challenging since the curve τ(d) varies a lot

with different pixel location, camera motion and radial dis-

tortion coefficients. We noted that the depth in which we

search for pixel correspondences in the plane sweep stereo

is bounded by the two planes, i.e. closest and furthest away

from the camera. Exploiting this fact, we can evaluate the τ
values for a subset of depths for each pixel and interpolate

the missing intermediate τ values. We experimented with

different interpolation schemes - quadratic, cubic, quartic,

cubic spline and piecewise quadratic. Fig. 3 shows the er-

rors for the different interpolation schemes. We can see that

the error obtained from piecewise quadratic interpolation is

the lowest at ≤ 1e − 3 pixel. All the other interpolation

schemes give errors that are > 1 pixel, which means that

the estimated scanline is off by at least one scanline. We

compare the results from the interpolation schemes against

a ground truth obtained by solving Eq. 8 with a Gauss-

Newton scheme. Since the rolling shutter effect is depen-

dent on the scene depth, the curvature of τ becomes much

higher when the plane is closer to the camera, and becomes

almost linear when the plane is located further away from

the camera. This motivates us to use an adaptive interpola-

tion range in which a quadratic function is fitted in depen-

dence of the relative scene depth. Let c (
√
3 in our exper-

iments) be the exponential factor and b be the initial inter-

polation range. The adaptive depth range di used for the

piecewise depth interpolation is obtained using di = cib.
Given the total number of planes to sweep w, the number

of times τ needs to be fully evaluated for each pixel then is:

i = log(w/b). In addition, we can sparsely evaluate τ in

the image space and bi-linearly interpolate the in between

values. Combining those two interpolation schemes gives

us an overall speedup of 6.56×, i.e. ∼ 7×.

6. Results

We evaluate our proposed pipeline on both synthetic and

real datasets. We use the “Castle” and “Old Town” datasets

provided by [26] for the synthetic experiments. The real

dataset was captured with a car mounted with a rig of 15

rolling shutter cameras, covering 80% of a sphere. The tra-

jectory has a total length of 2.6km with 17k images. Images

have a resolution of 1944 × 2592 pixels and are sparsely

recorded at 4Hz. The shutter scan time for each camera is

72ms. On average the car drives at 17km/h, which results

in an average camera motion of 0.34m during image forma-

tion, meaning the distance between the first and last scanline

is 0.34m apart.

6.1. Bundle Adjustment

Fig. 5 shows a comparison of the sparse 3D reconstruc-

tions (a) without optimization, (b) with global shutter model

and (c) with our proposed BA cost. It can be seen that the

3D structures reconstructed from GPS/INS readings with-
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(a) (b) (c)
Figure 5. Sparse 3D reconstructions: (a) Initial model obtained using GPS/INS poses, where the 3D points are very noisy with typical

misalignment of 0.2-0.3m. (b) After global shutter BA with misaligned façades (arrows). (c) After rolling shutter BA (proposed method)

with sharp and well aligned façades. Note that only points with ≤ 5 pixels reprojection error are shown in (b) and (c). The respective

reprojection error distribution for the reconstructions are shown in Figure 6.

out BA is noisy. Although the 3D structures appear sharper

after global shutter refinement, it is obvious that the method

produces misaligned façades. In contrast, our proposed

rolling shutter refinement produces a sharp and consistent

3D sparse model. Quantitatively, the histograms in Fig.

6 shows the count of reprojection error for all 1, 371, 294
3D points. Fig. 6 (center) shows that the global shutter

BA has a very high count of reprojection errors ≥ 5 pix-

els, while the reprojection errors from our method is signif-

icantly lower. Fig. 7 shows a comparison of the “zoomed-in

view” of the camera poses from GPS/INS readings (blue),

our rolling shutter BA with pairwise smoothness (green),

and global shutter BA without pairwise smoothness (red). It

can be clearly seen that the wide baselines between the cam-

era poses cause breakages in the global shutter BA without

pairwise smoothness (red). On the other hand, our method

(green) produces a smooth trajectory of camera poses.
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Figure 6. Reprojection error distributions for all 1, 371, 294 3D

points from the reconstruction in Figure 5. Note that the last bin is

extended to infinity.

Figure 7. A close-up comparison of camera poses from initial

GPS/INS readings (blue), our Rolling Shutter BA with pairwise

smoothness (green), and Global Shutter BA (red).

6.2. Stereo

For our experiments, we use our proposed plane sweep

algorithm with a single reference plane normal. The refer-

ence plane is obtained by finding the dominant plane using

RANSAC [7] on the sparse point cloud obtained from SfM.

A sweep through 3D space is performed within the dis-

tance of [dfront, dback] around the reference plane. We set

dfront = 5m and dback = 3m. Planes in between are sam-

pled linearly in image space. A pixel transfer between two

images is computed by first undistorting a pixel and inter-

secting the resulting ray with the corresponding plane. The

intersection point is then back-projected onto the other view

for texture lookup. The correlation between two images

is computed using Normalized Cross-Correlation (NCC),

with a window size of 5 × 5 pixels. We make use of a

multi-resolution approach, where we aggregate the correla-

tion cost over multiple pyramid levels (3 levels in our case)

to be more robust towards textureless surfaces. Further-

more we use a multi-view approach to handle occlusions.

At each depth (plane), we consider the k = 3 best views

out of n = 6 that provide the highest correlation. Once the

cost volume is obtained, we regularize it with Semi-Global-

Matching [13] using 16 different path directions. We fit a

quadratic through the depth that provides the lowest cost

to obtain the final depth. Lastly, all estimated 3D points

undergo a geometric verification, where points that give a

consistent depth within 3 or more views are considered to

be valid. We use a threshold of 0.1m for our consistency

check.

Synthetic Data: Tab. 1 shows the evaluation of our algo-

rithm on synthetic data. It can be seen that the performance

of our proposed piecewise quadratic interpolation has ac-

curacies (median error and fill rate) that are comparable to

the RS method from [26] for both datasets, yet achieving

3.7× speedup. We can further see that by combining bilin-

ear and piecewise quadratic interpolations, we achieved a
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Castle Old Town

Method speed / warp [ms] median [m] MAD [m] fill rate median [m] MAD [m] fill rate

FA2 [26] 2.2 1.02 1.02 52.8% 0.26 0.22 58.6%

Bilinear + PQI 4.2 0.05 0.049 75.6% 0.099 0.096 57.1%

Piecewise Quadratic 7.4 0.049 0.041 75.6% 0.098 0.096 57.2%

RS [26] 27.7 0.041 0.032 76.3% 0.085 0.077 62.0%
Table 1. Comparison of our methods - Piecewise Quadratic Interpolation (PQI) and Bilinear Interpolation with PQI with RS and FA2 on

the “Castle” and “Old Town” synthetic datasets.

speedup of ∼ 7× over RS without losing much accuracy.

Fig. 8 shows a visualization of the voxelwise errors from

the stereo reconstruction compared to ground truth for RS,

FA2 [26] and ours. It is clear that FA2 has the highest er-

rors (more red), and there is an insignificant reduction in

accuracy of our method compared to RS.

Figure 8. Visualization of the voxelwise errors from the stereo re-

construction compared to ground truth for RS [26], FA2 [26] and

ours on the synthetic “Castle” dataset.

LiDAR: We also compare our reconstruction to sparse Li-

DAR data, which was captured alongside with the image

data, in Fig. 9 and Tab. 2. We re-project the LiDAR data into

the estimated depth map and evaluate the respective error of

the estimated depth maps computed with our rolling shutter

pipeline (rolling shutter BA and stereo) and the global shut-

ter pipeline (global shutter BA and stereo). It should be

noted that there might be some inaccuracies in this experi-

ment because the offset between our LiDAR and camera is

physically measured. Nonetheless, we observe that in gen-

eral the global shutter reconstructions have median errors

that are ∼ 0.15m more than the rolling shutter reconstruc-

tions.

Global Shutter (m) Rolling Shutter (m)

Fig.9(a) 0.42 0.23

Fig.9(b) 0.37 0.25

Table 2. Median errors from global and rolling shutter depth maps,

compared to sparse LiDAR data.

6.3. Full Pipeline

We show results of sparse to dense reconstruction in

Fig. 10 with our proposed methods on a large scale dataset

over 2.6km in length taken at San Francisco City Hall and

its surroundings. First we use a global window BA with

smoothness prior to refine the camera poses and 3D struc-

ture, as described in Section 4. A robust Huber loss function

LiDAR

Global Shutter

Rolling Shutter

LiDAR

Global Shutter

Rolling Shutter

(a) (b)
Figure 9. Comparison of rolling shutter and global shutter stereo

to LiDAR data.

is used to handle outliers. Only tracks of size ≥ 3 are con-

sider in the BA process. After BA, we remove points that

have a reprojection error > 1 pixel. In the second stage, we

run our rolling shutter aware motion stereo algorithm, as

mentioned in Section 5. We adaptively evaluate τ in sweep

space at a rate of di = cib in all our experiments, where di
denotes the depth interval, c = 1.5 and b = 6. In addition,

τ is evaluated sparsely in the image at every 5th pixel and

bilinearly interpolated.

7. Conclusion

We proposed a rolling shutter bundle adjustment, which

optimizes over the 3D structure, the camera poses and ve-

locities using an additional smoothness term to compensate

for drift. In addition, we proposed a simple yet efficient in-

terpolation scheme for rolling shutter stereo which speeds

up the algorithm by 7×, while providing almost same ac-

curacy as state-of-the art algorithms. We evaluated our

pipeline on a camera trajectory of 2.6km length and show

quantitative results of the sparse and dense reconstruction.

In the future, we would like to fuse the terrestrial recon-

struction with aerial reconstructions.
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Figure 10. Sample reconstructions of the San Francisco city hall and its surroundings.
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