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Abstract

We consider the problem of camera pose estimation for

a scenario where the camera may have continuous and un-

known changes in its focal length. Understanding frame by

frame changes in camera focal length is vital to accurately

estimating camera pose and vital to accurately rendering

virtual objects in a scene with the correct perspective. How-

ever, most approaches to camera calibration require geo-

metric constraints from many frames or the observation of

a 3D calibration object — both of which may not be feasi-

ble in augmented reality settings. This paper introduces a

calibration object based on a flat lenticular array that cre-

ates a color coded light-field whose observed color changes

depending on the angle from which it is viewed. We derive

an approach to estimate the focal length of the camera and

the relative pose of an object from a single image. We char-

acterize the performance of camera calibration across var-

ious focal lengths and camera models, and we demonstrate

the advantages of the focal length estimation in rendering a

virtual object in a video with constant zooming.

1. Introduction

Camera calibration is often the first step for Computer

Vision and Augmented Reality (AR) applications because

it defines how the scene is projected onto an image by the

camera. Calibration characterizes the photometric and ge-

ometric properties of the camera, that define, respectively,

how the pixels of the camera report color and intensity of

the scene, and where scene elements appear on the image.

Typically, camera calibration techniques are based on

images of a recognizable object at different views. Con-

straints on the camera geometry are created by finding 3D

points on the object and corresponding them to 2D image

points. When it is necessary to calibrate the intrinsic cam-

era parameters such as the camera focal length, it is often

necessary to user either multiple images of a planar object,

or an object with substantial 3D extent. This is because the

image of a single flat object may look similar in an image

Figure 1. A calibration object made from 3 lenticular arrays. Each

lenticular array has an observed color that changes depending on

its viewing angle. (Left) When viewed from reasonably far away,

the arrays have relatively consistent colors because they are being

viewed from approximately the same angle. (Right) A wide an-

gle view from much closer has significant color variation because

the direction from the camera to different parts of the object varies

substantially. This paper uses this color variation to derive strong

geometric constraints for simultaneous, single-image pose estima-

tion and camera calibration.

taken from a wide angle camera near the object or a more

zoomed in camera far away.

This creates a challenge for augmented reality applica-

tions that are required to work with dynamic scenes and

changing camera parameters such as a movie shot that re-

quires camera zooming. This paper offers a new approach

to geometric calibration of a camera that requires a single

image of a calibration object that may lie within a larger

scene. The calibration object that we propose is shown in

Figure 1.

This calibration object is based on several lenticular ar-

rays. A lenticular array is a sheet of plastic which is com-

prised of many tiny parallel cylindrical lenses. Figure 2 de-
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Figure 2. (Top Left) The side view of a lenticular array shows how

parallel light rays are focused onto the back focal plane. (Top

Right) Interleaving different hues behind each lens makes a lentic-

ular pattern whose apparent hue depends on the viewing angle.At

the scale of the whole lenticular array, this means that the perspec-

tive of a camera with a wider field of view will see many different

colors (Bottom Left), while a camera with a narrow field of view

will only see a few hues (Bottom Right).

picts how these lenses focus parallel rays of light onto an

interleaved pattern on the back of the lenticular array. As

a result, for different viewpoints, the lenticular array has

different appearances. In the case of children’s toys, differ-

ent frames of an animation are interleaved, and thus create

the appearance of an animation as the lenticular array is ro-

tated [14]. Some modern TVs use lenticular arrays to show

different images to different viewer directions in order to

create a 3D effect without the need for extra equipment like

special glasses [12, 8].

We construct a lenticular pattern inspired by [17], based

on a pattern of interleaved colors. This creates an apparent

hue dependent on the relative incident angle of light rays

viewing the lenticular array. For a perspective camera view-

ing a planar surface, pixels may have differing viewing an-

gle and therefore will measure a different hue. Therefore as

seen in the bottom row of Figure 2, a camera with a wide

field of view would see many different hues, while a cam-

era with a narrow field of view would see fewer hues. This

fundamental relationship between a color-coded lenticular

array and a camera provides a novel geometric constraint to

calibrate a camera.

The contributions of this paper are:

• an extension of the constraints derived in [17] to allow

lenticular patterns to constrain the camera focal length,

• an approach to correct manufacturing problems of

alignment and stretching that make relationship be-

tween color and angle vary across a lenticular array,

and

• experimentation with a physical instantiation of a pro-

totype calibration object, showing calibration accuracy

in different settings and a complete end-to-end aug-

mented reality demonstration with a variable zoom

video.

2. Related Work

Geometric camera calibration is a well studied problem,

and geometric constraints relating correspondences, camera

motion and camera calibration are well understood [7, 19,

18], including the development of popular toolboxes [24, 2].

Perhaps the most common approach to camera calibration is

Zhang’s method based on taking many pictures of a grid of

known size [25]. The method simultaneously solves for the

pose of the grid in each frame and the camera parameters

that are consistent across many frames.

Calibrating a camera with a single image is possible by

imaging calibration objects with known 3D geometry, for

example with 2 orthogonal planes [18]. Other methods use

known shapes such as 1D lines [13] and 2 co-planar cir-

cles [4] or images of man-made objects such as buildings

in a city and exploit vanishing lines [6, 1, 5] or low-rank

textures [26] as a source of calibration constraints. With

many images from a variety of viewpoints, more standard

structure from motion approaches can be used, and these

have been specialized for the case of unknown focal lengths

in various ways, including understanding the minimal con-

straint sets [3], extensions to uses features such as line seg-

ments and right angles to provide stronger geometric con-

straints [10], and a linearization of the EPnP problem [11] to

speed up the estimation of pose for the uncalibrated camera

case [15].

In Augmented Reality (AR), one seeks to render digital

content on top of a video feed of a scene to digitally enhance

the physical world. In order to properly project digital el-

ements into the video feed, the relative pose of the digital

element and the camera must be known, and the camera

calibration must be known.

Calibration methods which require multiple images of an

object in different poses or calibration objects with substan-

tial variation in all 3 dimensions may not be appropriate for

all applications. To our knowledge, the only papers to study

this problem in the context of an augmented reality applica-

tion are the recent work of Taketomi, et al. [20, 21]. They

use a KLT tracker to find many points in the scene and use

a Structure from Motion formulation to solve for 3D scene

points, and the camera position, rotation and focal length

in every frame, regularizing all camera parameters to vary

smoothly throughout the video. Then, a fiducial marker pat-

tern is located in each frame, and an object is rendered in a

position defined by that fiducial marker, with a perspective
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that depends on the estimated camera focal length.

In contrast to these existing approaches, our approaches

calibrates every image independently using a flat calibration

object. This object is based on a lenticular pattern. Lenticu-

lar arrays and their 2D counter-part, microlens arrays, give

geometric constraints on the incident angle of light rays

viewing the arrays. Previous research has used color coded

microlens arrays as “light field probes” for Schlieren pho-

tography [22], imaged reflections of these arrays to support

the reconstruction of surface geometry of transparent ob-

jects [23], and for the reconstruction of the refractive index

of gases [9]. Large lenticular arrays have been used to esti-

mate object rotation [17] with correspondences, while very

small lenticular arrays were used as fiducial markers to es-

timate the pose of an object [16].

Our work addresses the problem of joint intrinsic and

extrinsic camera calibration needed in AR applications

where cameras may change their zoom to keep track of

an object. Such an approach is necessary to integrate AR

with new commercial systems such as Soloshot (http:

//soloshot.com) that sell Pan-Tilt-Zoom cameras that

automatically track a radio tag, but which do not have en-

coders on their zoom lenses that tag imagery with the zoom

level.

The next section introduces our calibration object that is

suitable for such applications, We then derive the geometric

constraints this object offers and evaluate the performance

both quantitatively and qualitatively.

3. AR Calibration Object

Our calibration object is inspired by the lenticular array

used to estimate object rotation [17]; we adopt their notation

in our discussion here. Three lenticular arrays are mounted

perpendicular to each other on a plane, where the 2 flank-

ing arrays have the same orientation, but orthogonal to the

middle array. These arrays are orthogonal so that any ro-

tation of the calibration object creates a change; when the

object is oriented as shown on the left of Figure 1, rota-

tion around the horizontal axis causes the two edge arrays to

change color, while rotating around the vertical axis causes

the central part to change color. Small black strips are added

to make it easier to distinguish the 3 arrays when they are

oriented so that their colors are similar.

Calibrating a Color Coded Lenticular Array The rela-

tionship of the apparent viewing angle to the observed color

depends on the relative angle of the lenticular array, in par-

ticular the rotation around the axis of the lenticular lenses.

The relationship between this rotation and observed color is

captured in the Hue Response Function (HRF), which is a

1-to-1 relationship for incident angles of up to ≈ 40 degrees

(after which the colors repeat).

Figure 3. (Left) an image of the calibration object taken with a very

long lens, observing all parts of the calibration array with a nearly

orthographic imaging geometry. The observed color differences

indicate the the hue for a given viewing direction is not consistent.

(Right) The observed hue measured at the two yellow circles as

the calibration object is rotated, showing a consistent bias.

For a lenticular array created as described in [17], we

found that the hue response function varies across the array.

We demonstrate this in Figure 3, which shows a picture of

the calibration object taken from far away with a very long

focal length length lens, giving a field of view in this picture

of 1 degree. Therefore the color difference observed at the

two highlighted circles is substantial. When measuring this

color difference as the calibration array rotates, we see a

consistent shift. We believe this is due to the challenges

of manufacturing and printing the color coded pattern that

sits behind each lenticular lens. For this lenticular array

that has 2 lenticular lenses per millimeter, if the backplane

is stretched 0.1mm extra over the course of this array, this

would cause the observed color shift.

To address this challenge, while still employing standard

manufacturing processes for lenticular arrays, we explicitly

calibrate the HRF, the function that relates hue to orienta-

tion, at regular intervals in the local reference frame of the

arrays. We use the corners of the rectangular lenticular ar-

rays as anchor points, and for each image compute a homog-

raphy mapping the observed lenticular patterns to a canoni-

cal coordinate system. The process is illustrated in Figure 4.

This calibration object is placed on a controlled rotation

mount and rotated through 1 degree increments. For each

calibration point, we record the angle at which that calibra-

tion point is viewed (which may vary across the calibration

grid because of perspective effects), and the measured hue

for that angle. The result of this is a curve like those shown

in Figure 3 for each of the calibration points. This process

is repeated separately for the center and each of the two side

lenticular arrays that make up the calibration object.

The next section derives how images of this calibration

object can exploit the measured colors for additional ge-

ometric cues to the pose of the calibration object and the

focal length of the camera. When converting the observa-
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Figure 4. To take hue measurements for calibration and estimation,

we employ the following strategy: With the original image (left),

we identify anchor points, shown as blue points, at the corners of

the lenticular array. These points are used to learn a homography

(center) where we then take local measurements evenly across the

array, shown as green crosses. (Right) a simplified image of the

hue recorded at each calibration point.

tions of the object into geometric constraints, we again find

the corners of the array to compute the homography, and

sample the colors at these same grid locations.

4. Calibration Constraints

In this section we derive the calibration constraints that

arise from observing the lenticular calibration object. We

follow the presentation of [17] which solved for rotation

given known calibration. They derive the geometric con-

straint that says that a ray observing a particular color must

lie in a plane, and they represent that plane by it’s surface

normal nhue. The overall constraints for the imaging ge-

ometry start with a pixel ~p that observes the lenticular array.

In the coordinate system of the camera, a pixel ~p captures

light traveling along a ray r that depends on the calibration

matrix K as:

~r = K−1p (1)

In the coordinate system of the lenticular pattern, this ray

has direction RK−1p, and it must satisfy the constraint

(RK−1p) · ~nhue = 0.

This can be written as (RK−1p)⊤~nhue = 0,

which is equivalent to: p⊤K−1⊤R⊤~nhue = 0.

Collecting terms, we write: p⊤(K−1⊤R⊤)~nhue = 0,

and re-write as: p⊤(RK−1)⊤~nhue = 0.

Given a pixel location p and a ~nhue, this linear constraint

on K and R. Previous work [17] uses this constraint and

a nonlinear optimization to solve for R given a known K

matrix. In this paper we use a similar optimization to get

an initial estimate for R and K by parameterizing K by it’s

focal length f :

K(f) =





f 0 x0

0 f y0
0 0 1



 (2)

In K(f), pixels are assumed to be square and x0 and y0 are

assumed to be the center of the image.

Algorithm: For each frame, our algorithm follows these

steps to get an initial estimate of the calibration object pose

and camera focal length:

1. Find the four corners of the lenticular calibration ob-

ject.

2. Solve for the homography to map image coordinates

onto object coordinates.

3. Measure the hue at each grid point on the homography,

and use these hue measurements to solve for an initial

estimate of the rotation and the focal length.

4. Given that rotation and focal length, use the lenticular

marker based constraints introduced in [16] to get an

estimate of the object translation.

The initial estimate is refined by minimizing the follow-

ing cost function:

argmin
ρ,T,f

∑

i

(

h(R(ρ), T, f, i)−huei
)2

+λ‖g(R(ρ), T, f)−pi‖
2

2

(3)

where the first term penalizes the difference between huei
which is the measured hue at grid-point i (of all lenticu-

lar arrays), and h(R(ρ), T, f, i), the hue predicted for grid

point i when it is projected onto the image based on camera

intrinsic and extrinsic parameters R, T, f , using the HRF

function calibrated for grid-point i. Here, R is parameter-

ized via rodgrigues parameters ρ. The second term mea-

sures the spatial reprojection error between the location pi
and the predicted location for that grid point g(R, T, F, i)
based on R, T and f . A relative weighting function λ was

found emprically to balance hue and position error which

are measured in very different coordinate systems. In all

experiments we show, λ was set to 1/4000.

5. Experimental Results

In this section we quantify the ability of our algorithm

and this calibration object to estimate the object pose and

camera focal length. We also explore the sensitivity of parts

of the algorithm to various intermediate processing steps.

The first stage of the algorithm is tracking the corners

of the calibration object. This is a vital step in most AR

pose estimation algorithms, but it has additional importance

in our algorithm because we are modeling the fact that the

HRF that maps color to angle may vary across the calibra-

tion object. Thus, in Section 5.1 we evaluate the sensitivity
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Figure 5. To create location specific HRF functions that map mea-

sured hues to angular constraints, we sample hues of a lenticular

array at a local grid of points. The location of these points depends

on localizing the anchor points at the corners of the lenticular ar-

ray. We show the small prediction errors for 8 px permutations of

these anchor points per HRF (top) and per image (bottom).

of the algorithm to errors in corner tracking. Second, Sec-

tion 5.2 explores the accuracy of our approach for estimat-

ing the focal length of the camera and rotation and transla-

tion of the calibration object. We characterize the error us-

ing our physical prototype with different cameras and with

the calibration object oriented in different directions. We

conclude with Section 5.3 with results showing an object

added to a video taken with varying focal length, and com-

pare the realism of the added AR object when there isn’t the

ability to dynamically estimate the focal length.

5.1. Sensitivity to point tracking

Because the lenticular array may not have the same map-

ping from angle to color everywhere, we need to know

where on the calibration pattern we are measuring the color

in order to look up the correct location-specific HRF. There-

fore, this approach may be especially sensitive to estimat-

ing the position of the corners of the calibration object. We

evaluate this by rotating the lenticular array around the ver-

tical axis in one degree increments from −35 to 35 degrees.

For each image, we follow these steps:

1. determine 4 anchor points of the lenticular array,

2. project the lenticular array into the local reference

frame via a homography

3. sample the hue from the grid-points of the local refer-

ence frame image.

For each grid point we compute the angle at which the

point was viewed to the angle predicted by the measured

hue. To estimate the effect of noise in estimating the lentic-

ular array corners, we perturb the anchor points by 8 pixels

in random directions 20 times per image and assess the dif-

ference in angle predicted by the HRFs. We show the scale

of one such perturbation in the supplementary material (Fig-

ure S1).

Figure 5 shows results. The top shows a box and whisker

plot showing the distributions of errors in estimating the an-

gle for each of the 100 grid points where the HRF was cal-

culated. The box in each columns shows the 25th and 75th

percentiles of the distribution. This experiment shows that

modeling the HRF at each location of the lenticular array

leads to nearly all angular measurements being within 0.5

degrees of the true incident angle.

We also evaluate if the errors in estimating angle from

hue depend on the angle at which the calibration object

is observed. Figure 5 computes the distribution of errors

across the entire array for each image angle. Again the error

is consistently small, even though these statistics are com-

puted using anchor points that are substantially perturbed.

We believe that an error of 0.25◦ is near the limit of a

simple geometric constraint based on hue measured at one

pixel. The lenticular array shows colors across the hue spec-

trum over a range of about 40◦, so 0.25◦ is less than 1% of

the range of angles that are viewed. Reliably measuring the

hue of pixels in 8-bit RGB images to better than 1% preci-

sion is also challenging. In Section B of the supplementary

material, we explore the color precision of an 8-bit RGB

camera and subsequently the angular precision when view-

ing a lenticular array.

5.2. Pose and Focal Length Estimation

In a laboratory setting, we assess the performance of ro-

tation, translation, and focal length estimation across dif-

ferent viewpoints. On a motorized stage we rotate the

calibration object in increments of 5 degrees from −25
to 25 degrees around the vertical axis and take images at

each increment. We calibrate the ground truth camera fo-

cal length with the MATLAB 2014a implementation of

Zhang’s method [25].

Figure 6 shows the rotation estimation performance per

image in the left column as well as in summary in the right

column. We show rotation error for each local axis as the

angular difference of our estimate to the true rotation. The

estimates from our initialization algorithm is shown in the

top row and show errors at the scale of a few degrees. The
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Figure 6. We compare the rotation estimations our method gets

initially and after refinement. In the left column, we see the rota-

tion error per local axes for each image as the calibration object

is rotated, while in the right column we see the summary statis-

tics. Although we start with good rotation estimates, the refine-

ment process still gives improvement.

Figure 7. We report the focal length estimations for different ori-

entations of the calibration object per image (on the left) and in

summary (on the right). The initial estimations (top) start with

considerable error in focal length estimation. After reprojection

refinement, however, the results are improved significantly achiev-

ing a median of less than 5% error.

bottom of this plot shows results after minimizing the repro-

jection error as defined in Equation 3, when we get rotation

estimates with a median error of 1 degree.

Figure 7 quantifies error in the focal length estimation,

and Figure 8 quantifies error in the translation estimation.

Both the initialization and refinement results shown strong

correlations between the focal length error and the transla-

tion error. The refinement step reduces the error of both to a

median error of about 4%. The correlation in error between

the focal length and the translation arises from the ambigu-

ity that an object can appear bigger either by moving closer

to the camera or by the camera changing its focal length. In

the AR demo shown later, we see that a 4% error does not

appear to lead to a perceptually noticeable error in rendering

Figure 8. We present the per image (left column) and summary

performance statistics (right column) for initial translation esti-

mation (top) and refined translation estimation (bottom). In these

plots, we show the distance error for each axis. The overwhelming

majority of error is in the Z-axis, which is the depth of the cam-

era. The z-axis translation errors reflect errors in estimating focal

length.

the correct perspective of the object.

Figure 9 shows quantitative results for focal length esti-

mation from single images of the calibration object taken at

different orientations and different focal lengths. For each

image, we show the results that visualize rotation by render-

ing the local coordinate system on top of the original image.

The image title shows the ground truth focal length, our es-

timated focal length, and the percent error. We include im-

ages from cell phone cameras, as well as a DSLR camera.

The first two images are from an iPhone 5 and a Galaxy S6

with focal lengths of 5 and 5.8 mm. The images following

those are from a Nikon D90 at focal lengths of 18, 49, 90,

115, and 185 mm.

Focal length estimates are relatively accurate for shorter

focal lengths. Very long focal lengths correspond to imag-

ing geometries with a smaller field of view. For small fields

of view, small errors in estimating angular constraints may

lead to larger errors in estimating focal length. To ground

this, we show the impact of mis-estimating the field of view

by 0.25◦ degrees on the estimate of the focal length.

5.3. Augmented Reality Application

In a desktop scene, we record video of the calibration

object while moving the camera in a freehand trajectory.

When the camera is moved farther away from the scene and

the calibration object, we digitally zoom to keep the calibra-

tion object as large as possible in the image. For each frame

we estimate the camera focal length, rotation, and transla-
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Figure 9. Eight examples of single frame estimation of the focal length and object rotation estimates. The first two images are taken from

an iPhone and Galaxy S6, while the remaining images are taken by a Nikon DSLR camera at different zoom settings.

Figure 10. The focal length error that arises from mis-estimating

the field of view by 0.25
◦ changes as the field of view gets smaller

(and, correspondingly, the focal length gets longer).

tion using the calibration object as detailed in Section 4. In

Figure 11, we compare our estimated focal length with the

ground truth focal length (which we know because this is a

digital zoom) per frame. We can see that the focal length

estimations follow the zooming trajectory well. We empha-

size that our algorithm does not have access to this digital

zoom information.

As a comparison, we consider an AR algorithm that

doesn’t have access to the digital zoom and does not have

the ability to estimate it from image data. When such an

algorithm uses a pre-calibrated focal length which becomes

wrong in part of the video sequence, virtual objects are ren-

dered with incorrect perspective. Figure 12 shows 3 frames

from the video in each column. We render a virtual wire-

frame box to highlight perspective effects. The top row

shows the original images, the center row shows the box

rendering given the estimates made with a dynamic focal

length, and the bottom row shows the box rendering given

the estimates made with a static focal length. The digital

Figure 11. We show the focal length estimates used to render a box

into a video in our AR demonstration. We show how our estimates

follow the focal length changes from zooming.

box has a base the size of the calibration object and is 45mm

deep.

Our scene contains graph paper that is aligned to show

a cartesian coordinate to help the viewer assess perspec-

tive effects. The wire-frame box should appear aligned just

short (10mm or 2 boxes) of the end of the paper grid. In

comparing our method of estimating a dynamic focal length

against estimating a static focal length, we see that the ren-

dered box looks unnaturally too large and with too much

perspective in the case of a static focal length. This holds

true in general for all frames, and we include the entire

video in the supplementary materials.

In the supplementary material, we show an additional

AR video. In this video, we render a 3D model into a video

with free-hand camera zoom.
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Figure 12. We show focal length estimation results in 3 frames of a video where we render a box over the calibration object. The original

image (top row) is digitally zoomed to maximize the size of the calibration object in the image. By estimating the focal length dynamically

in each image (middle row) versus estimating a single static focal length (bottom row), we achieve a much more natural rendering that is

the correct relative size and has the right amount of perspective.

6. Discussion

We present an end to end system and physical calibra-

tion object for simultaneous camera focal length estimation

and pose-estimation. This calibration object uses lenticu-

lar arrays that offer geometric constraints based on the ob-

served color, allowing for the estimation of camera focal

length from a single image. In contrast to [3] which suf-

fers from formal ambiguity and thus high error for fronto-

parallel views when using coplanar points [18], our cal-

ibration object based on lenticular arrays is robust for all

viewing angles. The ability to estimate focal length from

a single image is vital for augmented reality applications

from cameras that are zooming as they record a scene.

Our geometric constraints are based on measuring image

colors. Color is notoriously difficult to measure accurately.

Apparent colors may change based on lighting or camera

white balance settings. In this paper we did not address

this issue, but recent work suggests that these effects can be

mitigated by explicitly including a color correction term in

the geometric optimization [16].
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