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Abstract

We address the problem of segmenting multiple object

instances in complex videos. Our method does not require

manual pixel-level annotation for training, and relies in-

stead on readily-available object detectors or visual object

tracking only. Given object bounding boxes at input, we

cast video segmentation as a weakly-supervised learning

problem. Our proposed objective combines (a) a discrim-

inative clustering term for background segmentation, (b) a

spectral clustering one for grouping pixels of same object

instances, and (c) linear constraints enabling instance-level

segmentation. We propose a convex relaxation of this prob-

lem and solve it efficiently using the Frank-Wolfe algorithm.

We report results and compare our method to several base-

lines on a new video dataset for multi-instance person seg-

mentation.

1. Introduction

Semantic object segmentation in images and videos is a

challenging computer vision task [24, 29, 31, 39, 45]. Com-

mon difficulties arise from frequent occlusions [43] and

background clutter, as well as variations in object shape

and appearance. Video object segmentation also requires

accurate tracking of object boundaries over time in the

presence of possibly fast and non-rigid motions. An ad-

ditional challenge addressed by several recent works is in

segmentation of individual instances of the same object

class [18, 19, 45, 44, 51]. Indeed, while it may be easy

to segment a herd of cows from a grass field, segmenting

each cow separately is a much harder task.

Instance-level object segmentation in video is an inter-

esting and understudied problem at the intersection of se-

mantic and motion-based video segmentation. Solutions to

this problem can benefit from class-specific object models

and motion cues. Segmentation of static and/or partially

occluded objects of the same class, however, pose addi-

tional challenges, difficult to solve with existing methods of
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Figure 1: Results of our method applied to multi-person seg-

mentation in a sample video from our database. Given an input

video together with the tracks of object bounding boxes (left),

our method finds pixel-wise segmentation for each object instance

across video frames (right).

motion-based and semantic segmentation. Meanwhile, suc-

cessful solutions to instance-level video segmentation can

serve in several tasks such as video editing and dynamic

scene understanding.

Given recent advances in object detection [36] and visual

object tracking [11], coarse object localization in the form

of object bounding boxes can now be used as input for solv-

ing other problems. In particular, we address in this paper

the problem of instance-level video segmentation given ob-

ject tracks. We assume that prior (weak) knowledge about

objects is available in the form of tracked object bounding

boxes, obtained by a separate process. For instance, pre-

trained object detectors or visual object tracking algorithms

as the ones cited above can be used.

Segmentation methods typically optimize carefully de-

signed objective functions combining data terms and prior

knowledge. Object prior knowledge in such methods is of-

ten encoded by higher-order potentials [26, 27, 38], which

enable richer modeling but lead to hard optimization prob-

lems. Here we take an alternative approach and build on the

discriminative clustering framework [3, 17]. Following pre-

vious work on co-segmentation [24] and weakly-supervised

classification [6], we formulate our problem as a quadratic

program under linear constraints. We use object tracks as

constraints to guide segmentation, but other forms of prior

knowledge could easily be integrated in our method. Our fi-

nal segmentation is obtained by solving a convex relaxation

of our objective with the Frank-Wolfe algorithm [15].

We compare our method to the state of the art and show

competitive results on a new dataset for instance-level video

segmentation. In contrast to most previous methods, our ap-

proach segments multiple instances of the same object class
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and supports reasoning about occlusions. Figure 1 illus-

trates results of our method on a video from our dataset.

The contributions of this paper are three-fold. (i) We pro-

pose a discriminative clustering approach for instance-level

video segmentation using external guidance in the form of

object bounding boxes. (ii) We introduce a new dataset for

multiple person segmentation with challenging sequences,

including self-occlusions, crowded scenes and varied poses.

(iii) We demonstrate the high accuracy and flexibility of our

model on the task of multi-instance person segmentation in

video.

The rest of the paper is organized as follows. We discuss

related work in Section 2 and then present our problem for-

mulation in Section 3. We describe the convex relaxation

of our model and the optimization of the cost function with

the Frank-Wolfe algorithm in Section 4. The new dataset

is presented in Section 5. Finally, Section 6 presents our

experimental setup and results.

2. Related Work

Segmentation of multiple objects in video has been ad-

dressed for example in [10, 14, 23]. Typical approaches in-

clude (a) pure color- or motion-based segmentation [28, 34,

43], for instance using long term tracks [30, 32], (b) track-

ing segmentation proposals through the entire video [10, 31]

or (c) learning instance-specific object appearance mod-

els [14]. Deep neural networks can be used on each frame to

perform high quality semantic segmentation [52] or multi-

instance segmentation for a specific class and setup, for in-

stance to segment cars in images recorded by a car-mounted

camera [51].

Prior information, such as object bounding boxes or pose

estimation can be used to guide the segmentation. Per-

son and body-part detectors as well as skin color mod-

els have been used to seed the GrabCut algorithm [20],

as unary potentials in CRFs [29, 37] or as higher order

terms [27, 45]. Parameters of semantic segmentation mod-

els can be estimated using bounding boxes instead of exact

ground-truth segmentations [33]. Pose estimation has also

been used as a unary term for pixel-wise segmentation in

3D movies [38], although erroneous pose estimation will

cause false segmentations. The use of object detectors as

weak cues for semantic video segmentation been explored

in [50]. Multiple forms of weak annotations, such as image-

level tags, bounding boxes and incomplete pixel-level la-

bels, have been combined for semantic segmentation [47].

A recently proposed task, simultaneous detection and seg-

mentation [18], closes the gap between object detection and

segmentation. In our work, bounding boxes are used to con-

strain the set of possible segmentations instead of being in-

volved in the energy function.

Our formulation of the segmentation problem is related

to discriminative clustering [3, 17]. The idea is to jointly

Video frames and superpixels

t t+ 1
Figure 2: Spatio-temporal graph of superpixels. For the yellow su-

perpixel, spatial edges are shown in dark blue and temporal edges

in dark green.

partition the data and learn a discriminative model for

each cluster seen as a class. Discriminative clustering has

recently been applied to several problems including im-

age co-segmentation [24, 25], object co-localization in im-

ages [42], finding actor identities in movies [6, 35] and

temporal action localization [7]. Each of these techniques

is built upon a task-dependent set of constraints, modeling

simple assumptions and encoding prior knowledge. We use

a similar framework for video segmentation and define an

original set of constraints that are well suited to our prob-

lem.

We build upon these works and combine a grouping

model, a foreground-background model and weak priors.

Our proposed method is experimentally compared to sev-

eral previous approaches [18, 32, 34, 38, 52] in Section 6.

3. Problem formulation

The segmentation problem we aim to solve is to as-

sign to every pixel a label in {0, . . . ,K}. To design a

suitable cost function, we follow previous work on co-

segmentation [24, 25]. This implies using two complemen-

tary cost functions: the first one is a spectral clustering

term [39], which enforces spatial and temporal consisten-

cies according to some descriptors φ. The second term is a

discriminative clustering cost based on the square loss [3]

which learns a foreground vs. background classifier. In or-

der to include prior information, we propose several con-

straints which we detail in Section 3.4. The proposed con-

straints are linear, leading to a tractable (relaxed) optimiza-

tion problem (see Section 4).

The intuition behind our approach is that constraints pro-

vide weak localization cues for each object instance. Dis-

criminative clustering separates foreground objects from the

background based on appearance features. Spectral clus-

tering helps producing clean spatial boundaries, separating

different instances of the same class and smoothing the seg-

mentation in time for each object instance.
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3.1. Notations and model

We are given a video clip composed of T frames indexed

by t. Our problem is to assign a label k in {0, 1, . . . ,K} to

each pixel in each frame, where label k = 0 corresponds

to the background and all other integers in {1, . . . ,K} cor-

respond to the K object instances in the video. Since the

number of pixels in a video is usually high, we propose

to work with superpixels instead. Assuming that there are

N superpixels in the whole video, we index them by n in

{1, . . . , N}.

Let us define a label matrix y in {0, 1}N×(K+1). The

matrix y is such that ynk is equal to one if and only if the

superpixel n is of label k. This matrix sums up to one along

rows, since every superpixel is assigned to a single label. In

Section 3.4, we propose several constraints that will restrain

the set of admissible matrices y. We denote by Y this set.

The constraints can be indexed by c in {1, . . . , C}. Since

some of them may not be satisfied, for every constraint c,

we define a slack variable ξc which will allow us to violate

it. Let ξ be the concatenation of all the ξc into a single

vector. We denote by C(y, ξ) the set of constraints over a

specific y with slack ξ.

The cost we minimize is a sum of three terms: a grouping

term EG, a discriminative term ED, and a term penalizing

the slack ξ:

min
y∈Y, ξ∈R

C

+

EG(y) + α ED(y) + β‖ξ‖2, (1)

under linear constraints C(y, ξ), where α and β allow us to

weigh the different terms. We provide a detailed description

of these terms in the following sections.

3.2. Grouping term

The grouping term EG is a classic spectral clustering

term meant to ensure spatial and temporal consistency of

the segmentation. To this end, we define a superpixel graph

G = (S, E), whose nodes correspond to superpixels and

edges encode spatio-temporal neighborhood information. A

sample graph G is illustrated in Fig. 2. For two nodes n and

n′ from the same frame, there is an edge (n, n′) in E if the

two superpixels are spatial neighbours. For node n in frame

t and node n′ in frame t+ 1, we add an edge (n, n′) to E if

n and n′ are temporal neighbours. The exact way we define

neighbourhoods is discussed in Section 6.1.

For each superpixel n, we define a set of descriptors φi
n

indexed by i in {1, . . . , I}. We denote by di the dimension

of φi
n and by d the sum of all the di. Let us denote by φn

the concatenation of all the φi
n. We then define the similar-

ity matrix W in R
N×N which encodes the similarities be-

tween superpixels: Wnn′ =
∑I

i=1 µi exp(−λi‖φ
i
n−φi

n′‖2)
if (n, n′) ∈ E and 0 otherwise. µi and λi are weighting pa-

rameters for the i-th descriptor.

Following [39], we define the associated unnormalized

Laplacian matrix L = D − W . D is the diagonal matrix

composed of the row sums of W : D = Diag(W1N ). Using

these definitions, the grouping term can be written as the

following quadratic form:

EG(y) =
1

N
Tr(yTLy). (2)

3.3. Discriminative term

ED is a standard discriminative clustering term, which

aims to learn an affine classifier for separating foreground

vs. background. Let M be a binary matrix in {0, 1}(K+1)×2

which maps labels to foreground and background. Let us

denote by w ∈ R
d×2 and b in R

2 the parametrization of this

model. We also define the matrix Φ in R
N×d whose rows

are the φn. The discriminative cost is defined as follows:

ED(y) = min
w∈R

d×2

b∈R
2

1

N
‖yM−Φw−1NbT ‖2F +κ||w||2F . (3)

The minimization w.r.t. w in (3) is a ridge regression prob-

lem, whose solution can be found in closed form, and ED

is easily rewritten [24] as a quadratic form in y:

ED(y) =
1

N
Tr(MT yTAyM), (4)

where A = 1
N
ΠN (IN − Φ(ΦTΠNΦ + NκId)

−1ΦT )ΠN

and ΠN is the centering projection matrix IN − 1
N
1N1TN .

Note that the foreground vs. background model we learn

is fit for segmenting the background from multiple instances

of the same object category. If needed, we could easily learn

one model per object category by adapting the M matrix.

3.4. Constraints

As mentioned earlier, our model incorporates constraints

on the y matrix. They allow us to encode simple priors

as well as more complicated, instance-specific information.

We can constrain the number of superpixels assigned to

a given label in a spatio-temporal region using linear in-

equalities. We can also use strict equality constraints to fix

the labels of some superpixels. We first provide a general

form and then describe the different variants used in our

experiments. Some of them are also illustrated in Fig. (3)

for multi-instance person segmentation using head and full-

body tracks.

Object tracks. We assume that we are given a track of

bounding boxes for each object in the video. We denote by

B this set and index the elements B of B by k in {1, . . . ,K}
and t in {1, . . . , T}, such that Bt

k denotes the bounding box

of the k-th object in frame t.

Inequality constraints. We want to impose linear in-

equality constraints on a set of superpixels in the video. In

the following sections we will describe in details what these

sets can correspond to. For now, let us denote by R a sub-

set of the indices of superpixels, R ⊂ {1, . . . , N}. We can

represent R by the indicator vector 1R, such that the n-th

entry is equal to one if the superpixel n is in R. Note that
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(a) Head constraint. (b) Body constraint. (c) Background constraint. (d) Non-person. (e) Must-be background.

Figure 3: Constraints (see Section 3.4) used in our model for multi-person segmentation. In this setup we are provided head detections,

from which we derive body boxes. We require 75% of pixels inside head detections (a) and 50% of pixels inside body boxes (b) to belong

to the instance. Part (c) illustrates the background constraint (96% of this surface should be background); non-person constraints which

enforce superpixels far from the person to be assigned to the corresponding label (d) ; and the superpixels which can only be background (e).

for videos, this set R can correspond to a spatio-temporal

region. We use the notation ek to denote the k-th vector of

the canonical basis of RK+1.

For some region R and a label k, we propose to constrain

the matrix y using constraints of the following form:

0 ≥ σ
(

1
T
R y ek − ρ

)

− ξc, (5)

where σ ∈ {−1, 1} controls whether this is an at least or an

at most constraint, ρ a parameter and ξc is the slack variable

allowing this constraint to be violated. The parameters R,

σ, k and ρ depend on the kind of prior we want to enforce.

Note that while our notations refer to superpixels and

counts of superpixels, in practice we weigh the contribu-

tion of each superpixel to the constraint by its relative area

in region R. Likewise, we reason in terms of pixels when

computing the ρ parameters.

Equality constraints. When some supervision is avail-

able (semi-supervised setting), or when a strong cue allows

us to freeze variables, we want to use equality constraints.

Let us suppose that we have a set of superpixels R and a set

of labels Q. We set variables for region R and labels Q to

predetermined values stored in ỹ:

∀r ∈ R, ∀q ∈ Q, yrq = ỹrq. (6)

As for the inequality constraints, the definitions of R, Q and

ỹ depend on the prior.

Track constraints. Given an object bounding box Bt
k,

we require that at least ρB superpixels inside Bt
k get as-

signed the label k. This can be enforced by setting R, and

σ appropriately in Eq. (5). We set R to the set of superpix-

els that lie inside Bt
k. Since this is an at least constraint,

we set σ = −1. The amount of superpixels ρB is set to a

ratio of the total number of superpixels in Bt
k. In Figure 3

(a) and (b), head tracks and object tracks are used for such

constraints.

In complex videos picturing multiple objects, the bound-

ing boxes, and thus the corresponding constraint regions,

can heavily overlap. Without slack variables, our problem

may be infeasible in such situations, and even with slack

variables the constraints may still be misleading. To cope

with occlusions, we propose a simple occlusion reasoning.

In a given frame, for each pair of overlapping bounding

boxes, pixels inside the region of overlap are marked as oc-

cluded. In turn, we reduce the strength of each such con-

straint by multiplying ρB by (1− o) where o is the ratio of

occluded pixels in the bounding box.

Area constraints. To reduce “leaking” effects in the seg-

mentation, we constrain the area of each object segment in

each frame. For object k in frame t, we impose that at most

ρarea of the superpixels in frame t get assigned the label k.

This can be expressed by setting R to be the set of superpix-

els in frame t. Since this is an at most constraint, we have

σ = +1. We set ρarea to the amount of superpixels in track

Bt
k times a constant, to take object size into account.

We can also enforce a minimal amount of superpixels

per label and per frame. We do so by changing σ to −1 and

setting an appropriate ρ. This constraint can be used if we

know the object is in the frame but lack the corresponding

bounding box.

Background constraints. We request that most super-

pixels which are outside object bounding boxes belong to

the background label. The rationale is that only a few of

the superpixels outside object detections may belong to ob-

jects, as shown in Figure 3 (c). Typically, in the case of

multiple people segmentation, these superpixels belong to

lower arms. We express this constraint by setting R to the

set of superpixels that do not belong to any track in frame

t. This is an at least constraint so we set σ = −1. We set

ρ = ρbg to a ratio of the cardinality of R.

Non-object constraints. In our work, we make the as-

sumption that if a pixel is far enough from an object detec-

tion, it is reasonable to assume that it does not belong to

the corresponding object. We assume that when there are

no detections at all, we do not apply these constraints. For

a bounding box Bt
k, we build R as the set of superpixels in

frame t that are further away from Bt
k than a given distance,

as shown in Figure 3 (d). In practice, we set this minimum

distance to the width of the object bounding box. R can

be computed by performing a distance transform and then

thresholding. We then enforce an equality constraint with

Q containing only the label k and ỹ filled with zeros.

4. Optimization

4.1. Continuous relaxation

The quadratic problem defined in Eq. (1) is known to

be NP hard when y takes binary values. Indeed, when the

quadratic cost matrix has positive off diagonal entries, this
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is as hard as solving a max-cut problem. Classic relaxations

of such problems [24] imply working with equivalence ma-

trices Y = yyT . Doing so in our case would be intractable

due to the problem size and would prevent us from impos-

ing constraints relating superpixels to labels. Instead, we

propose a continuous relaxation of our problem by solving

it over the convex hull Y of the initial set Y . Then, we

aim at solving the minimization of a positive semi-definite

quadratic form over a convex compact set defined by a large

number of linear constraints. Due to the size of y (of the or-

der of 106 entries) and the number of constraints it is not

realistic to use a standard off-the-shelf quadratic program-

ming solver based on interior point methods [8]. Neverthe-

less it is possible to solve linear programs of such a size.

This is why, following other approaches to discriminative

clustering [7], we propose to use the Frank-Wolfe optimiza-

tion algorithm [15, 22] which only relies on the minimiza-

tion of linear forms over Y .

4.2. Frank­Wolfe algorithm

The Frank-Wolfe algorithm is an iterative method to

optimize convex objectives over compact convex sets and

suites well for our problem. Let us now briefly describe the

iterations. We define our optimization variable z = (y, ξ)
in Z = Y × R

C
+. For the sake of simplicity, we rewrite as

E(z) the sum of the three terms from Eq. (1). Let us de-

note by zk the current point at iteration k. At iteration k, we

compute the gradient ∇zE(zk) and minimize the following

linear form: Tr(∇zE(zk)(z−zk)). This can be easily done

using a generic LP solver, and yields a corner of the poly-

tope that we will denote z FW. We then update the current

point as follows: zk+1 = zk+γ(z FW−zk). The optimal pa-

rameter γ∗ leading to the best improvement in that direction

can be found in closed form by doing an exact line search.

Rounding. Using the Frank-Wolfe algorithm we obtain

a solution z∗ = (y∗, ξ∗). The solution continuous solution

we obtain needs to be rounded. We first freeze the slack

variables of the constraints to the values ξ∗. We then round

y∗ into a binary matrix by finding the closest point to y∗ in

Y in terms of Frobenius norm ‖y−y∗‖2F which is equivalent

to
min
y∈Y

−2Tr(y∗T y). (7)

We solve this linear program using the LP solver.

4.3. Non­convex refinement

Experimentally, we observe that the convex relaxation

of our problem may lead to sub-optimal rounded solutions.

Indeed, our model is attracted to a degenerate solution with

all constant entries of value 1
K+1 , which has a low objec-

tive value for the discriminative term. This is a common

drawback of discriminative clustering techniques, as noted

by [24, 17]. In order to push our solution away from these

near-constant solution, and following the approach of grad-

uated non-convexity [5, 49], we propose to add a concave

quadratic term to our objective: Tr(yT (1− y)), and weight

it using a parameter δ. This term encourages the entries y

to be close to either 0 or 1. The corresponding optimization

problem is the following:

min
y∈Y, ξ∈R+

C

EG(y) + αED(y) + β‖ξ‖2 + δ Tr(yT (1− y)).

The parameter δ can be a function of the iteration count k.

In practice however, choosing a scalar value is already com-

plicated and we therefore use a piecewise constant function.

We first optimize the convex relaxation of our problem with

δ = 0. Then we perform Frank-Wolfe steps on the non-

convex objective with a non-zero δ which has been selected

by parameter search. Although we are only guaranteed to

converge to a local optimum of this non-convex function [4,

Section 2.2.2], we empirically observe a drastic improve-

ment of performance as shown in Table 1.

5. Dataset

To evaluate the performance of our method on the task

of instance-level video segmentation, we have collected a

dataset composed of 27 video clips, corresponding to a total

of 2476 frames. The video clips are taken from the 3D fea-

ture movie “StreetDance 3D” [Giwa and Pasquini, 2010].

The proposed dataset is an improved version of the Inria

3D Movie Dataset [38] adding a substantial amount of chal-

lenges, such as longer shots, self-occlusions, inter-person

occlusions, and hard poses such as dancing or jumping.

Providing ground-truth annotations for evaluation in an

entire video is a highly time-consuming task. As a con-

sequence, we have only annotated a sparse subset of 235

frames out of 2476, for all 632 person instances present in

these frames. We split the dataset into a set of 7 clips for

adjusting hyperparameters and a set of 20 clips for evalua-

tion. Note that there is no training step in our method, but

only a validation step to find appropriate hyperparameters.

Our dataset and code, including the procedure for adjust-

ing parameters using the Bayesian framework of [41], are

available on the project website [1].

6. Experiments

In this section, we describe experimental details and

evaluation procedures for the proposed method. We evalu-

ate multi-instance person segmentation in 3D movies using

head tracks and full-body bounding boxes.

6.1. Implementation details

Superpixels. We extract video superpixels using [9].

The superpixels are evenly distributed, fairly compact, and

tracked in time. We use temporal links obtained from super-

pixel tracks as edges in the superpixel graph (Section 3.2).

We also add edges between superpixels from consecutive

frames if sufficient pixel-wise correspondence is provided
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Figure 4: Qualitative results of our method. Note that most of the visually unpleasant artifacts are due to the use of superpixels.

by optical flow.

Features. We first compute dense optical flow between

consecutive frames using DeepFlow [46]. Then, we use two

different sets of features φn for the grouping and discrimi-

native terms. These features are computed for each super-

pixel based on the underlying image pixels. For the spatial

edges in the similarity matrix W of the grouping term, we

use: (i) a histogram of optical flow with 8 bins for orien-

tations and one bin for no motion, and (ii) the average CIE

L*a*b* color, over the superpixel. For the temporal edges

of W , we use the average CIE L*a*b* color. As discrimina-

tive features in Φ, we use: (i) the same histogram of optical

flow, (ii) a color histogram computed over RGB colors, with

8 bins per color channel, 512 bins in total, and (iii) the av-

erage SIFT descriptor over the superpixel, obtained by first

computing dense SIFTs over the whole image, and then av-

eraging the SIFTs which cover the superpixel.

We also optionally exploit recent advances in semantic

segmentation by including features produced by a deep neu-

ral network trained for semantic segmentation for the PAS-

CAL dataset [52]. We take the output of the method for

each pixel and pool it (either using max-pooling or mean-

pooling) over the superpixel, and use it as an additional dis-

criminative feature in Φ. As this output represents a strong

semantic cue, it should help our discriminative term to sep-

arate the foreground from the background.

For 3D movies, we also include median disparity over

the superpixel in both spatial grouping and discriminative

features. The method of Ayvaci et al. [2] is used to estimate

the disparity map from stereo pairs.

Person detection and tracking. We evaluate our

method on ground-truth (manually annotated) head tracks

as well as on tracks automatically produced by a tracking-

by-detection method: we use a CNN-based detector [16]

trained on heads in movies. The tracker associates these

detections based on KLT tracks [40], interpolates miss-

ing detections and smooths the tracks in time [12]. Using

ground-truth or automatic tracks, we extrapolate full-body

bounding boxes from the head bounding boxes using a lin-

ear transformation. Note that our full-body bounding boxes

Table 1: Comprehensive study of the influence of each component

of our method on our new dataset. See Section 6.3 for comments.

Method F1 Precision Recall Overlap

Ours + semantic cue 80.1% 81.9% 79.6% 68.6%

Ours 78.3% 80.8% 77.3% 66.0%

No temporal smoothness 76.4% 79.2% 75.4% 63.7%

Single frames 76.4% 77.9% 76.4% 63.7%

Grouping term only 77.6% 79.4% 77.2% 65.0%

Discriminative term only 66.9% 70.7% 64.7% 52.1%

No constraint 12.8% 10.4% 40.0% 09.0%

Convex only 75.6% 78.0% 74.1% 62.4%

No disparity 74.0% 77.5% 72.6% 59.9%

start below the head, as shown in Fig. 1. This way, the su-

perpixels on the sides of the head are not involved in the

corresponding constraints, since they do not belong to the

person in most cases.

Occlusion reasoning. We adapt the occlusion reasoning

of Section 3.4 to stereo videos by computing a depth esti-

mate from the median disparity inside the head box. Given

two overlapping bounding boxes in the frame, we mark the

pixels of the object which is behind as occluded. This pro-

cedure allows a more accurate handling of occlusions than

the original reasoning, since constraint strength will only be

reduced for objects which may actually be occluded.

We evaluate the proposed method on stereo videos where

head (bounding boxes) tracks for multiple people are given

as input to our algorithm. We use these tracks and extrapo-

lated full-body bounding boxes, to derive two types of track

constraints in our framework. We also integrate the corre-

sponding background and non-object constraints from Sec-

tion 3.4. We combine disparity, appearance and motion cues

and evaluate performance on a new dataset extracted from

3D movies with challenging scenes and poses.

6.2. Baselines

We compare our method to multiple baselines, spanning

the whole range of methods from pure semantic segmen-

tation to pure motion segmentation. Some of them are

completely unsupervised: Multi-modal motion segm. [32],
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FG/BG motion segm. [34]. Some other require pixel-wise

supervision to train appearance models: Pose & segm. [38],

SDS [18], CRF as RNN [52]. We used the publicly available

code and models for all methods.

CRF as RNN [52]1 is the state-of-the-art semantic seg-

mentation method. It uses an end-to-end deep network com-

bining a standard Convolutional Neural Network with a Re-

current Neural Network to perform dense CRF inference.

We adapt this method to the task of instance-level segmen-

tation for a given semantic class by assigning each pixel

labelled with the said semantic class to the instance which

has the closest bounding box. In practice, for humans we

assign the pixels to the person which spine (derived from

the head bounding box) is the closest.

SDS [18]2 is a simultaneous detection and segmenta-

tion method. It classifies region proposals by scoring

CNN features extracted from the region and the correspond-

ing bounding box. [18] is an instance-level segmentation

method, and we evaluate it directly. Since [18] uses its own

set of detections, we use the same set of detection within

our method when comparing results with SDS.

Pose & segm. [38]3 is based on multi-class graph cuts,

has been designed for a similar dataset, and uses the same

set of features. Given person tracks, it combines pose esti-

mates and disparity cues in an unary term after reasoning on

occlusions. A binary term encodes spatio-temporal smooth-

ness using color and motion features.

Multi-modal motion segm. [32]4 separates objects which

exhibit different motions. It is a classic method for video

segmentation. We adapt it to our problem by assigning

the biggest segment (in terms of surface) to be the back-

ground segment, and inside each object bounding box we

label the largest non-background segment as belonging to

the instance.

FG/BG motion segm [34]5 is a pure figure-ground mo-

tion segmentation method. We adapt it to the task of

instance-level segmentation using the same method as for

the first baseline, by splitting the foreground segment in

multiple segments.

6.3. Results

We evaluate segmentation by computing per-person pre-

cision, recall, overlap (defined as the intersection over union

between the ground-truth and predicted labels [13, 21]) and

F1 score (the harmonic mean between precision and recall).

We report the average of these measures over people and

frames. We show qualitative results of our method in Fig-

ure 4 and video results on the project website [1].

Comprehensive analysis. We first analyze each com-

ponent of our method in Table 1. It is interesting to note

1
http://www.robots.ox.ac.uk/˜szheng/CRFasRNN.html

2
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/shape/sds/

3
http://www.di.ens.fr/willow/research/stereoseg/

4
http://lmb.informatik.uni-freiburg.de/resources/software.php

5
http://groups.inf.ed.ac.uk/calvin/FastVideoSegmentation/

Table 2: Quantitative performance comparison of our method with

5 baselines. Please note that the results from Ground truth tracks,

Automatic tracks and SDS detections sections are not comparable

as they use different sets of detections. See Section 6.3 for com-

ments.

Method F1 Precision Recall Overlap

Ground truth tracks:

Ours 78.3% 80.8% 77.3% 66.0%

Ours (+ semantic cue) 80.1% 81.9% 79.6% 68.6%

CRF as RNN [52] 78.5% 83.2% 77.7% 66.5%

Pose & segm. [38] 68.5% 68.3% 76.1% 55.0%

Multi-modal motion segm. [32] 27.4% 41.0% 30.4% 19.4%

FB/BG motion segm. [34] 52.2% 65.1% 49.8% 38.8%

Automatic tracks:

Ours 63.6% 61.6% 68.6% 52.0%

CRF as RNN [52] 56.2% 58.2% 54.9% 46.5%

Pose & segm. [38] 52.7% 57.2% 59.5% 40.8%

Multi-modal motion segm. [32] 27.4% 40.6% 30.4% 19.4%

FB/BG motion segm. [34] 48.4% 57.6% 50.7% 34.9%

SDS detections:

Ours 72.5% 68.4% 80.8% 59.3%

SDS [18] 65.1% 73.5% 62.8% 52.6%

that similar results are achieved when removing temporal

edges from the graph (No temporal smoothness), or when

processing frames one by one (Single frames). Experiments

on single frames have a higher recall, while segmenting

all frames at once without temporal smoothness produces

higher precision, showing the influence of the discrimina-

tive term when it has access to the whole video context. Re-

sults obtained using the Grouping term only are quite good,

whereas using the Discriminative term only has a lower per-

formance since it only models foreground vs. background

segmentation without any spatial or temporal consistency.

Still, combining the two terms (Ours) leads to the best per-

formance as the discriminative term helps to improve preci-

sion. Performance is pushed even further when the discrim-

inative term contains strong semantic cues (Ours + seman-

tic cue). The non-convex refinement from Section 4.3 used

in Full method produces significantly better performance

than using Convex only optimization. As discussed in [3, 6],

using No constraint leads to trivial solutions and very poor

results. Last, even without disparity features (No disparity),

which are strong cues, our method produces decent results.

Baselines comparison. Quantitative and qualitative

comparisons between our method and baselines are shown

in Table 2 and Figure 5.

The motion segmentation baselines Multi-modal motion

segm. and FB/BG motion segm. perform poorly on this

challenging dataset. Both methods completely miss non-

moving and almost non-moving person by nature. Multi-

modal motion segm. also tends to separate the different

limbs of a single person into multiple segments.

The SDS method performs fairly well. Its detection per-

formance is better than the automatic detector we used (on

some key sequences SDS detects twice more people than

our detector), but it still misses a significant part of person
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(a) Ours (b) CRF as RNN

(c) FB/BG motion segm. (d) Pose & segm.

(e) SDS (f) Multi-modal motion segm.

Figure 5: Qualitative comparison between our method and the five

baselines. Note that Pose & segm. may drop detections if the

pose estimator fails, and that SDS is producing both detection and

segmentation, so it uses its own set of detections. See Section 6.3

for comments.

instances. For instance, it misses most heavily occluded

persons. The other main downside is that the method mostly

provides upper body segmentations (due to either the region

proposals or the classifier itself which has been trained on

a mix of face, upper body and full body examples), in spite

of the refinement procedure which is applied at the end of

their method and is meant to provide more complete seg-

mentations.

The CRF as RNN method is the best performing base-

line. It produces a clean figure-ground segmentation for

a given object class. When people are separated in the

image, our relabelling procedure inherently produces good

instance-level segmentation results. However, when the

person instances are close by or overlap, our method of-

ten outperforms the baseline. Our method, which uses

only generic features (color, motion, SIFT) and ad-hoc con-

straints, still performs as well as this strong baseline. It suc-

cessfully segments each object instance with only coarse

localization cues (encoded in the constraints) and without

training a pixel-level appearance model for the segmenta-

tion as does the baseline. Moreover, when using seman-

tic features of the baseline in our discriminative term, our

method outperforms the baseline.

Pose & segm., which uses instance-specific pose masks,

performs significantly worse than our method as it makes

strong assumptions about the pose or disparity priors. For

instance, it can not recover from errors from the pose esti-

mator. In comparison, our constraints only restrict the space

of possible segmentations. They can even be violated in

Figure 6: Results of our method applied to two multi-instance

videos from SegTrack v2 [31].

situations which do not satisfy the implicit priors they are

enforcing. However, they are strong enough to success-

fully guide the segmentation even for complicated poses,

crowded scenes and cluttered backgrounds. We provide per-

video quantitative results on the project website [1].

Other object classes. The major strength of our method

is that it is mostly agnostic to the underlying object class.

We provide the method with a single floating point param-

eter specifying which amount of each bounding box is ex-

pected to belong to the object. With this single parame-

ter, the video input and the corresponding bounding box

tracks, our method is able to properly segment the object

instance from the background of the video and from the

other object instances. To the best of our knowledge, there

is no proper complete dataset for instance-level segmenta-

tion in videos for the moment. To show that our method can

handle non-person object classes, we ran it on two videos

with multiple object instances from the popular SegTrack

v2 dataset [31]. We show two sample frames in Figure 6

and videos on the project website [1]. Quantitatively, our

method achieves an average overlap of 86.8% on the drift-

ing car sequence, compared to 79.9% by the recent state-of-

the-art method [48] which combines the analysis of appear-

ance and motion cues with a reasoning on disocclusions.

7. Discussion and future work

We have presented a flexible and effective framework for

multi-instance object segmentation. We have demonstrated

its experimental performance on a challenging dataset,

showing that constraining the space of segmentations is a

robust way to incorporate object tracks information. We

plan to extend this method to multiple instances of multi-

ple object categories. This implies having a multi-class dis-

criminative model instead of a foreground vs. background

one. More class- or instance-specific knowledge can be in-

corporated in our constraints. This includes weighing our

constraints using noisy pixel-level information such as pose

masks. Also, more complex models – including non-convex

costs – could use our convex relaxation as an initializa-

tion. These refinements could lead to improved segmen-

tation quality.
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