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Abstract

This paper proposes a novel method for tracking multi-

ple moving objects and recovering their three-dimensional

(3D) models separately using multiple calibrated cameras.

For robustly tracking objects with similar appearances, the

proposed method uses geometric information regarding 3D

scene structure rather than appearance. A major limitation

of previous techniques is foreground confusion, in which

the shapes of objects and/or ghosting artifacts are ignored

and are hence not appropriately specified in foreground re-

gions. To overcome this limitation, our method classifies

foreground voxels into targets (objects and artifacts) in each

frame using a novel, probabilistic two-stage framework.

This is accomplished by step-wise application of a track

graph describing how targets interact and the maximum a

posteriori expectation-maximization algorithm for the esti-

mation of target parameters. We introduce mixture models

with semiparametric component distributions regarding 3D

target shapes. In order to not confuse artifacts with ob-

jects of interest, we automatically detect and track artifacts

based on a closed-world assumption. Experimental results

show that our method outperforms state-of-the-art trackers

on seven public sequences while achieving real-time perfor-

mance.

1. Introduction

Multiple object tracking has long been an important task

in computer vision research. It has broad applications such

as surveillance, sports analysis, and human-computer inter-

action and is available in various types, depending on the

final goal and the assumptions made:

• Track objects from one or more cameras.

• Track objects offline or online.

This paper focuses on online tracking of multiple ob-

jects and takes advantage of multiple cameras to deal with

crowded scenes exhibiting objects and occlusions with sig-

nificant density. In such a scenario, we pursue real-time per-

formance for separately recovering three-dimensional (3D)

(a) APIDIS dataset.

(b) LEAF-2 sequence.

Figure 1: 3D models of objects separately recovered using

the proposed method (cf. § 5).

models of multiple objects on a standard desktop PC, as

shown in Fig. 1.

1.1. Related works

We review not only existing multiple object trackers us-

ing multiple cameras but also previous works that involve

separately recovering 3D models of multiple objects. In

the initial tracking steps (TSs), most conventional works ex-

tract foreground information regarding foreground moving

objects, e.g., foreground voxels, foreground point crowds,

and object presence likelihood maps at discretized loca-

tions. This information is typically obtained by projecting

or accumulating detection responses from each camera in a

common 3D space [6, 11, 15, 18, 19, 22, 24, 26] or two-

dimensional (2D) plane [8, 10, 13, 16, 17, 21] in which

objects move. These detection responses are generally ac-

quired using either object detectors or standard background

subtraction techniques [25]. Foreground information de-

fined in a 2D space (2DFI) tends to generate more artifacts
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than that defined in a 3D space (3DFI), owing to the absence

of altitude; hence, such information induces low robustness

in crowded scenes in most cases [18, 24].

Previous work using 3DFI can be divided into two ap-

proaches: one exploits appearances as primary cues for dis-

tinguishing objects [11, 18, 26] and the other is based on

geometric information regarding 3D scene structure [6, 15,

19, 22, 24]. In the former methods, visual hulls are created

by a volume-based shape-from-silhouette technique. Ap-

pearance models, which are trained based on their silhou-

ettes for each object over time, are used to resolve occlu-

sions in certain contexts, e.g., voxel classification into ob-

jects [11] and tracking using Kalman filtering [18] or mean-

shift [26]. These algorithms achieve very good results for

objects whose appearances are discriminative but do not

perform as well for those with the similar appearances.

In contrast, geometry-based methods handle occlusions

using schemes that rely less on the appearances of ob-

jects and are hence not affected by the similarity of their

appearances. Some of these separately recover 3D mod-

els of objects in each frame, for exsample, the level set

method [15], human body model fitting [19], or the itera-

tive closed point algorithm [22]. These methods can han-

dle occlusions caused by two or three objects moving two-

dimensionally on the ground-plane.

Some researchers have proposed geometry-based meth-

ods using particle filter frameworks in the context of

multiple-object tracking and introduced the local mass den-

sity scores of voxel-based visual hulls for computing the

posterior probabilities of particles [6, 24]. Most notably,

Possegger et al. [24] achieved state-of-the-art performance

by resolving occlusions using Voronoi partitioning of the

hypothesis space.

Another approach to our scenario is to apply data-

association methods that do not require appearance mod-

els [2, 5, 12, 27]. These formulate tracking as an optimiza-

tion problem in the space of all possible families of trajecto-

ries and solve this problem using optimization algorithms,

e.g., the k-shortest path algorithm [2].

A major limitation of such previous techniques, illus-

trated in Fig. 2, is foreground confusion, in which the

shapes of objects and/or ghosting artifacts are ignored and

are hence not appropriately specified in foreground regions.

This causes accumulated drifts and results in low robustness

in crowded scenes.

1.2. Contributions and outline

In this paper, we propose a geometry-based method to

track multiple objects of which the appearances are not

discriminative. Similar to certain previous works, fore-

ground regions, which represent connected components of

foreground voxels created by a volume-based shape-from-

silhouette technique, are used as inputs. We assume here

(a) (b) (c)

Figure 2: Examples of foreground confusion in two types of

approaches (particle filter-based approaches using Voronoi

partitioning (b) and typical data-association approaches us-

ing discretized maps (c)). Foreground regions, in which ob-

jects and ghosting artifacts can exist in scenes, are partially

contained in a common region (e.g., each side separated by

a boundary of Voronoi cells (the blue line) in (b) and the

central grid in (c)) and are handled as regions of a common

target.

that silhouettes of moving objects are detected using stan-

dard background subtraction techniques in multiple static

cameras calibrated and distributed in scenes. Thus, appear-

ance information other than silhouettes is not used at all.

To overcome foreground confusion, we classify fore-

ground voxels into objects and artifacts, which we call

targets, using a novel, probabilistic two-stage framework.

In the first stage, a candidate(s) for targets to which each

foreground region can belong is extracted by constructing

a track graph that describes events in which targets are

isolated or interact with one another [9, 23]. In the sec-

ond stage, each foreground voxel is classified into any one

of the candidates, as specified in the first stage, by ap-

plying the maximum a posteriori expectation-maximization

(MAP-EM) algorithm for the estimation of target parame-

ters. Here, we introduce mixture models with semiparamet-

ric probabilistic density functions (PDFs) representing 3D

target shapes. In order to not confuse artifacts with objects,

we automatically detect and track artifacts using a closed-

world assumption, in which an unknown object cannot sud-

denly appear at an arbitrary position [14, 24] (Fig. 3). In

contrast to some previous studies [18, 27] that introduce

graph structures to region-wisely model object interactions,

our framework has the capabilities to voxel-wisely handle

foreground confusion.

2. Overview of the method

Targets are tracked in each frame using the following

TSs:

1. Obtain foreground segmentations from input images in

each camera.
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Figure 3: A ghosting artifact detected and tracked in our

framework.

2. Perform shape-from-silhouette using foreground seg-

mentations obtained in TS 1 and extract foreground

regions.

3. Detect foreground regions constructed from newly ap-

pearing objects either manually or using a detector.

4. Construct the track graph and obtain indices (labels)

of candidate targets to which each foreground region

might belong.

5. Classify foreground voxels into any one of the candi-

date(s), obtained in TS 4, using MAP-EM.

6. Update the track graph with the results in TS 5.

In these TSs, we assume the following:

• Moving distances of targets are sufficiently short that

their foreground regions overlap with those in the pre-

vious frame.

• Shape changes of targets are sufficiently small to be

ignorable in tracking.

• Foreground regions, which are not labeled in TS 3 and

do not interact with those in the previous frame, can

be regarded as ghosting artifacts based on the closed-

world assumption.

The construction and updating of the track graph are de-

scribed in §3. These correspond to TSs 4 and 6, respectively.

§4 presents foreground voxel classification using MAP-EM,

which corresponds to TS 5. In addition, the set of symbols

is listed in the supplementary material.

3. Classification of foreground regions into tar-

gets

3.1. Construction of track graph

Given foreground regions at current time t, in order to

obtain candidate(s) to which they (and their voxels) can be-

long, we label them by a set of labels L = {1, . . . ,m},

(a) (b) (c)

Figure 4: Construction and update of a track graph. A rect-

angular foreground region and the node corresponding to it

are shown in a common color. Alphabets in nodes indicate

labels to which their foreground regions can belong. The

track graph updated at (t − 1) (a) is constructed (b) (§ 3.1)

and updated (c) at t (§ 3.2).

which indicate indices of targets. m is the number of tar-

gets. This is achieved by constructing the track graph as

follows.

The track graph is given by G = (V, E), where V and

E represent a set of foreground region nodes and a set of

edges, respectively. Here, V is updated as follows:

V = Vt + Vt−1, (1)

where Vt and Vt−1 represent foreground region nodes given

at t and at (t − 1), respectively. Each random variable v ∈
Vt can take on one of the indices of foreground regions. E
consists of temporal relations between foreground regions

given at t and at (t− 1), i.e.,

E = {(i, j)|Area(i ∩ j) > 0}, (2)

where i ∈ Vt and j ∈ Vt−1. Then, the node information

of i is represented as (Xi,Li). Xi and Li are the set of

3D coordinates of the foreground voxels constructing i and

the set of labels of the candidates to which i can belong,

respectively. Li is initialized as ∅ in the first frame at t = 0
and is computed at t > 0 as follows:

Li =
⋃

j′∈Vt−1
i

Lj′ , (3)

where Vt−1
i is the temporal neighboring nodes of i in the

neighborhood system on the track graph, i.e.,

Vt−1
i = {j′|(i, j′) ∈ E}. (4)

Fig. 4(b) shows an example of track-graph construction.

Let is denote a foreground region detected as a newly

tracked object in TS 3 and let iu denote one that is still

not labeled (i.e., artifact regions that appear without being

identified and thus satisfy Liu = ∅). Here, s and u are a new

object index and a new artifact, respectively, and are one-

by-one created as (m+1), following which m is increased.

We label their nodes by s and u, initializing Lis and Liu
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with {s} and {u}, respectively. Then, s and u are added to

L.

We group L into subsets of labels of targets interacting

with each other at t, and we call them merging groups be-

cause their foreground regions merge when they interact.

Let the kth merging group be denoted by Tk ⊆ L and let

T = {Tk}k∈K, where K is a set of indices of merging

groups. Tk is defined as follows:

Tk =
⋃

i′∈V′

Li′ , (5)

where

V ′ ⊆ Vt :
⋂

i′∈V′

Li′ 6= ∅. (6)

Finally, if one object and one or more artifacts with small

volume interact with each other or if two or more artifacts

interact with each other, we merge them. This leads to a

reduction in the interactions of targets, which need to be re-

solved in MAP-EM, and results in a significant reduction

in computational complexity of MAP-EM. This is achieved

by removing merging groups based on several constraints.

Incrementally, if the number of object indices in Tk is one

and the volume of an artifact in Tk is less than a thresh-

old volume v, its artifact index is removed from {Li}i∈Vt .

Then, Tk is removed from T if |Tk| = 1. On the other hand,

if all labels in Tk are artifact indices, the labels (excluding

the oldest artifact index) and Tk are removed from {Li}i∈Vt

and T , respectively.

Based on the track graph, a function for obtaining candi-

dates of targets to which a foreground voxel x can belong is

defined as follows:

C(x) =

{

Li if ∃i : x ∈ Xi,

∅ otherwise.
(7)

3.2. Update of track graph

We assume that each foreground voxel is labeled by any

one of the labels l̂ ∈ L in TS 5. First, all of the nodes and

edges in G are removed, i.e., V = ∅, E = ∅. In connected

components of foreground voxels labeled by a common la-

bel l̂, we regard the component with maximum volume as

the foreground region created by l̂ and denote the set of

nodes of such foreground regions by V̂t. Then, the set of

nodes V̂t is added to V and their node information is com-

puted. Fig. 4(c) shows an example of an update of the track

graph.

4. Classification of foreground voxels into tar-

gets

In this section, PDFs used in MAP-EM are described

first. Subsequently, an algorithm to classify foreground

voxels into targets using MAP-EM is described.

4.1. PDFs

We consider the classification of foreground voxels into

targets as the inference problem of determining the joint dis-

tribution p(x, l). Here, x represents the 3D coordinates of

a foreground voxel and l ∈ L. This distribution can be ex-

pressed in the form

p(x, l) = p(l)p(x|l), (8)

where p(l) is the prior. This prior is used as the mixing

coefficient in the EM framework and is given by

p(l) = πl, (9)

where πl must satisfy

∑

l∈L

πl = 1 ∧ 0 ≤ πl ≤ 1, ∀l ∈ L. (10)

Let µt
l denote the 3D position of l at t. The posterior distri-

bution on the right-hand side of (8) is defined as the class-

conditional likelihood function that is the probability of x

given µt
l and is given by

p(x|l) ∼ p(x|µt
l). (11)

Here, we represent p(x|µt
l) as a semiparametric PDF

representing the 3D shape of a target. If the shape of l does

not change (or can be ignored in tracking) from a particular

previous time t̂ < t to t and x belongs to l at t, then x corre-

sponds to any of the dense foreground voxels belonging to

l at t̂. Thus, we first represent a likelihood function, where

x belongs to any of a set of voxels Y , using the local mass

density [24] as follows:

f(x|Y) =
S

M
|Rx,Y |, (12)

where Rx,Y is a subset of Y , which are contained in an

rx × ry × rz cuboid R centered at x and is given by

Rx,Y = {(x′, y′, z′)T| |x′ − x| ≤ rx/2

∧ |y′ − y| ≤ ry/2

∧ |z′ − z| ≤ rz/2

∧ (x′, y′, z′)T ∈ Y},

(13)

where x = (x, y, z)T. S and M are the normalizing con-

stant and the volume of R, respectively. Then, we define

p(x|µt
l) using f as a likelihood function, where a fore-

ground voxel x − µt
l + µt̂

l , to which x is shifted along the

moving direction of l from t to t̂, belongs to any of the fore-

ground voxels constructed from l at t̂:

p(x|µt
l) = f(x− µt

l + µt̂
l |Xjl), (14)
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(a) 3D models of tracked targets.

(b) Projected semiparametric PDFs.

Figure 5: As a class-conditional likelihood function for each

target, we use a semiparametric PDF (b) computed from a

3D model of a target (a). In (b), each class colors every

target, and a shade of a color displays a likelihood value

projected.

where Xjl is the set of 3D coordinates of the voxels in the

foreground region that are constructed from l at t̂. Here, µt̂
l

and Xjl on the right-hand side of (14) are determined at t̂
and are constant at t. In addition, there is no assumption

regarding the form of the distribution of p(x|µt
l), which

depends on the arbitrary shape of l. Thus, we see that

p(x|µt
l) is the semiparametric PDF of which the parameters

are nothing but µt
l . Fig. 5 shows an example of this PDF.

In our implementation, p(x|µt
l) is preserved as a lookup ta-

ble for every target and is updated when l is isolated, since

the shape of a target recovered is unstable while interacting

with the others.

For the MAP estimate of µt
l in MAP-EM, assuming that

positions of targets at t are near those at (t − 1), we define

the prior for µt
l as the multivariate Gaussian distributions

p(µt
l) ∼ N (µt

l |µ
t−1
l ,Σ), (15)

where Σ denotes the covariance.

4.2. MAP-EM

In the following, we first adapt MAP-EM to our problem

and then classify foreground voxels into targets using the

track graph and MAP-EM. Here, we explain the EM algo-

rithm based on its description in [4, 7, 20].

4.2.1 Overview of MAP-EM

Let X denote the set of 3D coordinates of all foreground

voxels. Our goal in using MAP-EM is to find the maximum

a posteriori solution for our mixture models with the above-

mentioned PDFs when the incomplete-data set X is given.

This is achieved using the iterative framework with p(x, l)
(§4.1).

We first initialize the set of all model parameters

Θ = {πl,µ
t
l}l∈L (16)

and then iteratively compute the revised estimate Θnew from

the current estimate Θold through the E and M steps. In

the E step, we use Θold to find the posterior distribution

p(l|x,Θold) (∀x ∈ X ) of the latent variables (labels in our

case). In the M step, we determine Θnew by maximizing the

sum of the expectation of the complete-data log likelihood

Q(Θ,Θold) and the logarithm of the prior p(Θ) with respect

to Θ as follows:

Θnew = arg max
Θ

S(Θ,Θold), (17)

where

S(Θ,Θold) = Q(Θ,Θold) + ln p(Θ). (18)

This expectation Q(Θ,Θold), which we describe later, is

sometimes called the Q-function. Assuming that the µt
l’s

are independent of each other, we approximate ln p(Θ) in

(18) using the prior p(µt
l) given by (15) as follows:

ln p(Θ) ∼
∑

l∈L

ln p(µt
l). (19)

Q-function. As mentioned above, the Q-function is the

expectation of the complete-data log likelihood and is ex-

pressed in the form

Q(Θ,Θold) =
∑

l∈L

p(l|X ,Θold) ln p(X , l|Θ). (20)

Here, if the x’s are independent, then p(l|X ,Θ) and

ln p(X , l|Θ) can be respectively written using (8), (11),
(15), (16), and Bayes’ theorem as follows:

p(l|X ,Θ) =
p(l)p(X|l,Θ)

p(X )
=

p(l)
∏

x∈X p(x|l)
∏

x∈X p(x)
. (21)

ln p(X , l|Θ) = ln
∏

x∈X

p(x, l)

=
∑

x∈X

{

ln p(l) + ln p(x|l)}.
(22)

Then, the Q-function can be consequently rewritten by mak-

ing use of (8), (9), (11), (20) − (22), and Bayes’ theorem

as follows:

Q(Θ,Θold) =
∑

l∈L

∑

x∈X

γx,l
{

lnπl + ln p(x|µt
l)
}

, (23)

where γx,l is called the responsibility that component l takes

for “explaining” the observation x and is given by

γx,l = p(l|x,Θold). (24)
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Here, p(l|x,Θ) is derived by making use of (8), (9), (11),
(16), and Bayes’ theorem as follows:

p(l|x,Θ) =
p(l)p(x|l)

p(x)
=

πlp(x|µ
t
l)

∑

l′∈L πl′p(x|µt
l′)

, (25)

where p(x|µt
l) is given by (14).

MAP estimates of parameter Θ. In the M step, we esti-

mate Θnew to maximize S(Θ,Θold). We obtain πnew
l ∈ Θnew

by solving the constrained extremal problem with (10) us-

ing Lagrange’s multiplier method as follows:

πnew
l =

1

|X |

∑

x∈X

γx,l. (26)

In addition, the steepest descent method is used to estimate

µt
l

new
∈ Θnew. Let µ̂t

l be the current estimate of µt
l and let

Θ̂ = {πold
l , µ̂t

l}l∈L, where πold
l ∈ Θold. µt

l is initialized by

µt
l

old
∈ Θold and is updated as follows:

µt
l = µ̂t

l + ǫ
∂S(Θ̂,Θold)

∂µt
l

, (27)

where ǫ is the value of the step size.

4.2.2 MAP-EM based on track graph

If straightforwardly adapting only MAP-EM to our prob-

lem, we are faced with loss of efficiency and redundant cal-

culations to a certain extent. For example, when two fore-

ground regions are sufficiently distant, it is impossible for

their voxels to be labeled by a common label. Thus, such

foreground voxels must be separately handled. In our EM

framework, this can be naturally achieved by using prior

knowledge about the relationships between foreground re-

gions and targets, which are obtained from the track graph.

Before applying MAP-EM, we first specify targets,

which are isolated and do not interact with the others, us-

ing the track graph. Let ľ denote the index of such a target.

l = ľ, if l /∈ Tk, ∀k ∈ K. Then, each foreground voxel x is

labeled by ľ if C(x) = {ľ}.

We subsequently apply MAP-EM to the remaining tar-

gets, except for those mentioned above. Let L̄ ⊆ L be

the set of labels l̄ 6= ľ and let il̄ ∈ Vt be a foreground

region node that satisfies l̄ ∈ Lil̄
. The target parameter

Θ̄ = {πl̄,µ
t
l̄
}l̄∈L̄ is first initialized using {π̂l̄,µ

t−1
l̄

}l̄∈L̄. π̂l̄

indicates the ratio of the volume of l̄ to the total volume of

L̄ at (t − 1). In the E step, revising (25) using the track

graph, we compute γ
x,l̄ as follows:

γ
x,l̄ = p(l̄|x, Θ̄old) ∼

{

πl̄p(x|µ
t

l̄
)

∑
l̄′∈C(x) πl̄′

p(x|µt

l̄′
) if l̄ ∈ C(x),

0 otherwise.

(28)

In the M step, we revise (23) by substituting Θ = Θ̄,

L = L̄, and X = Xil̄
and revise (19) by substituting Θ = Θ̄

and L = L̄. Then, we estimate Θ̄new, which maximizes

S(Θ̄, Θ̄old), as mentioned in §4.2.1. In addition, each fore-

ground voxel x is labeled by arg maxlγx,l. Finally, the 3D

position of target ľ and that of l̄ are computed as the aver-

ages of the 3D coordinates of foreground voxels labeled by

ľ and l̄, respectively.

5. Experiments

5.1. Datasets

We evaluate our approach on seven challenging video

sequences contained in two publicly available datasets

(APIDIS1 and ICG-Lab-6 [24]), for which the performance

of some baselines has been provided by their original au-

thors. In these datasets, 2D ground truth object positions

in the ground-plane are distributed. Thus, it must be noted

that our method is designed for 3D tracking, but is vali-

dated with respect to only 2D coordinates of objects with-

out the altitude (height). The technical characteristics of the

datasets are summarized in Table 1. In the following, we

explain the datasets based on the descriptions in [24].

APIDIS. This dataset provides a one-minute sequence of

a basketball game. This sequence contains various chal-

lenges, e.g., the similar appearance of all players in a com-

mon team, many occlusions, and the degradations of fore-

ground segmentations caused by strong shadows and reflec-

tions on the floor. Similar to [24], we evaluate the perfor-

mance on the left half of the court (15 × 15 m2) and use the

imageries from cameras covering that side, i.e., cameras 1,

2, 4, 5, and 7.

ICG-Lab-6. This dataset provides six sequences that

show various situations. These correspond to CHAP,

1http://sites.uclouvain.be/ispgroup/index.php/

Softwares/APIDIS

Table 1: Sequence characteristics indicating the number of

cameras NC, the maximum number of simultaneously vis-

ible objects NO, the total number of frames, the frame rate

(FPS), and the resolution of the video streams.

Sequence NC NO Frames FPS Resolution

APIDIS 7 12 1500 25 800× 600

CHAP 4 5 3760 20 1024× 768

LEAF-1 4 4 1800 20 1024× 768

LEAF-2 4 5 2400 20 1024× 768

MUCH 4 5 2400 20 1024× 768

POSE 4 6 1820 20 1024× 768

TABLE 4 5 1760 20 1024× 768

4280



LEAF-1, LEAF-2, MUCH, POSE, and TABLE in Table 1.

In this dataset, the appearance of people is discriminative

since people wear clothes of different colors. Thus, the pro-

posed method is compared with only the geometry-based

methods.

The CHAP sequence shows a standard surveillance sce-

nario in which five people move close to each other two-

dimensionally on the floor and imposes additional chal-

lenges to the appearance-based tracking approaches, be-

cause people change their appearance throughout the scene

by putting on jackets with significantly different colors than

their sweaters.

The LEAF-1 and LEAF-2 sequences show leapfrog

games in which players move three-dimensionally by leap-

ing over each other’s stooped backs. These scenarios im-

pose several challenges, such as difficult poses, out-of-plane

motion, and frequent collisions between players.

The MUCH sequence shows musical chairs (also known

as Going to Jerusalem), in which players race to sit down in

one of the chairs. This sequence exhibits specific challenges

owing to the nature of this game. Players move quickly,

and there are dynamic background items, viz., a chair is re-

moved after each round.

In the POSE sequence, six people show various poses,

such as kneeling, crawling, and sitting. In addition to these

poses, e.g., the upright standing pose and movement on the

common ground-plane, which violate the assumptions for

pedestrians, the background illumination changes, thereby

causing further challenges to robust foreground segmenta-

tion.

The TABLE sequence shows five people walking and

jumping over a table. While people are moving, dense

crowding creates additional challenges.

5.2. Evaluation metrics

For quantitative evaluation, we rely on the standard

CLEAR multiple-object tracking (MOT) performance met-

ric [3], viz., MOT accuracy (MOTA). The MOTA score is

computed from three error ratios, false negatives (FNs),

false positives (FPs), and identity switches (IDSs). Higher

MOTA values indicate better robustness, with its maximum

value being one, representing a perfect tracking result. To

compute the MOTA score, similar to [24], we set the dis-

tance threshold between the ground truth and tracking re-

sults to 50 cm in all the sequences.

5.3. Implementation details

We use a standard background subtraction method us-

ing Gaussian mixture models [28] in the foreground seg-

mentation step. It is implemented using OpenCV [1] and

its parameters are changed to not chip silhouettes for each

camera. Foreground regions extracted in TS 2 are repre-

sented as a 3D binary image. This image is smoothed and

binarized before being used for the track graph, because the

visual hull reconstruction is sensitive to noise, i.e., missing

foreground segmentations cause holes in the volume and its

separations. In addition, foreground regions, which appear

at the defined entry areas and are bigger than half the size of

an average human, are detected as regions constructed from

newly appearing objects in TS 3.

The reference parameters used in this paper are presented

as follows. The volume threshold v for merging objects

and artifacts (§3.1) is set to half the volume of an average

human. Voxel sizes are set to 6 × 6 × 6 cm3 in the APIDIS

dataset and to 4 × 4 × 4 cm3 in ICG-Lab-6. The sizes of the

cuboids used to compute semiparametric PDFs representing

3D shapes of targets (§4.1) are set to 5 × 5 × 5 voxel3 in

the APIDIS dataset and to 7 × 7 × 7 voxel3 in the ICG-

Lab-6 dataset. The kernel sizes used to smooth foreground

regions in TS 2 are set to 3 × 3 × 5 voxel3 in the APIDIS

dataset and to 5 × 5 × 9 voxel3 in the ICG-Lab-6 dataset.

We consider a prior for a target position p(µt
l) in (15) as an

isotropic Gaussian governed by a single precision parameter

α (i.e., Σ = α2I), and α is set to 30 cm for objects and to

voxel sizes for artifacts.

5.4. Results and discussion

Illustrative results of our method are shown in Fig. 1,

while Table 2 lists the performance metrics on the individual

sequences2. The baselines [24, 2] correspond to two meth-

ods whose foreground confusion is explained in Fig. 2(b)

and Fig. 2(c), respectively; the results of [24] are taken from

its original paper and those of [2] are taken from [24]. We

found that our method is more reliable than other state-of-

the-art trackers based on the MOTA scores and the IDS in

both standard visual surveillance scenarios (e.g., CHAP and

LEAF-1) and more complex ones (e.g., APIDIS, LEAF-2,

MUCH, POSE, and TABLE). Considering the high num-

ber of FP scores, baselines suffer from missed detections of

objects and drifts to artifacts over all the sequences, in con-

trast to our method specifying artifacts. This is one of the

sources of their lower MOTA scores.

On the other hand, for the LEAF-1 and LEAF-2 se-

quences, in which players three-dimensionally contact each

other, our IDS scores are clearly better than those of the

baselines, even when considering our higher FN score for

LEAF-2 (actually several contacts by two objects occurred

during our FNs). In addition, our method outperforms the

appearance-based method ([24] w/ color) for the APIDIS

dataset, in which players wearing similar jerseys interact

with each other. These show the utility of using geometric

information regarding 3D target shapes in such complex sit-

uations, e.g., the contact by two players in Fig. 1(b). How-

ever, in several sequences, our method sometimes could not

2For the supplementary material and videos, please visit: http://

taikisekii.com
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resolve insignificant occlusions that previous trackers could

by using appearance information such as a discriminative

visual classifier [24].

Table 3 lists the performance metrics of some different

versions of the proposed method. First, when artifacts are

ignored in our approach (reported as w/o artifact), i.e., when

suddenly appearing foreground regions are not tracked, the

performance deteriorates from that of the full implementa-

tion (reported as Full.). This shows that tracking of arti-

facts in our approach is effective in improving foreground

confusion between objects and artifacts. Second, when we

use the multivariate Gaussian distribution as a PDF repre-

senting 3D target shapes (reported as w/ Gaus.), the perfor-

mance similarly deteriorates. This shows that our proposed

semiparametric PDF expresses more realistic target shapes.

Third, when the track graph is not used (reported as w/o

track graph), i.e., all targets can be subject to candidates to

which foreground voxels can belong in MAP-EM, the per-

formance similarly deteriorates. This shows that the track

graph works effectively as prior knowledge for classifica-

tion of foreground voxels into objects in MAP-EM.

Table 2: Quantitative comparison results of the proposed

method with other state-of-the-art trackers. Tracking in [24]

is conducted with and without the appearance models in the

APIDIS dataset (reported as w/ color and w/o color, respec-

tively). For each evaluated dataset, we report the accuracy

metric MOTA (higher is better), as well as the total num-

ber of TPs, FPs, FNs, and IDSs. The best values for each

evaluation and each criterion are highlighted.

Sequence Method MOTA TP FP FN IDS

APIDIS

[2] 0.490 607 156 220 46

[24] w/ color 0.675 656 88 172 9

[24] w/o color 0.597 625 121 202 10

Ours 0.855 738 18 95 8

CHAP

[2] 0.952 1607 50 21 7

[24] w/o color 0.719 1316 193 241 4

Ours 0.989 1582 9 5 4

LEAF-1

[2] 0.976 495 6 1 5

[24] w/o color 0.721 436 83 44 7

Ours 0.991 465 1 1 2

LEAF-2

[2] 0.819 913 87 66 24

[24] w/o color 0.727 856 115 117 34

Ours 0.842 832 5 144 5

MUCH

[2] 0.754 770 139 32 26

[24] w/o color 0.736 694 99 99 11

Ours 0.808 672 23 119 10

POSE

[2] 0.555 427 156 31 17

[24] w/o color 0.822 456 42 44 3

Ours 0.910 494 37 5 3

TABLE

[2] 0.719 573 105 58 14

[24] w/o color 0.818 577 56 51 7

Ours 0.894 738 18 95 6

5.5. Runtime performance

Our approach is implemented in C++ without any code

optimization and is conducted on a standard desktop PC

with a 3.4 GHz Intel CPU, 32 GB RAM, and a GeForce

GTX970. The average speeds are 26 FPS and 25 FPS on

the APIDIS sequence and the ICG-Lab-6 dataset, respec-

tively. We achieved frame rates greater than those at which

each sequence is actually recorded, although only back-

ground subtraction in the foreground segmentation step is

processed on the GPU, exploiting inherent parallelism. On

the other hand, when the track graph is not used in our

method (w/o track graph in Table 3), its average speeds de-

crease to 13 FPS and 11 FPS on the APIDIS dataset and

ICG-Lab-6, respectively. This shows that the track graph

can accelerate MAP-EM and increases its range of real-

world applicability.

6. Conclusion

We proposed a method for tracking multiple objects and

separately recovering their 3D models using multiple cal-

ibrated cameras. Our principal innovations for robustly

tracking objects with similar appearances are to incorporate

geometric information regarding 3D scene structure and a

track graph describing how objects and artifacts interact in

the MAP-EM framework and to probabilistically classify

foreground voxels into any of them. In the experiments,

we confirmed that our method outperforms state-of-the-art

trackers on seven public sequences while achieving real-

time performance. In future work, to improve performance

in cases where objects are discriminative, we plan to ex-

plore a tracking framework in which appearance informa-

tion of targets is incorporated into our proposed approach

as additional tracking cues.

Table 3: Quantitative comparison results of different ver-

sions of the proposed method, averaged over all seven se-

quences. Three error ratios for computing the MOTA scores

are indicated by FPR, FNR, and IDSR (FP, FN, and IDS ra-

tios, respectively).

Method MOTA FPR FNR IDSR

w/o artifact 0.858 0.024 0.108 0.009

w/ Gaus. 0.878 0.060 0.052 0.010

w/o track graph 0.864 0.033 0.094 0.009

Full. 0.898 0.021 0.073 0.007
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