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Abstract

Conventional algorithms for sparse signal recovery and

sparse representation rely on ℓ1-norm regularized varia-

tional methods. However, when applied to the reconstruc-

tion of sparse images, i.e., images where only a few pixels

are non-zero, simple ℓ1-norm-based methods ignore poten-

tial correlations in the support between adjacent pixels. In

a number of applications, one is interested in images that

are not only sparse, but also have a support with smooth

(or contiguous) boundaries. Existing algorithms that take

into account such a support structure mostly rely on non-

convex methods and—as a consequence—do not scale well

to high-dimensional problems and/or do not converge to

global optima. In this paper, we explore the use of new block

ℓ1-norm regularizers, which enforce image sparsity while

simultaneously promoting smooth support structure. By ex-

ploiting the convexity of our regularizers, we develop new

computationally-efficient recovery algorithms that guarantee

global optimality. We demonstrate the efficacy of our regu-

larizers on a variety of imaging tasks including compressive

image recovery, image restoration, and robust PCA.

1. Introduction

A large number of existing models used in sparse signal

processing and machine learning rely on ℓ1-norm regulariza-

tion in order to recover sparse signals or to identify sparse

features for classification tasks. Sparse ℓ1-norm regulariza-

tion is also prominently used in the image-processing and

computer vision domain, where it is used for segmentation,

tracking, and background subtraction tasks. In computer

vision and image processing, we are often interested in re-

gions that are not only sparse, but also spatially smooth, i.e.,

regions with contiguous support structure. In such situations,

it is desirable to have regularizers that promote the selec-

tion of large, contiguous regions rather than merely sparse

(and potentially isolated) pixels. In contrast, simple ℓ1-norm

regularization adopts an unstructured approach that induces

sparsity wherein each variable is treated independently, dis-

regarding correlation among neighboring variables. For ex-

ample, smooth support structure is relevant to compressive

background subtraction [10, 9] which detects contiguous

regions of movement against a stationary background.

For imaging applications, ℓ1-norm regularization may re-

sult in regions with spurious active (or isolated) pixels or

non-smooth boundaries in the support set. This issue is ad-

dressed by the image-segmentation literature, where spatially

correlated priors (such as total variation or normalized cuts)

are used to enforce smooth support boundaries [5, 14, 34, 12].

An important hallmark of existing image-segmentation meth-

ods is that they are able to enforce spatially contiguous sup-

port. However, the concept of correlated support has yet to

be ported to more complex reconstruction tasks, including

(but not limited to) robust PCA and compressive background

subtraction. The development of such structured sparsity

models has been an active research topic [9, 2, 19, 21, 1, 20],

with new models and applications still emerging [23, 22].

In this paper, we develop a class of convex priors based on

overlapping block/group sparsity, which are able to enforce

sparsity of the support set and promote spatial smoothness.

1.1. Relevant Previous Work

Existing work on spatially-smooth support-set regulariza-

tion can be divided into two main categories: (i) non-convex

models that rely on graphs and trees, and (ii) convex mod-

els that rely on group-sparsity inducing norms. Cevher et

al. [9] promote sparsity using Markov random fields (MRFs)

in combination with compressive-sensing signal recovery,

which is referred to as lattice matching pursuit (LaMP).

LaMP recovers structured sparse signals using fewer noisy

measurements than methods that ignore spatially correlated

support sets. Baraniuk et al. [2] prove theoretical guaran-

tees on robust recovery of structured sparse signals using

a non-convex algorithm; their approach has been validated

using wavelet-tree-based hierarchical group structure, as

well as signals with non-overlapping blocks in the support

set. Huang et al. [19] developed a theory of greedy approx-

imation methods for general non-convex structured sparse
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models. All these methods, however, are limited in that they

are either non-convex, computationally expensive, or do not

allow for overlapping (or not aligned) group structure. Je-

natton et al. [21] showed the possibility of coming up with

a problem-specific optimal group-sparsity-inducing norm

using prior knowledge of the underlying structure. While

they consider a convex relaxation of the structured sparsity

problem, it remains unclear how their proposed active-set

algorithm for least squares regression can be generalized to

a broader range of applications.

1.2. Contributions

Our work is inspired by the ℓ1/ℓ2-norm spatial coherence

priors used in [21], as well as group sparsity priors used in

statistics (e.g., group lasso) [24, 40]. Our main contributions

can be summarized as follows: (i) We propose new regulariz-

ers for imaging and computer vision applications including

compressive image recovery, sparse & low rank decomposi-

tion, and a block-sparse generalization of total variation. (ii)

We develop computationally efficient global minimization

algorithms that are suitable for overlapping pixel-cliques.

Existing methods for group sparsity use the alternating di-

rection method of multipliers (ADMM), and have excessive

memory requirements for large clique sizes. We therefore

discuss a new approach using fast convolution algorithms

to perform gradient descent with low memory requirements

and a complexity that is independent of the clique size. (iii)

We propose the use of our regularizers within greedy pursuit

methods for compressive reconstruction. (iv) We demon-

strate that our algorithms can be used to suppress artifacts

and enhance the quality of sparse recovery methods when

applied to a variety of imaging applications.

1.3. Notation

For any column vector x ∈ R
n, we define its ℓα-norm

with α ≥ 1 as ‖x‖α = (
∑n

i=1 |xi|α)1/α. For x ∈ R
n,

the vector xc consists only of the entries associated to the

index set c. The support set (i.e., the set of indices of

non-zero entries) of a vector or vectorized image x is de-

noted by supp(x). For a matrix A ∈ R
M×N with rank

r = min{M,N} and singular values σi, the nuclear norm

is defined by ‖A‖∗ =
∑r

i=1 σi. We use ‖A‖1 =
∑

ij |Aij |
to denote the element-wise ℓ1-norm for A.

2. Problem Formulation

Consider the measurement model y = Φx0 + z0, where

y ∈ R
M is the observed signal, x0 ∈ R

N is the original

sparse signal we wish to recover, z0 ∈ R
M is a non-sparse

component of the signal (comprising both the background

image and potential noise), Φ ∈ R
M×N is the linear op-

erator that models the signal acquisition process. Based

on this model, we study signal recovery by solving convex

(a) (b) 

(c) (d) 

Figure 1: Illustration of cliques and overlapping cliques.

optimization problems of the following general form:

{ẑ, x̂} = argmin
z∈RM,x∈RN

D(x, z |y,Φ) + J(x). (1)

Here, D : RM×R
M→R is a convex data-consistency term,

and J : RM→R is a regularizer that enforces both spar-

sity and support smoothness on the vector x. The proposed

regularizer is a hybrid ℓ1/ℓ2-norm penalty of the form

J(x) =
∑

c∈C ‖xc‖2, (2)

where C is a set of cliques over the graph G defined over

the pixels of x. This regularizer (2) is a natural generaliza-

tion of the group (or block) sparsity model that has been

explored in the literature for a variety of purposes including

statistics and radar [21, 20, 23, 24]. We focus on the case

where the collection of sparse cliques consist of regularly-

spaced groups of adjacent pixels. For example, consider

two types of cliques shown in Figure 1(a) and 1(b). Notice

the (a) 2-clique and (b) 4-clique wherein all nodes are con-

nected to each other. These cliques can be translated over the

entire image graph to generate various overlapping clique

geometries as shown in (c) and (d), respectively. In (c), eight

overlapping cliques, each of size two, overlap at a central

point. In the image processing literature this is referred to as

an 8-connected neighborhood [11]. In contrast, Figure 1(d)

uses a higher-order connectivity model, which is obtained

using four rectangular cliques of size four (each shown in a

different color). Overlapping group-sparsity models of the

form depicted in Figure 1(d) effectively enforce spatial co-

herence of the recovered support. When such an overlapping

group-sparsity model is used, all pixels in a clique tend to

be either zero or non-zero at the same time (see, e.g., [1]).

Since each pixel shares multiple overlapping cliques with its

neighbors, this regularizer suppresses “rogue” (or isolated)

pixels from entering the support without their neighbors and

hence, promotes smooth (contiguous) support boundaries.

2.1. Applications

The proposed regularizer (2) can be used as a building

block for various applications in computer vision, image
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processing, and compressive sensing. In what follows, we

will focus on the following three imaging applications:

1) Compressive sensing signal recovery: Consider a sig-

nal x ∈ R
N that is K-sparse, i.e., only K ≪ N entries of x

are non-zero. In the CS literature, the signal is acquired via

M < N linear projections y = Φx. The K-sparse signal

x can then be recovered if, for example, the matrix Φ satis-

fies the 2K-RIP or similar conditions [2, 8]. The underlying

recovery problem is usually formulated as follows:

x⋆ =argmin
x∈RN

‖y −Φx‖22 subject to ‖x‖0 = K. (3)

When the sparse signals are images, simple sparse recovery

may not exploit the entire image structure; this is partic-

ularly true for background-subtracted surveillance video.

Background subtraction is used in applications where one is

interested only in inferring foreground objects and activities.

Background subtraction is easily achieved in the compres-

sive domain by computing the difference between adjacent

image data or by subtracting a long term signal mean (or

median). Background-subtracted frames are generally more

sparse than frames containing background information, and

can thus be reconstructed from far fewer measurements M .

We propose to extend the problem in (3) by adding a reg-

ularizer of the form (2) to promote correlation in the support

set of the foreground objects. The optimization problem

defined in (3) is non-convex and is commonly solved using

greedy algorithms [35, 30, 9]. We will show that the use

of our prior (2) leads to faster signal recovery with a small

number of measurements compared to existing methods.

2) Total-variation denoising: Total variation (TV) de-

noising restores a noisy image y (e.g., vectorized image) by

finding an image that lies close to y in an ℓ2-norm sense,

while simultaneously having small total variation; this can

be accomplished by solving

x⋆ = argmin
x∈RN

1
2‖x− y‖2 + λ‖∇dx‖1, (4)

where ∇d : R
N → R

2N is a discrete gradient operator

that acts on an N -pixel image, and produces a stacked hori-

zontal and vertical gradient vector containing all first-order

differences between adjacent pixels. TV-based image pro-

cessing assumes that images have a piecewise constant rep-

resentation, i.e., the gradient is sparse and locally contigu-

ous [32, 16]. Numerous generalizations of TV exist, in-

cluding the recently proposed vectorial TV for color images

[6, 31]. Such regularizers are of the form of (4) merely by

changing the definition of the discrete gradient operator.

We propose to extend total variation by penalizing the

gradient of cliques in order to enforce a greater degree of

spatial coherence. In particular, we consider

x⋆ = argmin
x∈RN

1
2‖x− y‖2 + J(∇dx), (5)

where J(·) denotes the regularizer (2). Furthermore, we

explore formulations where the discrete gradient operator

is given by the decorrelated color TV operator described in

[31]. With our approach, we also show the application of

proposed structured sparsity prior on 3-D blocks. Note that

[33, 27] explores the use of 1-D and 2-D overlapping group

sparsity for TV image denoising, but using a majorization-

minimization algorithm combined with ADMM.

3) Robust PCA (RPCA): Suppose Y = [y1, . . . ,yL] is

a matrix of L measurement vectors, and Y is the sum of

a low rank matrix Z and a sparse matrix X. For this case,

Candès et al. show that exact recovery of these components

is possible using the following formulation [7]:

{Ẑ, X̂} = argmin
Z,X∈RN×L

‖Z‖∗ + λ‖X‖1

subject to Y = Z+X.
(6)

The nuclear-norm in (6) promotes a low rank solution for

Z; the ℓ1-norm penalty on promotes sparsity in X. For this

reason the solution to (6) is sometimes referred to as a sparse-

plus-low-rank decomposition. A well-known application of

RPCA is background subtraction in videos with a stationary

background. For such datasets, the shared background in the

frames {yi} can be represented using a low-rank subspace.

The moving foreground objects often have sparse support,

and thus are absorbed into the sparse term X.

We propose to replace the ℓ1-norm regularization prior

on X in (6) with the proposed regularizer in (2); this enables

us to promote spatial smoothness in the support set of the

foreground objects. Here, we build on the work of [15],

where structured sparsity with non-overlapping blocks is

used in RPCA for foreground detection, and [38], where a

hybrid of ALM and network flow methods [28] are used to

solve ℓ1/ℓ∞ regularized RPCA problems.

2.2. Optimization Algorithms

We now develop efficient numerical methods for solving

problems involving the regularizer (2). A common approach

to enforce group sparsity in the statistics literature is con-

sensus ADMM [13, 4], which we will briefly discuss in

Section 2.2.1. For image processing and vision applications,

where the datasets as well as the cliques tend to be large, the

high memory requirements of ADMM render this approach

unattractive. As a consequence, we propose an alternative

method that uses fast convolution algorithms to perform gra-

dient descent that exhibits low memory requirements and

requires low computational complexity. In particular, our

approach is capable of handling large-scale problems, such

as those in video applications, which are out of the scope of

memory-hungry ADMM algorithms.

We note that numerical methods for overlapping group

sparsity have been studied in the context of statistical regres-

sion [20, 39, 4], but for different purposes. Yuan et al. [39]

solves the regression variable selection problem using an
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accelerated gradient descent approach, whereas Deng [13]

and Boyd [4] use consensus ADMM, which does not scale

to high-dimensional problems. Compared to these methods,

our approach provides significant speedups (see Section 3).

2.2.1 Proximal Minimization and ADMM

The simplest instance of the problem (1) is the proximal

operator for the penalty term J in (2), defined as follows:

proxJ(v, λ) = argmin
x

‖x− v‖2 + λJ(x). (7)

Proximal minimization is a key sub-step in a large number of

numerical methods. For example, the ADMM for TV mini-

mization [32, 16] requires the computation of the proximal

operator of the ℓ1-norm. For such methods, the regular-

izer (2) is easily incorporated into the numerical procedure

by replacing this proximal minimization with (7).

In the simplest case where the cliques in C are small and

no other regularizers are needed, the proximal minimiza-

tion (7) can be computed using ADMM [4, 16]. Similar

approaches have been used for other applications of over-

lapping group sparsity [13]. It is key to realize that the

regularization term in (7) can be reformulated as follows:

x̂ = argmin
x∈RN

‖x− v‖22 + λ

s
∑

i=1

∑

c∈Ci

‖xc‖2. (8)

Here, C1, . . . , Cs are clique subsets for which the cliques in

Ci are disjoint. For example, consider the case where the

set of cliques contains all 2 × 2 image patches as shown

in Figure 1(d). For such a scenario, we need four subsets

of disjoint cliques to represent every possible patch. The

reformulated problem for the example graph will be of the

form (8) with s = 4. In general, if cliques are formed by

translating an l × l patch, l2 subsets of cliques are required

so that every subset contains only disjoint cliques.

To apply ADMM to this problem, we need to introduce s
auxiliary variables z1, . . . , zs each representing a copy of

the original pixel values. The resulting problem is

{x̂, ẑi ∀i} = argmin
x,{zi}s

i=1

‖x− v‖22 + λ
s

∑

i=1

∑

c∈Ci

‖zic‖2

subject to zi = x, ∀i.
(9)

This is an example of a consensus optimization problem,

which can be solved using ADMM (see [13] for more details).

An important property of this ADMM reformulation is that

each vector zi can be updated in closed form—an immediate

result of the disjoint clique decomposition.

2.2.2 Forward-Backward Splitting (FBS) with Fast

Fourier Transforms

The above discussed ADMM approach has several draw-

backs. First, it is difficult to incorporate more regularizers

(in addition to the support regularizer J) without the in-

troduction of an excessive amount of additional auxiliary

variables. Furthermore, the method becomes inefficient and

memory intensive for large clique sizes and large data-sets

(as it is the case for multiple images). For instance in RPCA,

if the cliques are generated by l× l patches, l2 variables {zi}
are required, each having the same dimensionality as original

image data-set NL. Additionally, the dual variables for each

equality constraints in (9) will require another l2NL storage

entries. As a consequence, for large values of l, the memory

requirements of ADMM become prohibitive.

We propose a new forward-backward splitting algorithm

that exploits fast convolution operators and prevents the ex-

cessive memory overhead of ADMM-based methods. To this

end, we propose to “smoothen” the objective via hyperbolic

regularization of the ℓ2-norm as

‖xc‖2 ≈ ‖xc‖2,ǫ =
√

x2
1 + · · ·+ x2

n + ǫ2 (10)

for some small ǫ > 0. For the sake of clarity, we describe

the forward-backward splitting approach in the specific case

of robust PCA. Note, however, that other regularizers are

possible with only minor modifications.

Using the proposed support prior (6), we write

{Ẑ,X̂}=argmin
Z,X

‖Z‖∗+λJǫ(X)+ µ
2 ‖Y−Z−X‖2F (11)

where

Jǫ(X) =
∑L

t=1

∑

c∈C ‖Xt,c‖2,ǫ (12)

is the smoothed support regularizer, and Xt,c refers to the

clique c drawn from column t of X. We note that this formu-

lation differs from that in Liu et al. [26], where the structured

sparsity is induced across columns of X rather than blocks,

and is solved using conventional ADMM.

The forward-backward splitting (or proximal gradient)

method is a general framework for minimizing objective

functions with two terms [17]. For the problem (11), the

method alternates between gradient descent steps that only

act on the smooth terms in (11), and a backward/proximal

step that only acts on the nuclear norm term. The gradient of

the (smoothed) proximal regularizer in (11) is given column-

wise (i.e., image-wise) by

∇Jǫ(Xt) =
∑

c∈C Xt,c‖Xt,c‖−1
2,ǫ . (13)

The gradient formula (13) requires the computation of the

sum (12) for every clique c, and then, a summation over the

reciprocals of these sums; this is potentially expensive if

done in a naı̈ve way. Fortunately, every block sum can be

computed simultaneously by squaring all of the entries in

X, and then convolving the result with a block filter. The

result of this convolution contains the value of ‖Xt,c‖22,ǫ
for all cliques c. Each entry in the result is then raised to

the −1/2 power, and convolved again with a block filter

to compute the entries in the gradient (13). Both of these
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Algorithm 1 Forward-backward proximal minimization

Input: Y, µ > 0, λ, Ci, α > 0
Initialize: X(0) = 0, Z(0) = 0

Output: X(n),Z(n)

1: while not converged do

2: Step 1: Forward gradient descent on X ,

3: X
(n)
k =X

(n−1)
k − αλ∇Jǫ(X)

+αµ(Yk − Z
(n−1)
k −X

(n−1)
k )

4: Step 2: Forward gradient descent on Z,

5: Z
(n)
k = Z

(n−1)
k + αµ(Yk − Z

(n−1)
k −X

(n−1)
k )

6: Step 3: Backward gradient descent on Z,

7: Z(n) = prox∗(Z
(n), α)

8: end while

two convolution operations can be computed quickly using

fast Fourier transforms (FFTs), so that the computational

complexity becomes independent of clique size.

Algorithm 1 shows the pseudocode for solving (11). In

Steps 1 and 2, the values of X and Z are updated using gra-

dient descent on (11), ignoring the nuclear norm regularizer.

Step 3 accounts for the nuclear-norm term using its proximal

mapping, which is given by

prox∗(Q, δ) = U(sign(S) ◦max{|S| − δ, 0})VT ,

where Q = USVT is a singular value decomposition of Q,
|S| denotes element-wise absolute value, and ◦ denotes

element-wise multiplication.

The forward-backward splitting (FBS) procedure in Algo-

rithm 1 is known to converge for sufficiently small stepsizes

α [3]. Practical implementations of FBS 1 include adaptive

stepsize selection [36], backtracking line search, or accel-

eration [3]. We use the FASTA solver from [17], which

combines such acceleration techniques.

We note that FBS 1 only requires a total of 4NL storage

entries for X,Y,Z and gradient∇Jǫ(X). However, in order

to solve RPCA formulation using ADMM we require 2l2NL
storage entries for auxiliary variables (as discussed before)

and 4NL storage entries for the variables X,Y,Z and dual

variable of Y = X + Z, leading to total of (2l2 + 4)NL
storage entries. Since the memory usage and runtime of FBS

is independent of the clique size, the advantage of FBS over

ADMM is much greater for larger cliques.

2.2.3 Matching Pursuit Algorithm

For compressive-sensing problems involving large ran-

dom matrices, matching pursuit algorithms (such as

CoSaMP [30]) are an important class of sparse recovery

methods. When signals have structured support, model-

based matching pursuit routines have been proposed that

require non-convex minimizations over Markov random

fields [9]. In this section, we propose a model-based match-

ing pursuit algorithm that achieves structured compressive

Algorithm 2 CoLaMP - Convex Lattice Matching Pursuit

Input: y,Φ,K, λ, ǫ
Initialize: x(0) = 0, s(0) = 0, r(0) = y

Output: x(n)

1: while n ≤ max iterations and ‖r(n)‖2 > ǫ do

2: Step 1: Form temporary target signal

3: v(n) ← ΦT r(n−1) + x(n−1)

4: Step 2: Refine signal support using convex prior

5: x
(n)
r = argmin

x
‖x− v(n)‖22 + λJ(x),

6: s← supp(x
(n)
r )

7: Step 3: Estimate target signal

8: Solve ΦT
s Φsxs = ΦT

s y, with Φs = Φ(:, s)
9: Set all but largest K entries in xs to zero,

10: x(n)(s) = xs(s)
11: Step 4: Calculate data residual

12: r(n) ← y −Φx(n)

13: n← n+ 1
14: end while

signal recovery using convex sub-steps for which global min-

imizers are efficiently computable.

The proposed method, Convex Lattice Matching Pursuit

(CoLaMP), is a greedy algorithm that attempts to solve

x̂ =argmin
x

‖Φx− y‖22 + λJ(x)

subject to ‖x‖0 ≤ K.
(14)

The complete method is listed in Algorithm 2. In Step 1,

CoLaMP proceeds like other matching pursuit algorithms;

the unknown signal is estimated by multiplying the residual

by the adjoint of the measurement operator. In Step 2, this es-

timate is refined by solving a support regularized problem of

the form (7). We solve this problem either via ADMM or the

FBS method in Algorithm 1). In Step 3, a least-squares (LS)

problem is solved to identify the signal that best matches the

observed data, assuming the correct support was identified

in Step 2. This LS problem is solved by a conjugate gradient

method. Finally, in Step 4, the residual (the discrepancy

between Φx and the data vector y) is calculated. The algo-

rithm is terminated if the residual becomes sufficiently small

or a maximum number of iterations is reached.

CoLaMP has several desirable properties. First, the sup-

port set regularization (Step 2) helps to prevent signal sup-

port from growing quickly, and thus minimizes the cost of

the least-squares problem in Step 3. Secondly, the use of a

convex prior guarantees that a global minimum is obtained

for every subproblem in Step 2, regardless of the considered

clique structure. This is in stark contrast to other model-

based recovery algorithms, such as LaMP1, and model-based

CoSaMP [2], which requires the solution to non-convex opti-

mization problems to enforce structured support set models.

1It is possible to restrict LaMP to planar Ising models, in which case a

global optimum is computable [9].
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Target CoLaMP (proposed) Overlapping Group Lasso FPC CoSaMP

Figure 2: Compressed sensing recovery results for background subtracted images using M = 3K.

3. Numerical Experiments

We now apply the proposed regularizer to a range of

datasets to demonstrate its efficacy for various applications.

Unless stated otherwise, we showcase our algorithms using

overlapping cliques of size 2 × 2 as shown in Figure 1(b).

Note that the numerical algorithms need not be restricted to

those discussed above as different schemes (such as primal-

dual decomposition) are needed for different situations.

3.1. Compressive Image Recovery

We first consider the recovery of background-subtracted

images from compressive measurements. We use the “walk-

ing2” surveillance video data [37] with frames of dimension

288 × 384. Test data is generated by choosing two frames

from a video sequence and computing the pixel-wise differ-

ence between their intensities. We compare the output of our

proposed CoLaMP algorithm to that of other state-of-the-art

recovery algorithms, such as overlapping group lasso [24],

fixed-point continuation (FPC) [18] and CoSaMP [30]. Note

that CoSaMP defines the support set using the 2K largest

components of the error signal. The group lasso algorithm

is equivalent to minimizing the objective in (14) using varia-

tional method. Unlike the CoLaMP algorithm, this method

does not consider prescribed signal sparsity K. An example

recovery using M = 3K measurements is shown in Fig-

ure 2. The sparsity level K is chosen such that the recovered

images account for 97% of the compressive signal energy.

The average K across datasets is 2800 and we fix λ = 2.
Note that the spatially clustered pixels are recovered almost

perfectly. Further, we randomly generated 50 such test im-

ages from the above dataset and compared the performance

of the CoLaMP, group lasso, and FPC algorithms under

varying numbers of measurements from 1K to 5K. The

performance is measured in terms of the magnitude of recon-

struction error normalized by the original image magnitude.

Results are shown in Figure 4 (left). We clearly see that the

proposed smooth sparsity prior significantly improves the

reconstruction quality over FPC. Furthermore, our algorithm

is 7× faster than the group lasso algorithm. For M/K = 3,

the average runtime is 215s for CoLaMP and 1510s for the

group lasso algorithm.

3.2. Robust Signal Recovery

We next showcase the suitability of CoLaMP for signal

recovery from noisy compressive measurements. We con-

sider a 100 × 100 Shepp—Logan phantom image with a

support size of K = 2636. A Gaussian random measure-

ment matrix was used to sample M = 2K measurements,

and the measurements were corrupted with additive white

Gaussian noise. The signal-to-noise ratio of the resulting

measurements is 10 dB. Figure 3 shows the original and re-

covered images for various recovery algorithms. We also

show the output from the first few iterates of the CoLaMP

algorithm. The support of the target signal is almost exactly

recovered within four iterations of CoSaMP and stabilizes

by the end of 10 iterations. Figure 3 also shows the recov-

ery times of various algorithms running on the same laptop

computer. CoLaMP is approximately 40× faster than the

CoSaMP algorithm and it is at least 2× faster than FPC.

To enable a fair comparison, we also show the output

obtained with CoLaMP using the 8-connected pixel clique in

Figure 1(c), as well as the output of the group lasso algorithm

[40], where each clique is of size 2× 2. All these algorithms

and our proposed method are implemented using ADMM.

Not surprisingly, while all these algorithms beat CoLaMP

in terms of runtime, their recovered signals do not match

CoLaMP in terms of perceived closeness to target signal as

shown in Figure 3. The CoLaMP results are regularized by

λ0 = 16. We then used an increasing value of λn = 1.02nλ0

where n is the iteration number. In practice, we obtain better

results if λ increases over time as it will heavily penalize

sparse, blocky noise. For all other algorithms, we used the

implementations provided by the authors.

For detailed quantitative comparisons, we repeat the

above experiment using 100 Gaussian random measurement
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Target CoLaMP Iter. #1 

CoLaMP 8-connected, 13.6s CoSaMP Iter. #10, 782.7s 

CoLaMP Iter. #4, 12.9s CoLaMP Iter. #10, 19.9s 

s FPC Iter. #10, 11.27s FPC Iter. #1000, 42.85s Group Lasso, 9.1s 

Overlapping Group Lasso, 20s

Figure 3: Robust recovery results for the phantom image from a noisy compressed signal.
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Figure 4: Quantitative Comparison: (left) Recovery performance of compressed sensing on background subtracted images; (center) Robust

compressed sensing recovery error at various SNR; (right) Average denoising gain in PSNR (dB) for various values of κ

matrices and record the average reconstruction error with

SNR varying from 5 dB to 20 dB. For each algorithm, M
is fixed to the minimal measurement number required to

give close to perfect recovery in the presence of noise. For

CoLaMP and overlapping group lasso, we set M = 2K,
whereas for FPC and non-overlapping group lasso we set

M = 3.5K. Figure 4 (center) illustrates that CoSaMP out-

performs FPC at all SNRs even with 1.5K fewer measure-

ments. Group lasso performs best at low SNR while its

performance flattens out starting at 10 dB.

3.3. Color Image Denoising

We now consider a variant of the denoising problem (5)

where the image gradient is defined over color images using

the decorrelated vectorized TV (D-VTV) proposed in [31]

x̂ =argmin
x∈R3N

∑

c∈C

λ‖∇dx
ℓ
c‖2 + ‖∇dx

ch
c ‖2

subject to ‖x− y‖2 ≤ κm. (15)

Here,∇dx
ℓ ∈ R

2N and∇dx
ch ∈ R

4N represent the stacked

gradients of luminance and chrominance channels of the

input color image, the constant m depends on the noise

level, and κ is a fidelity parameter. To solve this problem

numerically, we use the primal-dual algorithm described in

[31], but we replace the shrinkage operator with the proximal

operator (7) to adapt our clique-based regularizer.

Following a protocol similar to D-VTV [31], we conduct

experiments using 300 images from the Berkeley Segmen-

tation Database [29]. Noisy images with average PSNR

20 dB are obtained by adding white Gaussian noise. The

resulting denoised output of our method (Block D-VTV) is

compared to D-VTV in Figure 5. The zoomed-in version

reveals that our method exhibits less uneven color artifacts

and less pronounced staircasing artifacts than the D-VTV

results. A quantitative comparison measured using average

PSNR gain (in dB) is drawn in Figure 4 (right) for various

values of κ. Our method outperforms D-VTV by 0.25 dB.

Also note that our method, Block D-VTV, obtains relatively

better PSNR gain than the state-of-the-art D-VTV method

at smaller values of κ. This observed gain is significant be-

cause smaller κ values lead to a tighter fidelity constraint and

thus a smaller solution space around the noisy input. In such

situations, Block D-VTV helps to improve image quality by

leveraging input from neighboring pixels.

3.4. Video Decomposition

We finally consider the robust PCA (RPCA) problem for

structured sparsity of size 10× 10 as formulated in (11) and

using Algorithm 2. We consider the same airport surveil-

lance video data [25] as in [7] with frames of dimension

144× 176. For a clique formed from l × l patches, we ob-

served that λ = 1/(l
√
n1) works best for our experiments

as opposed to λ = 1/
√
n1 used in [7]. This is because each

element of the matrix X is shared by l2 sparsity inducing

terms. The resulting low rank components (background) and

foreground components of three such example video frames

are shown in Figure 6. For all the approaches, the low rank

components are nearly identical. We observe that the rank of

the low-rank component remains the same. As highlighted

with the green box, the noisy sparse edges appearing in the

original RPCA disappear from the foreground component

using our proposed method. We also display the foreground
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D-VTV 30.41 dB 

D-VTV 32.29 dB 

Block D-VTV 31.09 dB 

Block D-VTV 32.82 dB Original Noisy 

Figure 5: Restoration of noisy images using Block D-VTV and existing D-VTV (best viewed in color).

Original Frames Low rank component - background Original Robust PCA Robust PCA with block sparsity of 3x3 With block sparsity of 10x10 

Figure 6: Sparse-and-low-rank decomposition using original robust PCA and proposed approach.

component obtained using smaller overlapping cliques of

size 3× 3, but solved using ADMM as opposed to forward-

backward splitting (Algorithm 1). We found that for clique

size of 10 × 10 the ADMM method becomes intractable

because it requires approximately 50× more memory than

the proposed forward-backward splitting method with fast

convolutions (i.e., 204NL vs. 4NL).

4. Conclusions

We have proposed a novel structured support regularizer

for convex sparse recovery. Our regularizer can be applied

to a variety of problems, including sparse-and-low-rank de-

composition and denoising. For compressive signal recovery

using large unstructured matrices, our convex regularizer can

be used to improve the recovery quality of existing matching-

pursuit algorithms. Compared to existing algorithms for this

task, our proposed approach enjoys the capability of fast

signal reconstruction from fewer measurements while ex-

hibiting superior robustness against spurious artifacts and

noise. For color image denoising, the restored images re-

veal more homogeneous color effects. For robust PCA, we

achieve improved foreground-background separation with

far fewer artifacts. We envision many more applications that

could benefit of the proposed regularizer, including deblur-

ring and inpainting. More sophisticated directions include

using support regularization for structured dictionary learn-

ing [41] and multitask classification.
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