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Abstract

Learning and capturing both appearance and dynamic

representations are pivotal for crowd video understanding.

Convolutional Neural Networks (CNNs) have shown its re-

markable potential in learning appearance representations

from images. However, the learning of dynamic representa-

tion, and how it can be effectively combined with appear-

ance features for video analysis, remains an open prob-

lem. In this study, we propose a novel spatio-temporal CNN,

named Slicing CNN (S-CNN), based on the decomposition

of 3D feature maps into 2D spatio- and 2D temporal-slices

representations. The decomposition brings unique advan-

tages: (1) the model is capable of capturing dynamics of

different semantic units such as groups and objects, (2) it

learns separated appearance and dynamic representations

while keeping proper interactions between them, and (3)

it exploits the selectiveness of spatial filters to discard ir-

relevant background clutter for crowd understanding. We

demonstrate the effectiveness of the proposed S-CNN model

on the WWW crowd video dataset for attribute recognition

and observe significant performance improvements to the

state-of-the-art methods (62.55% from 51.84% [21]).

1. Introduction

Understanding crowd behaviours and dynamic proper-

ties is a crucial task that has drawn remarkable attentions

in video surveillance research [2, 4, 8, 10, 11, 13, 17–20, 28,

29,32]. Despite the many efforts, capturing appearance and

dynamic information from a crowd remains non-trivial. Ide-

ally, as in most activity analysis studies, objects (i.e. groups

or individuals) of interests should be segmented from the

background, they should be further detected into different

categories, and tracking should be performed to capture the

movements of objects separately. One can then jointly con-

sider the extracted dynamics for global understanding. Un-

fortunately, this typical pipeline is deemed too challenging

for crowd videos.

Can deep learning offers us a tool to address the afore-

mentioned challenges? Contemporary CNNs are capable
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Figure 1. From a crowd video volume ice ballet performance in

(b), several representative semantic feature cuboids and their tem-

poral slices (xt and yt) are shown in (a) and (c). The temporal

slices in the first row of (a) and (c) represent the dynamic patterns

of dancers. Slices for the background visual patterns are visual-

ized in the second row, where the pattern in (a) corresponds to

background scene and that in (c) is audience.

of learning strong generic appearance representations from

static image sets such as ImageNet. Nevertheless, they lack

of the critical capability for learning dynamic representa-

tion. In existing approaches, a video is treated as a 3D

volume and 2D CNN is simply extended to 3D CNN [5],

mixing the appearance and dynamic feature representations

in the learned 3D filters. Instead, appearance and dynamic

features should be extracted separately, since they are en-

coded in different ways in videos and convey different in-

formation. Alternative solutions include sampling frames

along the temporal direction and fusing their 2D CNN fea-

ture maps at different levels [7], or feeding motion maps ob-

tained by existing tracking or optical flow methods [21,27].

While computationally more feasible than 3D CNN, these

methods lose critical dynamic information at the input layer.

In this study, we wish to show that with innovative model

design, appearance and dynamic information can be effec-

tively extracted at a deeper layer of CNN that conveys richer

semantical notion (i.e. groups and individuals). In our new

model design, appearance and dynamics have separate rep-

resentations yet they interact seamlessly at semantic level.

We name our model as Slicing CNN (S-CNN). It consists

of three CNN branches each of which adopts different 2D

spatio- or temporal-filters. Specifically, the first S-CNN

branch applies 2D spatio-slice filters on video volume (xy-
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plane) to extract 3D feature cuboids. The other two CNN

branches take the 3D feature cuboids as input and apply 2D

temporal-slice filters at xt-plane and yt-plane of the 3D fea-

ture cuboids, respectively. An illustration of the model is

shown in Fig. 3.

This design brings a few unique advantages to the task

of crowd understanding.

(1) Object-aware – A 3D feature cuboid generated by a 2D

spatial filter records the movement of a particular seman-

tic unit (e.g. groups or individual objects). An example is

shown in Fig. 1, the feature map from a selected filter of

a CNN hidden layer only shows high responses on the ice

ballet dancers, while that from another filter shows high re-

sponses on the audience. Segregating such semantic classes

in a complex scene is conventionally deemed challenging if

not impossible for crowd video understanding.

(2) Selectiveness – The semantic selectiveness exhibited by

the 2D spatial filters additionally guides us to discrimina-

tively prune irrelevant filters such as those corresponding to

the background clutter.

(3) Temporal dynamics at semantic-level – By applying

temporal-slice filters to 3D feature cuboids generated by

spatial filters at semantic-level, we can extract motion fea-

tures of different semantic units, e.g. speed and acceleration

in x- and y-directions.

We conduct empirical evaluations on the proposed deep

structure and thoroughly examine and analyze the learned

spatio- and temporal-representations. We apply the pro-

posed model to the task of crowd attribute recognition on

the WWW Crowd dataset [18] and achieve significant im-

provements against state-of-the-art methods that either ap-

ply a 3D-CNN [5] or Two-stream CNN [21].

2. Related Work

Compared to applying CNN to the static image anal-

ysis, there are relatively few works on the video analy-

sis [3,5,7,18,21,26,27,30]. A 3D-CNN extends appearance

feature learning in a 2D CNN to its 3D counterpart to simul-

taneously learn appearance and motion features on the input

3D video volume [3, 5].

It has been reported effective on the task of human ac-

tion recognition. However, to capture long-term depen-

dency, larger filter sizes and more layers need to be em-

ployed and the model complexity increases dramatically.

To reduce model complexity, Karpathy et al. [7] studied

different schemes of sampling frames and fused their fea-

tures at multiple stages. These approaches did not separate

appearance and dynamic representations. Nevertheless, tra-

ditional activity studies always segment objects of interests

first and perform tracking on multiple targets that capture

movements of different objects separately [9, 23, 24]. It

shows that space and time are not equivalent components

and thus should be learned in different ways. Ignoring

Figure 2. The slices over a raw video volume may inevitably mix

the dynamics of different objects. For the raw video volume on

the left, the xt-slice in the middle represents the dynamics of both

the dancers and background scene (i.e. ice rink), while the yt-slice

capture the dynamics of audience, dancers, as well as ice rink.

such prior knowledge and learning feature representation

blindly would not be effective. Alternatively, two-branch

CNN models [18, 21, 27] have been proposed to extract ap-

pearance and dynamic cues separately with independent 2D

CNNs and combine them in the top layers. The input of

the motion branch CNN is either 2D motion maps (such as

optical flow fields [21] and dynamic group motion chan-

nels [18]). Different from 3D convolutions, a two-branch

CNN is at the other extreme, where the extractions of ap-

pearance and dynamic representations have no interactions.

These variants are of low cost in memory and calculation,

but they inevitably sacrifice the descriptive ability for the

inherent temporal patterns.

Albeit video-oriented CNNs have achieved impressive

performances on video related tasks, alternative video

representations other than spatial-oriented inputs are still

under-explored. Besides representing a video volume as a

stack of spatial xy-slices cut along the dimension t, previ-

ous works have shown that another two representations of

xt-slices in dimension y and yt-slices in dimension x can

boost feature learning of both appearance and dynamics on

a variety of video-tasks [1,12,14–16,31]. However, they ex-

tract the motion feature slices directly from video volumes,

but ignore the possibility that multiple objects or instances

presented in one slice may occupy distinct motion patterns.

Therefore, their dynamic feature representation may mix

the motion patterns from different objects and thus fail to

describe a particular type of motion patterns. An example

is shown in Fig. 2. Moreover, the internal properties and

connections among different slices were not well learned

but just handled independently.

The proposed Slicing CNN model overcomes the limita-

tions listed above. With innovative model design, appear-

ance and dynamic informations can be effectively learned

from semantic levels, separately and interactively. In ad-

dition, the proposed model is capable of extracting ap-

pearance and dynamic informations from long-range videos

(i.e. 100 frames) without sampling or compression.

3. Slicing CNN Model

In this paper, we propose a new end-to-end model named

as Slicing CNN (S-CNN) consisting of three branches. We

first learn appearance features by a 2D CNN model on each
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Figure 3. The architecture of the three-branch S-CNN model

(i.e. S-CNN). The three branches share the same feature extrac-

tion procedure in the lower layers while adopt different 2D spatio-

and temporal- filters (i.e. xy-, xt-, yt-) in feature learning. A clas-

sifier (e.g. SVM) is applied to the concatenated features obtained

from the three branches for crowd attribute recognition.

frame of the input video volume, and obtain a collection

of semantic feature cuboids. Each feature cuboid captures a

distinct visual pattern, or an object instance/category. Based

on the extracted feature cuboids, we introduce three differ-

ent 2D spatio- and temporal-filters (i.e. xy-, xt-, and yt-)
to learn the appearance and dynamic features from different

dimensions, each of which is followed by a 1D temporal

pooling layer. Recognition of crowd attribute is achieved

by applying a classifier on the concatenated feature vector

extracted from the feature maps of xy-, xt-, and yt-branch.

The complete S-CNN model is shown in Fig. 3, and the

detailed architecture of the single branch (i.e. S-CNN-xy,

S-CNN-xt, and S-CNN-yt) is shown in Fig. 6. Their im-

plementation details can be found in Section 4.

3.1. Semantic Selectiveness of Feature Maps

Recent studies have shown that the spatial filters in 2D

CNNs on image-related tasks posses strong selectiveness

on patterns corresponding to object categories and object

identities [25]. Specifically, the feature map obtained by

a spatial filter at one intermediate layer of a deep model

records the spatial distribution of visual pattern of a specific

object. From the example shown in Fig. 4, convolutional

layers of the VGG model [22] pre-trained on ImageNet de-

pict visual patterns in different scales and levels, in which

the conv4 3 layer extracts the semantic patterns in object

level. For instance, the filter #26 in this layer precisely cap-

conv1_2 conv2_2 conv3_3 conv4_3 conv5_3

Filter  # 26

Frame # 1 Frame # 10 Frame # 20 Frame # 30 Frame # 40 Frame # 50

Input frame

Figure 4. Feature responses of selective filters from different con-

volutional layers of the VGG model, in which conv4 3 layer

owns the best description power for semantic visual patterns in

object level. This semantic feature maps precisely capture the

dancers in ice ballet at all frames presented.

tures ice ballet dancers in all frames. Further examining the

selectiveness of the feature maps, Fig. 5(a–c) demonstrates

that different filters at conv4 3 layer are possibly linked

to different visual patterns. For example, filter #5 indicates

the pedestrians on the crosswalk and filter #211 means ex-

tremely dense crowd; both of them extract patterns related

to crowd. While filter #297 and #212 correspond to back-

ground contents like trees and windows of building.

Motivated by the aforementioned observations, we could

actually exploit such feature cuboids to separately monitor

the movements of different object categories, both spatially

and temporally, while reducing the interference caused by

the background clutter and irrelevant objects.

3.2. Feature Map Pruning

The selectiveness of feature cuboids allows us to design

models on a particular set of feature cuboids so as to capture

crowd-related dynamic patterns and reject motions from ir-

relevant background contents. As shown in Fig. 5, some

feature maps rarely respond to the subjects in crowd but

mainly to background regions. How to efficiently learn dy-

namic feature representations from temporal slices obtained

from these feature cuboids? Are all the feature cuboids

meaningful to learn dynamic patterns? We answer these

questions by pruning spatial filters that generate “irrele-

vant” feature maps and investigate its impact to the attribute

recognition performance.

The “relevance” of a feature map is estimated by inves-

tigating their spatial distributions over a fixed validation set

of images whose foreground crowds are annotated. The an-

notation is a binary mask estimated by a crowd segmenta-

tion method [6], denoted as Si for a query image i ∈ I,

which is then resized to match the resolution of the ex-

tracted feature maps. We adopt two scores (i.e. affinity

score and conspicuous score) to measure the “relevance”.

Affinity score. The affinity score αn
i measures the overlap

ratio of the crowd foreground instances between the mask

Si and the nth binarized feature map F
n
i ∈ Fi,

αn
i = ‖1[Fn

i
>0] • Si‖1/‖Si‖1, (1)

where 1[·] is an indicator function that returns 1 when its
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Figure 5. Semantic selectiveness of visual patterns by the spatial

filters in conv4 3 layer of the VGG model. The orange patches

in (a) and (c) mark the receptive fields of the strongest responses

with a certain filter on the given crowd images in (b). The top five

receptive fields from images in WWW crowd dataset that have the

strongest responses of the corresponding filters are listed aside.

(d) and (e) present patches that have strongest responses for the

reserved spatial filters and pruned spatial filters.

input argument is true. • denotes the element-wise multi-

plication.

Conspicuous score. The conspicuous score κn
i calculates

the feature’s energy inside the crowd foreground annotated

in the mask Si against its overall energy,

κn
i = ‖Fn

i • Si‖1/‖F
n
i ‖1. (2)

We then construct a histogram H with respect to the fil-

ters in a certain layer. For filter #n, if the feature map F
n
i

satisfies either αn
i > τα or κn

i > τκ, given two thresholds

τα and τκ, we have the value of its histogram bin as

H(n) = H(n) + 1[αn

i
>τα∪κn

i
>τκ], ∀i ∈ I. (3)

By sorting H(n) in a descending order, we retain the first r
spatial filters but prune the left filters. The reserved filters

are denoted as Nr.

3.3. Semantic Temporal Slices

Existing studies typically learn dynamic features from

raw video volumes [7] or hand-crafted motion maps [18,

21, 27]. However, much information is lost at the input

layer since they compress the entire temporal range by sub-

sampling frames or averaging spatial feature maps along

the time dimension. Indeed, dynamic feature representa-

tions can also be described from 2D temporal slices that cut

across 3D volume from another two orthogonal planes, as

xt- or yt-slices shown in Fig. 2. They explicitly depict the

temporal evolutions of objects, for example, the dancers in

the xt-slice and audience in the yt-slice.

It is a general case that a xt- or yt-slice captured from a

raw video volume contains motion patterns of multiple ob-

jects of different categories, which cannot be well separated

since the features that identify these categories always refer

to appearance but not motion. For instance, the yt-slice in

Fig. 2 contains motion patterns from audience, dancers and

ice rink. It is not a trivial task to divide their motion patterns

apart without identifying these objects at first.

Motivated by this observation, we propose Seman-

tic Temporal Slice (STS) extracted from semantic feature

cuboids, which are obtained from the xy convolutional lay-

ers, as shown in Fig. 3. As discussed in the previous sub-

sections, such kind of slices can distinguish and purify the

dynamic representation for a certain semantic pattern with-

out the interference from other objects, instances or visual

patterns inside one temporal slice. Furthermore, given mul-

tiple STSs extracted from different horizontal and vertical

probe lines and fed into S-CNN, their information can be

combined to learn long-range dynamic features.

4. S-CNN Deep Architecture

In this section, we provide the architecture details of each

branch (i.e. S-CNN-xy, S-CNN-xt, S-CNN-yt) and their

combination (i.e. S-CNN).

4.1. Single Branch of S-CNN Model

Our S-CNN starts with designing a CNN for extracting

convolutional feature cuboids from the input video volume.

In principle, any kind of CNN architecture can be used for

feature extraction. In our implementation, we choose the

VGG architecture [22] because of its excellent performance

in image-related tasks. As shown in Fig. 6, for an input

raw video volume, we first follow the original setting of the

lower layers of VGG-16 from conv1 1 to conv4 31 to

extract spatial semantic feature maps. The size of the fea-

ture cuboid Fs
i of time i is c × hs × ws, where c is the

number of feature maps determined by the number of neu-

rons, hs and ws denote the size of each feature map in the

xy-plane. The number of feature cuboid is determined by

the input video length τ .

S-CNN-xy branch. The S-CNN-xy branch learns spatio-

temporal features from the xy-plane by xy-convolutional

filters. Based on the spatial feature cuboids {Fs
i }

τ
i=1,

we continue convolving feature maps with xy-filters from

conv5 1 to conv5 3, following VGG-16’s structure to

get the xy-temporal feature cuboids with a size of τ × c ×

1This structure is used for all experiments except S-CNN-RTS (raw

temporal slices from video volume), whose lower layers are not for feature

extraction, but also fine-tuned for feature learning.
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pooling layer. Arrows in different colors denote different dimensions. (i) The first four bunches of convolutional layers in red are 2D

convolutions on xy-slices, while the last bunch in orange are 2D convolutions on xt-slices. Following each bunch of the convolutional

layers is a pooling layer. (ii) After the last convolutional layer (i.e. conv5 3), a temporal pooling layer in violet is adopted to fuse cues

learned from different xt-slices by a 1× 1 filter. (iii) The first two fully-connected layers both have 4096 neurons while the last one is 94

as the number of crowd attributes. All three branches (i.e. S-CNN-xt/-yt/-xy) use the same structure except with different types of filters.

ht ×wt. In other words, there are c xy spatio-temporal fea-

ture cuboids Fxy , each of which is τ × ht × wt. A 1 × 1
filter is then adopted on each Fxy

i to fuse the temporal in-

formation from different frames. The spatio-temporal fea-

ture maps Fxy(t) are fed into three fully-connected layers

to classify the crowd-related attributes.

S-CNN-xt / -yt branch. For the purpose of learning fea-

tures from {Fs
i }

τ
i=1 by xt- or yt- branch, we first swap

dimensions of the original xy-plane to the corresponding

xt- or yt-plane. Take xt-branch as an example, as shown in

Fig. 6, the semantic feature cuboids turn to be hs×c×τ×ws

after swapping dimensions. We then substitute the xy-

convolutional filters used in xy-branch with xt-filters for

conv5 1 to conv5 3 layers. Before temporal pooling at

the last stage, again we need to swap dimensions from xt-
plane to xy-plane. The following structures are the same as

those in xy-branch. The yt-branch is similar to xt-branch

but with a different types of convolutional filters.

4.2. Combined S-CNN Model

After training each branch separately, we fuse the fea-

tures learned from different spatial and temporal dimen-

sions together by concatenating the spatio-temporal feature

maps (i.e. Fxy(t), Fxt(y), and F (x)ty) from three branches

with ℓ1 normalization. Linear SVM is adopted as the classi-

fier for the sake of its efficiency and effectiveness on high-

dimensional feature representations. We train a SVM in-

dependently for each attribute, thus there are 94 models in

total. To train each SVM, we consider videos containing

the target attribute as the positive samples and leave all the

rest as the negative samples. The complete S-CNN model

is visualized in Fig. 3.

5. Experiments

5.1. Experimental Setting

Dataset. To demonstrate the effectiveness of the proposed

S-CNN deep model, we investigate it on the task of crowd

attribute recognition with the WWW Crowd Dataset [18],

which is a comprehensive crowd dataset collecting videos

from movies, surveillance and web. It covers 10, 000 videos

with 94 crowd attributes including places (Where), subjects

(Who), and activities (Why). Following the original setup

in [18], we train the models on 7220 videos and use a set

of 936 videos as validation, while test the results over the

rest 1844 videos. These sets have no overlap on scenes to

guarantee the attributes are learned scene-independently.

Evaluation Metrics. We adopt both Area Under ROC

Curve (AUC) and Average Precision (AP) as the evaluation

metrics2. AUC is a popular metric for classification and its

lower-bound is fixed to 0.5. It fails to carefully measure

the performance if the ratio between the positive and nega-

tive samples is extremely unbalanced, which is just the case

we confront. AP is effective to evaluate the multi-attribute

detection performance, which is lower bounded by the ra-

tio of positive samples over all the samples. Its lower bound

can be written as mAPlb = 1
Nattr

∑Nattr

k=1 |Tk|/|T |, where Nattr

is the number of attributes, T is the test set, Tk is the set of

samples with the attribute indexed by k. In our experiments,

the theoretical lower bound is 0.067.

Model Pre-training. As a common practice in most deep

learning frameworks for visual tasks, we initialize the pro-

posed S-CNN models with the parameters pre-trained on

ImageNet. This is necessary since VGG requires diverse

2 [18] only uses AUC for evaluation.
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mean AUC mean AP

τ 20 50 100 20 50 100

RTS-xy 91.06 92.28 - 49.56 52.05 -

STS-xy 91.76 92.39 92.52 54.97 55.31 55.67

Table 1. Results of S-CNN-xys learned from raw- and semantic-

level with different temporal ranges (bolds are the best).

methods τ
mean AUC mean AP

xy xt yt xy xt yt

STS 20 91.76 91.11 90.52 54.97 52.38 50.08

STS 100 92.52 93.33 92.62 55.67 59.25 57.57

Table 2. Results of S-CNNs learned from semantic-level with

short- and long-range temporal slices. Results in bold are the best.

data to comprehensively tune its parameters. Although

WWW crowd dataset has million of images, the diversity

of scenes is low (i.e. around 8000). Specifically, we em-

ploy the VGG-16 model with 13 convolutional (conv) lay-

ers and 3 fully-connected (fc) layers. All conv layers in

S-CNN models are initialized with the pre-trained model

while three fc layers are randomly initialized by Gaussian

distributions. We keep the first two fc layers with 4096
neurons followed by Rectified Linear Units (ReLUs) and

Dropout while the last fc layer with 94 dimensions (at-

tributes) followed by a cross-entropy loss function. If no

specific clarifications are stated, we apply this strategy to

initialize all experimental models.

5.2. Ablation Study of S-CNN

5.2.1 Level of Semantics and Temporal Range

The unique advantage of S-CNN is that it is capable of

learning temporal patterns from semantic layer (higher layer

of deep network). In addition, S-CNN can naturally accom-

modate larger number of input frames due to its effective

network design, thus capable of capturing long-range dy-

namic features.

To understand the benefits of learning long-range dy-

namic features from semantic level, we compare the recog-

nition performance of the proposed S-CNN models based

on semantic temporal slices (STS) extracted from layer

conv4 3 and raw temporal slices (RTS) extracted directly

from the video volume. The video length τ has three ranges:

20, 50, and 100 frames, denoted as S(/R)TS[τ ]. Due to hard-

ware limitation of current implementation, we cannot afford

RTS[100] with full spatial information.

Low-level v.s. Semantic-level Temporal Slices. In com-

parison with the results by RTS[τ ], STS[τ ] (τ = 20, 50) is

superior especially in mAP scores, as shown in Table 1. The

results of xt/yt− semantic slices in Table 2 also reveal that

the feature learning stage discovers motion patterns for se-

mantic visual patterns, and they act well as the proxies to

convey the motion patterns.

Short-range v.s. Long-range Feature Learning. As

shown in Table 2, STS[100] performs the best and beats the

|Nr|
mean AUC mean AP

xy xt yt xyt xy xt yt xyt

100 91.02 91.70 91.16 92.31 46.83 50.32 48.18 53.14

256 92.61 92.49 92.22 93.49 54.68 54.13 53.26 60.13

256 rnd 91.40 92,32 90.21 92.69 51.87 53.12 46.38 57.03

512 92.52 93.33 92.62 94.04 55.67 59.25 57.57 62.55

Table 3. Results of STS[100] learned from different number of se-

mantic neurons. Results by single-branch models (xy, xt and yt)

and the complete model (xyt) are presented.

other variants under both evaluation metrics. It demonstrats

that the learned long-range features can actually increase

the recognition power to find the crowd attributes that dis-

tinctively respond to long-range dynamics but are less likely

to be identified by appearance alone, such as “performance”

and “skate”. See examples in Fig. 7(c).

5.2.2 Pruning of Features

Feature pruning is discussed in Section 3.2. Here we show

that by pruning features that are less relevant to the charac-

teristics of crowd, it is promising to observe that the pruned

irrelevant features cuboids do not make an significant drop

on the performance of crowd attribute recognition. In par-

ticular, we prune 412 and 256 feature cuboids respectively

out of the total set (i.e. 512) at the layer conv4 3 with re-

spect to the score defined in Section 3.2, and re-train the

proposed deep models under the same setting as that of

STS[100]
3. Their mAUC and mAP are reported in compari-

son with the results by the default STS[100] in Table 3.

Compared with the default model STS[100] with |Nr| =
512, the models with |Nr| = 256 (1) approach to the recog-

nition results by STS[100], (2) outperform STS[100] on 13 at-

tributes, 7 of which belong to “why” (e.g. “board”, “kneel”,

and “disaster”), and (3) save about 3% on memory and 34%
on time. With 100 feature cuboids remained, the proposed

S-CNN can still perform well, and superior to the state-of-

the-art methods (i.e. DLSF+DLMF [18] and 3D-CNN [5]),

even with a single branch. For example, the xt-branch

has 50.32% mAP which improves 9.1% and 11.2% from

DLSF+DLMF and 3D-CNN respectively, and approaches

to 51.84% by the Two-stream [21]. To further demonstrate

the proposed pruning strategy, we randomly pruned half of

the filters (|Nr| = 256 rnd) for the comparison. As ob-

served from the Table 3, the proposed pruning method per-

forms much better than random pruning, suggesting the ef-

fectiveness of the proposed pruning strategy.

The results demonstrate: 1) the relevant spatial features

are always companied with top ranks in H(n), proving the

effectiveness of the proposed criteria. 2) spatial and dy-

namic representations can be represented by sparse yet ef-

fective feature cuboids. A small fraction of semantic feature

cuboids are enough to fulfil crowd attribute recognition.
3Without other notations, STS[100] denotes the 100 frames-based S-

CNN without feature cuboids pruning.
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Figure 7. Qualitative recognition results on ground truth attributes annotated for the given examples. (a) Comparison between S-CNN and

state-of-the-art methods. (b) Results by feeding temporal branch (S-CNN) and without feeding (S-CNN-xy). (c) S-CNN-STS learns on

100 and 20 frames. Different colors represent different methods. Bars are plot by the predict probabilities. Best viewed in color.

5.2.3 Single Branch Model v.s. Combined Model

The combination of appearance and dynamic features in-

deed composes representative descriptions that identify

crowd dynamics. Not surprisingly, the combined model in-

tegrating xy-, xt- and yt-branches outperforms all single-

branch models under both evaluation metrics. Under the

setting of semantic temporal slices with a temporal range of

100 frames and keeping all feature cuboids, the combined

model S-CNN reports remarkable mAUC score 94.04%
and mAP score 62.55%, which improve the optimal results

of single-branch models by 3.3% (reported by xt-branch)

in mAP. The improvement over mAUC is only 0.71%, but

it might attribute to the deficiency of evaluation power.

As shown in Table 3, the S-CNN with |Nr| = 100 and

|Nr| = 256 are also superior to the optimal single branch

with improvements of 2.82% and 5.45% respectively.

Qualitative comparisons between the spatial branch S-

CNN-xy and the combined model S-CNN are in Fig. 7(b),

which further demonstrate the significance of the temporal

branches as they help to improve the performance for most

attributes. In particular, for attributes of motion like “mob”

and “fight”, “sit”, “stand”, “walk” and etc, S-CNN presents

a remarkable discriminative power for identification.

5.3. Comparison with State-of-the-Art Methods

We evaluate the combined Slicing CNN model (S-CNN)

with recent state-of-the-art spatio-temporal deep feature

learning models:

1) DLSF+DLMF [18]. The DLSF+DLMF model is origi-

nally proposed for crowd attribute recognition. It is a two-

branch model with a late fusion scheme. We employ their

published model with the default setting.

2) Two-stream [21]. The Two-stream contains two branches

as a spatial net and a temporal net. We follow the setting by

inputting 10-frame stacking optical flow maps for temporal

net as adopted by both [21] and [18]. Besides, the parame-
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Figure 8. Performance comparisons with the referenced methods.

The upper one is evaluated by mean AUC and the lower one is by

mean AP. The histograms are formed based on the mean scores for

attributes of “Where”, “Who” and “Why”, respectively. “WWW”

represents the evaluations on all attributes.

ters for temporal nets are also initialized with the VGG-16

model, as that in [27] for action recognition.

3) 3D-CNN [5]. A 3D-CNN model requires very large

memory to capture long-range dynamics. As [5] applied

3D kernels on hand-crafted feature maps, for fair compar-

ison, we mimic it by extracting features in lower layers of

STS[100], and substitute 3×3×3 3D kernels for all 2D ker-

nels after conv4 3 layer and cut off half kernel numbers4.

5.3.1 Quantitative Evaluation

As shown in Fig. 8, histograms with respect to mAUC and

mAP scores are generated to measure the performance on

each type of crowd attributes, e.g. “Where”, “Who” and

“Why”, as well as on the complete set “WWW”. Clearly

the proposed model outperforms the state-of-the-art meth-

4It needs 90G to handle 100 frames by the original number of kernels.
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Figure 9. Average precision scores for all attributes by S-CNN and Two-stream. The set of bars marked in red, green, and blue refer to

“where”, “who”, and “why” respectively. The bars are sorted according to the larger APs between these two methods.

ods under both metrics, and shows a large margin (par-

ticularly on mAP) over the second best approach in each

sub-category. Among the reference methods, the Two-

stream presents the best performance in all sub-categories.

DLSF+DLMF wins 3D-CNN by the mAUC score on all

three attribute types but loses at “Why” by mAP score. The

reference methods tend to perform worst on motion-related

attributes like “why”, because they can neither capture long-

term dynamics as Two-stream or 3D-CNN, nor extract dy-

namic features from specific and hand-craft motion feature

maps as DLSF+DLMF. Since the proposed method is able

to capture the dynamic feature representations from long-

range crowd video and semantically push the features to

be crowd-related, its result is thus superior over all the

rest methods. Notice that S-CNN also incorporates the ap-

pearance features, which increases the performance of at-

tributes at “Where” and “Who” even further. Even with a

pruning of 412 feature cuboids from S-CNN model, it can

still reach 53.14% mAP which also outperforms 51.84% by

Two-stream [21].

We are also interested in the performance of each at-

tribute. Fig. 9 shows the overlapped histograms of average

precisions for all attributes by Two-stream and S-CNN. The

bars are grouped by their sub-categories and sorted in de-

scending order according to the larger AP between these

methods at one attribute. It is easy to find that the en-

velope superimposing this histogram is always supported

by the bars of S-CNN with prominent performance gain

against Two-stream, while just in 15 attributes the latter

wins. Among the failure attributes, most of them contain

ambiguities with each other and have low APs for both

methods. It means the recognition power is defective to

these attributes by the existing deep learning methods. For

example, “cheer” and “wave” may be confused with each

other, “queue” and “stand” may happen in similar scenes.

5.3.2 Qualitative Evaluation

We also conduct quantitative evaluations for a list of exem-

plar crowd videos as shown in Fig. 7(a). The bars are shown

as prediction probabilities. Although the probabilities of

one attribute do not directly imply its actual recognition

results, they uncover the discriminative power of different

method as lower probability corresponds to ambiguity or

difficulty in correctly predicting one attribute. The proposed

S-CNN reliably predicts these attributes with complex or

long-range dynamic features, like “graduation” and “cere-

mony”, “parade” and “ride”, “check-in/out”and etc. More-

over, some attributes that cannot be well defined by motion

can also be revealed by S-CNN, for example “restaurant”,

“soldier” and “student”. The appearance branch of S-CNN

indeed captures the inherent appearance patterns belonging

to these attributes. Some ambiguous cases do occur, e.g.,

“outdoor” in top-left and “sit” in bottom-left examples. The

top-left instance takes place in a scene of airport/railway

station – it is unclear whether the scene is an outdoor or

indoor area.The bottom-left instance is a graduation cere-

mony, in which both “walk” and “sit” co-exist.

6. Conclusion

In this paper, we present a novel Slicing CNN (S-CNN)

for crowd video understanding, with only 2D filters. We

show that the spatial (xy-) filters capture appearance in-

formation, while temporal-slice (xt- and yt-) filters cap-

ture dynamic cues like speed and acceleration in x- and

y-directions respectively. Their combination shows strong

capacity in capturing spatio-temporal patterns, as evidence

its results present superior performance in crowd attribute

recognition on a large-scale crowd video dataset, against

state-of-the-art deep models. We further show that spatial

feature cuboids pruning could reduce redundancy leading

to a sparser network. It is interesting to explore more strate-

gies on feature cuboids selection in the future work.
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