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Abstract

Due to its wide range of applications, matching between

two graphs has been extensively studied and remains an ac-

tive topic. By contrast, it is still under-exploited on how

to jointly match multiple graphs, partly due to its intrinsic

combinatorial intractability. In this work, we address this

challenging problem in a principled way under the rank-1

tensor approximation framework. In particular, we formu-

late multi-graph matching as a combinational optimization

problem with two main ingredients: unary matching over

graph vertices and structure matching over graph edges,

both of which across multiple graphs. Then we propose an

efficient power iteration solution for the resulting NP-hard

optimization problem. The proposed algorithm has sever-

al advantages: 1) the intrinsic matching consistency across

multiple graphs based on the high-order tensor optimiza-

tion; 2) the free employment of powerful high-order node

affinity; 3) the flexible integration between various types of

node affinities and edge/hyper-edge affinities. Experiments

on diverse and challenging datasets validate the effective-

ness of the proposed approach in comparison with state-of-

the-arts.

1. Introduction

Finding the correspondences across multiple sets of vi-

sual features is an essential problem in computer vision, and

has a wide spectrum of applications such as object catego-

rization [14, 23], shape analysis [4], feature tracking [24],

and action recognition [5, 36]. A large amount of graph

matching algorithms have been proposed in past decades,

most of them are designed for the matching between t-

wo graphs, while multiple graph matching (MGM) is left

under-exploited. Many scenarios in computer vision in-

∗Correspondence author.

Figure 1. Matching consistency illustration (with 3-graph match-

ing as an example). Left: inconsistency arises with the contradic-

tory node matches such as b ↔ l, l ↔ j and i ↔ b. Right: the

consistent matching triple b ↔ l, l ↔ j and j ↔ b. Note that the

implicit assumption of the one-to-one mapping constraint is used.

volve sets of multiple similar/same targets, thus MGM has

wide perspectives in multi-view geometry and 3D recon-

struction [15, 2], 3D shape matching [18, 17], cross tempo-

ral object analysis [28, 35], pattern recognition [6, 30, 26],

and so on.

A simple strategy for multi-graph matching is to first per-

form pairwise graph matching for graph pairs independent-

ly and then merge the results. However, such strategy meets

the known matching inconsistency problem which is illus-

trated in Figure 1. Most existing multi-graph matching ap-

proaches use pairwise matching as the key building block.

These methods inherit advantages of off-the-shelf pairwise

graph matching algorithms, but meanwhile suffer from the

matching inconsistency problem.

Some recent studies aim to address issues in both pair-

wise matching optimization and matching consistency. For

example, Pachauri et al. [26] apply spectral analysis for s-

moothing the matching inconsistency and Yan et al. [33]

design an elegant iterative solution to balance the match-

ing score and consistency. More examples are provided in

the Sec. 2. While two-graph matching leverages pairwise

between-object affinities, MGM deals with affinities of or-

der higher than two. In many cases, such high order affin-

ity can not be decomposed into, or even approximated by,

pairwise ones. Previous MGM algorithms, however, often
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restrict themselves on pairwise affinities and thus ignore the

important high-order information across multiple objects.

To address the above issue, we formulate MGM as a

combinatorial optimization dealing with two types of high-

order information: the vertex affinity over a group of ver-

tices and the structure affinity over a set of hyper-edges. By

treating these affinities as high-order tensors, we formulate

MGM in the low rank tensor approximation framework and

design a tensor power iteration algorithm in this work.

The proposed solution enjoys serveral advantages from

various components. First, working on high-order affinity

tensors naturally avoids the matching inconsistency prob-

lem. Second, it is expediently to explore various type-

s of powerful high-order affinities. Moreover, the frame-

work is very flexible to integrate the vertex affinities and

edge/hyper-edge affinities. To evaluate the proposed solu-

tion, we test it along with state-of-the-arts on several popu-

lar benchmarks, and it generates very promising results on

all the experiments.

To summarize, the main contributions in this work in-

clude: (1) a new MGM optimization formulation based on

high-order node and edge/hyper-edge affinities; (2) a novel

tensor power iteration algorithm for solving the high-order

MGM optimization; and (3) a sequence of convincing ex-

perimental validations.

2. Related work

The problem of matching two graphs has been extensive-

ly studied in the literature [10]. Graph matching is tradition-

ally formulated as an optimization problem, and there are

various algorithms such as the Graduated Assignment algo-

rithm (GAGM) [16], the Integer Projected Fixed Point (IPF-

P) method [22], the Spectral Matching methods [21, 11], the

path-following algorithms [37, 25, 39], and so on. Both the

pairwise edge affinity and the hyper-edge affinity can be ex-

ploited in graph matching, the pairwise edge affinity is gen-

erally sensitive to the scaling and rotation, while hyper-edge

affinity explores high-order structure information and can

be robust to certain geometric transformations [38, 13, 20].

While matching two graphs has been intensively studied,

multi-graph matching (MGM), which we focus on in this

paper, receives relatively less attention. The state-of-the-

arts MGM algorithms can be roughly divided into two cate-

gories, affinity-driven and the consistency-driven approach-

es. The affinity-driven approaches [30, 31, 33] formulate

MGM as an optimization problem, in which the objective

is usually the summation of the overall pairwise matching

affinity scores [31], sometimes supplemented by a match-

ing consistency regularizer [33]. For example, the GAG-

M method [16] is applied repeatedly across graph pairs to

achieve cross graph matching [31]. In the work [33], the

pairwise matching score is regularized with the inconsis-

tency measure, and followed by the alternative optimiza-

tion iterations. The consistency-driven approaches [26, 34]

put more attention on the matching consistency. An itera-

tive optimization solution is proposed in [34] with the rigid

matching consistency constraint. The approach [26] pools

all pairwise matching solutions into a single matrix, then the

globally consistent array of matchings are estimated with

the spectral smoothing algorithm.

The proposed MGM algorithm is very different from

previous work. The key novelty lies in the new tensor ap-

proximation based optimization framework, the proposed

approach works directly on the global matching space. Such

novelty allows us to deal with high-order matching informa-

tion, which can effectively boost the matching performance

as demonstrated in the experiments.

On the algorithm side, our study is inspired by recent

work on using tensor-based high-order matching, in partic-

ular [13, 7, 28, 27]. The algorithm in [13] uses high-order

tensor for hyper-graph matching between two graphs, and

the framework in [28] uses tensor approximation for multi-

target tracking, which can be viewed as a degenerated case

of MGM (no edges involved). Both algorithms exploit ten-

sor power iteration for solving their models. By contrast,

our work targets different problems. Moreover, our work

deals with high-order information not only across multiple

graphs, but also across hyper-edges.

3. Problem Formulation

We first introduce some notations used in this paper, then

provide a short retrospective on pairwise graph matching,

and finally formulate MGM used in our study.

3.1. Notation

A graph is generally represented as G = (V,E,A),
where V denotes the node set, E the edge set and A the

attribute set. The attribute set A includes the node features

such as the position, appearance information, as well as the

edge properties such as the distance and orientation.

To reduce the complexity of formulations and derivation-

s, we use various notations for conciseness. Through this

paper, by default we use font such as X for a set, X a ten-

sor, X a matrix, x a vector and x a scalar number.

The element of a datum is consistently indexed by the

subscripts. For example, the i-th entry of a vector a is de-

noted by ai, the (i, j)-th entry of a matrix A by aij and the

(j1, j2, . . . , jK)-th entry of aK-th order tensor A by aj1:jK .

By contrast, a datum term itself is indexed by its superscript,

e.g., the k-th graph is represented as Gk =
(

Vk,Ek,Ak
)

.

Finally, when lower-case italic letters (i, j, . . . ) are used

for indices in summation, they by default run from 1 to their

corresponding upper-case ones (I, J, . . . ). For example,
∑

i

denotes for
∑I

i=1
.
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3.2. Pairwise Graph Matching

Given two graphs G1 =
(

V1,E1,A1
)

and G2 =
(

V2,E2,A2
)

. The numbers of vertices in V1 and V2 are

I1 and I2 respectively. A solution of matching is de-

fined as a subset of possible correspondences between V1

and V2, that can be represented by an assignment matrix

X∈{0, 1}
I1×I2 . If vertex v1i1 ∈V1 matches vertex v2i2 ∈ V2,

then xi1i2 =1, and xi1i2 = 0 otherwise. We further denote

x ∈ {0, 1}
I1I2 as the vectorized replica of X.

The objective function f(x) measures the overall sim-

ilarity between graphs G1 and G2. It has two compo-

nents, the unary similarity sV (v
1
i1
, v2i2) for a vertex pair

(v1i1 ∈ V1, v2i2 ∈ V2), and the compatibility/similarity

sE(e
1
i1i

′

1

, e2
i2i

′

2

) over an edge pair (e1
i1i

′

1

∈ E1, e2
i2i

′

2

∈ E2).

The two similarities are popularly formulated into a sym-

metric matrix B ∈ RI1I2×I1I2 whose diagonal terms are

taken from sV and non-diagonal terms from sE . This way,

the objective function has the form

f2(x) =
∑

i1,i2

xi1i2bi1i2,i1i2+
∑

i1,i2,i
′

1
,i′

2

xi1i2bi1i2,i′1i
′

2
xi′

1
i′
2

= x⊤Bx.

(1)

For hyper-graph matching, the pairwise edge similarity

in (1) takes a more complicated form. Finally, the graph

matching problem can be expressed as to find an assign-

ment solution x∗ that maximizes f2(x) with the following

matching constraints






∑

i1
xi1i2 ≤ 1, ∀i2 = 1, 2, . . . , I2

∑

i2
xi1i2 ≤ 1, ∀i1 = 1, 2, . . . , I1

xi1i2 ∈ {0, 1}, ∀i1 = 1, . . . , I1; i2 = 1, . . . , I2

(2)

3.3. Multi­graph Matching

MGM extends pairwise graph matching to multiple

graphs. Given K + 1 graphs {Gk = (Vk,Ek,Ak) :
k = 0, 1, . . . ,K}, the problem of multi-graph matching

(MGM) is to find a subset of possible correspondences

across all K+1 graphs, and the solution can be denoted

by a K+1-th order assignment tensor X ∈ RI0×···×IK ,

where Ik(k = 0,. . . ,K) is the cardinality of node set Vk.

The element xi0:iK in X denotes the group-wise matching

across the vertices
{

v0i0 , . . . , v
K
iK

: vkik ∈ Vk
}

. Specifical-

ly, xi0:iK = 1 means that the correspondence is select-

ed in the solution, and 0 otherwise. The vertex affinity

of the group-wise matching is denoted by ai0:iK , and the

structural affinity over the edge set {e0
i0i

′

0

, . . . , eK
iKi′

K

} by

sE(e
0
i0i

′

0

, . . . , eK
iKi′

K

). With these definitions, the objective

function fmgm(X ) for MGM can be formulated as

fmgm(X ) =
∑

I

xi0:iKai0:iK+

λ
∑

I

∑

I′

xi0:iKsE

(

e0i0i′0
, . . . , eKiKi′

K

)

xi′
0
:i′

K
,

(3)

where I
.
= {i0, . . . , iK} and I′

.
= {i′0, . . . , i

′
K} are the index

sets, and λ is the weighting parameter. The MGM problem

is to find a solution that maximizes fmgm(X ) subject to the

following group-wise matching constraints

{
∑

I\{ik}

xi0:iK ≤ 1, ∀k = 0, . . . ,K; ik = 1, . . . , Ik

xi0:iK ∈ {0, 1}, ∀ik = 1, . . . , Ik
(4)

where ‘\’ denotes set difference.

The objective function fmgm(X ) is the high-dimensional

extension of the objective function f2(x) in pairwise graph

matching. The first component in fmgm(X ) is the multi-

dimensional assignment score extended from the linear as-

signment; while the second part measures the affinity score

depending on edges from all graphs.

4. Proposed framework and algorithm

The maximization of the objective (3) subject to (4) is

an NP hard problem in general, and the exact solution is

extremely difficult to be obtained. In this section, we first

bring in some relaxations for this optimization, and then

propose a tensor based approximate solution.

4.1. Relaxed Optimization

We use three main relaxations, high-order matching de-

composition, edge affinity relaxation and real-valued relax-

ation, to make the MGM objective in (3) tractable.

High-order matching decomposition: The high-order

group-wise matching xi0:iK results in an extremely chal-

lenging optimization in the very high-dimensional solution

space. To reduce the computation complexity, we decom-

pose the high-order matching xi0:iK into pairwise ones as

xi0:iK = x1i0i1x
2
i1i2

. . . xKiK−1iK
= x1j1x

2
j2
. . . xKjK , (5)

where xkik−1ik
is an element in the assignment matrix Xk for

matching graphs Gk−1 and Gk, xkjk ∈ xk is the vectorized

replica of xkik−1ik
with relation between jk and (ik−1, ik)

defined by

{

jk
.
= (ik−1 − 1)× Ik + ik,

jk
.
= ik, jk

.
= ik−1.

(6)

Note that, for notation simplicity, the elements of both the

vector and matrix assignments use the same scalar symbol

(e.g., x) but with different subscripts (e.g., xj for an element

of x and xi1i2 an element in X).

The decomposition (5) is valid since the group-wise

matching xi0:iK is true if and only if all pairwise items

{xkik−1ik
, k = 1, · · · ,K} are true.

Edge affinity relaxation: We approximate the group-

wise edge affinity sE

(

e0
i0i

′

0

, . . . , eK
iKi′

K

)

with pairwise edge
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affinities as

sE

(

e0i0i′0
, . . . , eKiKi′

K

)

≈

K
∑

k=1

skik−1ik,i
′

k−1
i′
k

, (7)

where sk
ik−1ik,i

′

k−1
i′
k

denotes the pairwise similarity be-

tween edges ek−1

ik−1i
′

k−1

and ek
iki

′

k

.

Note that such approximation does not hold for group-

wise vertex affinity, i.e., ai0:iK , which is critical to encode

high-order group-wise information across multiple graphs.

Real-valued relaxation: The constraints (4) make MGM a

difficult integer programming. We relax them to real-valued

domain and get the new constraints as

xi0:iK ∈ [0, 1] . (8)

The pairwise matching constraints xkik−1ik
∈ [0, 1] are re-

laxed in the same way.

With the above relaxations, we obtain a new MGM for-

mulation as:

argmax
X

fmgm(X) =
∑

I

ai0:iK

K
∏

k=1

xkik−1ik
+

λ
∑

k

∑

Pk

xkik−1ik
skik−1ik,i

′

k−1
i′
k

xki′
k−1

i′
k

,

(9)

s.t.







∑

ik−1
xkik−1ik

≤ 1, ∀ik = 1, . . . , Ik
∑

ik
xkik−1ik

≤ 1, ∀ik−1 = 1, . . . , Ik−1

xkik−1ik
∈ [0, 1] , ∀ik−1, ik

(10)

where Pk = {ik−1, ik, i
′
k−1

, i′k} is the index set, and X =

{X1, . . . ,XK} is the set of pairwise matching.

4.2. Tensor based Optimization

Similar to matrix-vector product form in the pairwise

graph matching objective (1), we now reformulate the MG-

M objective (9) as the tensor-vector product formulation

and exploit the tensor tools for the final optimization.

Firstly, we take advantage of the vectorized matching

item xkjk other than its matrix replica xkik−1ik
. Secondly,

the high-order affinity ai0:iK is rearranged by the vectorized

indices. A new high-order affinity cj1:jK is represented as

cj1:jK=

{

a j1:jKjK
, if jk=jk+1, ∀k=1, . . . ,K−1

0, otherwise.
(11)

In this way, each ai0:iK has a corresponding element cj1:jK ,

while the elements cj1:jK with no counterpart in ai0:iK are

set to 0. The same strategy has been used in [28] where

details can be found. Similarly, the vectorized index-based

pairwise edge affinity can be re-written as

skjkj′k
= skik−1ik,i

′

k−1
i′
k

. (12)

Using the above two reformulations, we denote the ver-

tex affinity as a K-th order tensor C = (cj1:jK ), and the

edge affinity matrix as Sk = (sk
jkj

′

k

). Now we can reformu-

late the objective in (9) in the form of tensor-vector product

as

fmgm (X)=
∑

J

cj1:jK

K
∏

k=1

xkjk+ λ

K
∑

k=1

∑

jk,j
′

k

xkjks
k
jkj

′

k

xkj′
k

= C ×1 x1...×K xK+λ

K
∑

k=1

xk
⊤

Skxk,

(13)

where J = {j1, . . . , jK} is the index set, and ‘×k’ denotes

the k-mode product of the tensor with a vector [12].

In this work, we make a step further to formulate the

problem as the multi-hyper-graph matching1 by replacing

the pairwise edge affinity with a hyper-edge one. Suppose

that xkjk , xklk and xkhk
represent the matches on node pairs

vk−1

ik−1
↔ vkik , vk−1

pk−1
↔ vkpk

and vk−1
qk−1

↔ vkqk respectively.

Hyper-edges ek−1

ik−1pk−1qk−1
and ekikpkqk

are based on the n-

ode triples {vk−1

ik−1
, vk−1

pk−1
, vk−1

qk−1
} and {vkik , v

k
pk
, vkqk} respec-

tively, and the hyper-edge affinity between ek−1

ik−1pk−1qk−1

and ekikpkqk
is defined as skjklkhk

∈ Sk. The objective

of multi-hyper-graph matching is extended from (13) and

computed as

fmgm (X)=
∑

J

cj1:jK

K
∏

k=1

xkjk+λ
K
∑

k=1

∑

Lk

skjklkhk
xkjkx

k
lk
xkhk

= C×1x1...×KxK+λ
K
∑

k=1

Sk×1xk×2xk×3xk,

(14)

where Lk = {jk, lk, hk} is the index set for hyper-edges.

Now our MGM problem is to find the solution that max-

imizes the objective (14) subject to constraints in (10).

4.3. Power Iteration Solution

The objective (14) has two tensor-vector products, and

each product is exactly a rank-1 tensor approximation

(R1TA) objective [28]. Inspired by the work [28], we use

tensor power iteration to solve the above MGM optimiza-

tion. While there exist power iteration solutions for R1TA

problems such as in [12, 28, 13], our task is different in

two aspects. First, the objective in our optimization is a

combination of two R1TA components. Second, the pro-

posed optimization has the row/colum ℓ1 unit norm con-

straints (10), while classical constraints in R1TA are the ℓ2
unit norm ones.

1We emphasize that the proposed algorithm is general for either graph

or hyper-graph matching, i.e., using either edge or hyper-edge affinity.
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Algorithm 1: Tensor power iteration based multi-

graph matching

Input: the node affinity C : cj1:jK .

the hyper-edge affinity Sk :skjklkhk
, ∀k=1, . . . ,K.

Output: pairwise matching

X = {X(k1, k2) :k1, k2=0, . . . ,K}.

1 Initialize x1, . . . , xK ;

2 for iter = 1 to max iter do

3 for k = 1 to K do

4 /* power iteration */

5 for ik−1 = 1 to Ik−1 do

6 for ik = 1 to Ik do

7 jk = (ik−1 − 1)× Ik + ik.

8 φk
ik−1ik

.
= xkjk

∑

J\{jk}

cj1:jKx
1

j1
. . . xKjK .

9 ψk
ik−1ik

.
= xkjk

∑

lk,hk

skjklkhk
xklkx

k
hk

.

10 end

11 C =
∑

ik

(

φk
ik−1ik

+ λψk
ik−1ik

)

12 xkik−1ik
=

(

φk
jk

+ λψk
jk

)

/C, ik = 1, · · · , Ik

13 end

14 /* alternative row/column normalization2 */

15 while X
k does not converge do

16 for ik−1 = 1 to Ik−1 do

17 Q =
∑

ik
xkik−1ik

18 xkik−1ik
=xkik−1ik

/Q, ik = 1, · · ·, Ik

19 end

20 for ik = 1 to Ik do

21 Q =
∑

ik−1
xkik−1ik

22 xkik−1ik
=xkik−1ik

/Q, ik−1= 1, · · ·, Ik−1

23 end

24 end

25 end

26 end

27 Discretize xk(1≤ k ≤K) through the Hungarian algorithm.

28 Get the pairwise matching X(k1, k2) for graphs Gk1 and

G
k2 , ∀k1, k2=0, . . . ,K

29 return X = {X(k1, k2) :k1, k2=0, . . . ,K}.

Inspired by the algorithm proposed in the work [28] for

multi-target tracking, we design an efficient power iteration

solution for the optimization of (14) as listed in Algorith-

m 1. The algorithm adapts the ‘block-update’ strategy, in

which each time a section of the solution evolves itself with

the rest fixed. In this way, all vectors {x1, . . . , xK} are up-

dated in turn in the iteration.

The proposed algorithm has three key ingredients: 1)

updating the node affinity score (i.e., ϕkik−1ik
) and hyper-

edge affinity score (i.e., ψk
ik−1ik

), listed in line 8 − 9; 2)

2By supplementing dummy nodes in two graphs, we can always make

the numbers of the nodes in two graphs the same.

the ℓ1 norm power iteration listed in line 11 − 12; and 3)

the alternative row/column normalizations in line 15 − 24.

Alternative row/column normalizations make the matching

matrix double-stochastic according to the Sinkhorn’s the-

orem [29], as has been used in previous work on graph

matching [11, 13].

With the proposed power iteration solution, there

are a sequence of pairwise matching outputs xk(k ∈
{1, . . . ,K}). However, this matching is real-valued and

must be discretized. We first reshape xk into its matrix

replica Xk, then the real-valued matching matrix is further

discretized using the Hungarian algorithm [19] to meet the

constraint (4).

Given the pairwise matching Xk(k ∈ {1, . . . ,K}), the

group-wise matching xi0:iK is received by the formula-

tion (5). With the global matching xi0:iK , any pairwise

matching X(k1, k2) between Gk1 and Gk2 is derived nat-

urally by index searching.

4.4. Implementation Details

In real scenarios, a graph often has noisy structures with

false/outlier nodes. These nodes should not be mapped to

any real node. In the proposed algorithm, we supplement

each graph with dummy nodes that are allowed to match

with non-dummy nodes in the other graphs. The affinity

involving the dummy node is set as 0.3∼0.5 to suppress the

erroneous matches.

In the rest of this section, we give the definitions of affini-

ties (i.e., ai0:iK and skjklkhk
) used in the optimization. We

represent each node with the shape context [3] feature. Sup-

pose the shape context of node vkik is the column vector ykik ,

then all features from the node set {v0i0 , v
1
i1
, . . . , vKiK} are

stacked into a matrix Yi0:iK =
[

y0i0 y1i1 · · · yKiK

]

,

and the high-order node affinity ai0:iK is computed as

ai0:iK =
eigen (Yi0:iK , 1)

∑

d eigen (Yi0:iK , d)
, (15)

where eigen (Yi0:iK , d) denotes the d-th eigenvalue of the

matrix Yi0:iK in descending order. This affinity measures

the compactness of the feature set.

Suppose xkjk is the matching between nodes vk−1

ik−1
and

vkik , xklk is the matching between nodes vk−1
pk−1

and vkpk
, xkhk

matches nodes vk−1
qk−1

and vkqk . Then the hyper-edge on the

node triple {vk−1

ik−1
, vk−1

pk−1
, vk−1

qk−1
} has the triangle features as

{θk−1

1 , θk−1

2 , θk−1

3 }. While the other hyper-edge on the n-

odes {vkik , v
k
pk
, vkqk} has its triangle features as {θk1 , θ

k
2 , θ

k
3}.

This hyper-edge construction is illustrated in Figure 2. Then

the hyper-edge affinity skjklkhk
is defined as

skjklkhk
= exp

(

−

∑3

i=1

(

sin θki − sin θk−1

i

)2

2σ2

)

, (16)
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Figure 2. Hyper-edges and their triangle features. G
k−1 has a

hyper-edge that connects nodes {vk−1

ik−1
, vk−1

pk−1
, vk−1

qk−1
} and has the

triangle features as θk−1

1
, θk−1

2
and θk−1

3
. While the hyper-edge

on nodes {vkik , v
k
pk
, vkqk} in graph G

k has the triangle features as

θk1 , θk2 and θk3 . Note that the triangle structure of the hyper-edge is

invariant to rotation and scaling.

where σ2 is a regularized factor and set to 2 throughout

the experiments. This hyper-edge affinity is widely used

in hyper-graph matching, such as in [13, 20].

5. Experiments

Extensive experiments are conducted on a diverse set

of public benchmarks including the CMU-House/Hotel

dataset [1], the WILLOW-ObjectClass dataset [8] and the

Repetitive Structure dataset [26]. Moreover, we demon-

strate the effectiveness of the proposed approach by com-

paring with the state-of-the-arts [34, 26, 33].

5.1. Datasets and Settings

CMU House/Hotel Dataset. The house and hotel se-

quences contain 111 frames and 101 frames respectively,

and each frame has thirty landmarks. Following the setting

in [33], we extract 10 random landmarks from all as the in-

liers, and 3 random landmarks from the rest as the outliers.

WILLOW-ObjectClass Dataset. The object class

dataset consists of five real world image sequences. Four

sequences are used in the experiments including Duck

(50 images), Car (40 images), Motorbike (40 images) and

Winebottle (66 images). There are 10 manually annotated

landmarks in each image, and the annotations are not much

rigorous. With the same setting as [32], we use the 10 land-

marks as the inliers and supplement 2 outliers detected from

the background by the SIFT detector.

Repetitive Structure Dataset. This dataset consists of

two sequences describing repetitive structures, which make

image matching a difficult problem due to the ambiguous

features. The Building sequence (16 images) is selected as

the test sequence. For each image, we retain 10 landmarks

as the inliers and randomly sample three landmarks from

the rest as the outliers.

Graph sets with various sizes are utilized to validate the

performances of the multi-graph matching algorithms. Gen-

erally, the experiments are conducted on 4-graph, 6-graph,

8-graph, 10-graph and 12-graph matching tasks. For the

robust evaluation, 10 random tests are performed for each

matching task, and the result is the average of all 10 tests.

The parameter λ in the optimization (9) is application-

dependent, since the impacts of two basic components (i.e.,

the node affinity and hyper-edge affinity) vary in differen-

t scenarios. The stabler of the graph structure, the more

confident is the component of hyper-edge affinity. In this

way, λ is set to 8 for the CMU-House/Hotel and Building

sequences, 4 for the Motorbike and Winebottle sequences,

and 2 for the Duck and Car sequences. The number of the

maximum iteration (i.e., max iter ) in Algorithm 1 is set

as 100 throughout all the experiments.

5.2. Algorithms and Evaluations

The state-of-the-arts are compared in the experi-

ments. They are the permutation synchronization approach

(Match-Sync) [26], the alternative optimization method

(Match-Opt) [34], the graduated consistency-regularized

optimization algorithm (Match-Grad) [33]. The results

of three algorithms on the CMU dataset and WILLOW-

ObjectClass dataset are referred from the work [33, 32].

The proposed optimization objective consists of two

components, the unary vertex affinity score and the hyper-

edge affinity score, and each objective can be used in the

optimization alone to solve the matching problem. The pro-

posed algorithm framework is flexible to accommodate dif-

ferent kinds of optimizations. When the unary node affin-

ity is exploited only, the optimization degenerates into the

multi-dimensional assignment (MDA) problem, and the so-

lution is termed as “Tensor-MDA”. With the hyper-edge

affinity used only, the problem degenerates into the hyper-

graph matching, and the proposed algorithm is termed as

“Tensor-HGM”. While the algorithm for the optimization

on both scores is termed as “Tensor-MGM”. All three vari-

ants of the proposed algorithm are tested in the experiments.

There are two main measures involving the multi-graph

matching: 1) accuracy: the number of correctly matched

inliers divided by the total number of inliers, as popular-

ly used in the related work [9, 39, 35]; 2) consistency: the

number of consistent matches divided by the number of all

possible matches, detailed definition can be referred to the

work [33]. In this work, only the accuracy metric is applied,

since our algorithm naturally guarantees 100% of consisten-

cy, which is another merit of our algorithm.

5.3. Results and Analyses

CMU-House/Hotel dataset. Quantitative results on

CMU-House/Hotel sequences are presented in Table 1. It

can be seen that the proposed approach performs the best

on almost all tests, and there are the remarkable perfor-

mance gaps between our algorithm and the state-of-the-arts.

Surprisingly, both the two algorithm variants, Tensor-MDA

and Tensor-HGM, have moderate results on this dataset.
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Table 1. Matching accuracy on the CMU-House/Hotel dataset (%).

CMU-House CMU-Hotel

Match-

Sync [26]

Match-

Opt [34]

Match-

Grad [33]

Tensor-

MDA

Tensor-

HGM

Tensor-

MGM

Match-

Sync [26]

Match-

Opt [34]

Match-

Grad [33]

Tensor-

MDA

Tensor-

HGM

Tensor-

MGM

4-graph 85.2 99.0 84.0 90.5 89.4 96.6 87.7 93.2 90.0 88.7 86.7 96.7

6-graph 83.2 81.6 85.2 90.0 87.7 96.2 81.5 72.3 87.9 87.3 85.3 97.7

8-graph 76.4 82.4 87.2 81.7 89.6 95.5 60.5 62.8 84.9 78.5 80.7 97.1

10-graph 68.8 80.2 79.2 78.1 83.6 94.3 63.8 69.1 84.5 78.7 83.7 93.7

12-graph 75.4 80.0 82.6 75.2 83.5 95.1 70.0 68.5 88.1 73.6 86.1 97.9

Figure 3. Matching results of the proposed approach across three

graphs in the CMU-House/Hotel dataset. Left: hotel sequence;

Right: house sequence. The nodes and matches are color-coded,

and correct matches appear in the same color as the nodes they

connect. White circles denote outliers. Best viewed in color.

The qualitative results on the hotel and house sequences are

shown in Figure 3, our method has excellent performance

with few mismatches.

WILLOW-ObjectClass dataset. Quantitative results

on this dataset are presented in Table 2. Overall, the results

on the WILLOW-Object dataset are much worse than that

in the CMU-House/Hotel dataset, especially for the Duck

and Car sequences. The large pose and viewpoint vari-

ations, flexible landmark annotations, noisy outliers make

the matching on ObjectClass sequences extremely difficult.

The proposed algorithm obtains the best results on the small

and middle size multi-graph matching, such as the 4-graph,

6-graph and 8-graph matching tasks. It is observed that our

approach gets lower performances as the numbers of input

graphs increase, one reason is that the affinity (15) assumes

node features lies in a low dimensional space, while the

large variation in this noisy dataset shakes the assumption.

It must be noted that the performance of the proposed algo-

rithm can be improved by using more powerful high-order

node affinity representation. The qualitative results on the

WILLOW dataset are shown in Figure 4.

Repetitive Structure dataset. Quantitative results on

this dataset are presented in Table 3, where only the ap-

proach [26] is compared. The building sequence has many

repetitive patterns and viewpoint changes, but the annota-

tions are stable. In this case, our approach achieves the

favorable performance, and the qualitative matching is p-

resented in Figure 5.

Figure 4. Matching results of the proposed approach across three

graphs in the WILLOW-ObjectClass dataset. Top-left: Car; Top-

right: Motorbike; Bottom-left: Winebottle; Bottom-right: Duck.

The nodes and matches are color-coded, and correct matches ap-

pear in the same color as the nodes they connect. White circles

denote outliers. Best viewed in color.

Table 3. Matching accuracy on the Building sequence (%)
Match-

Sync [26]

Tensor-

MDA

Tensor-

HGM

Tensor-

MGM

4-graph 76.5 82.8 87.3 92.8

6-graph 82.8 75.3 58.7 93.0

8-graph 77.9 75.0 53.2 88.3

10-graph 87.3 73.5 66.3 90.7

5.4. Discussion

Consistency. The matching results of the proposed ap-

proach meet the full consistency, which is derived from the

high-order matching naturally. This full consistency is also

clearly observed from results such as Figure 3 ∼ Figure 5.

Convergence. To validate the convergence of the pro-

posed iteration solution, we present the score variation

curves in the iteration process. Two examples, one is the

4-graph matching on the CMU-House and the other is the

4-graph matching on the WILLOW-Motorbike, are shown

in Figure 6. The total affinity scores along with the individ-

ual scores (i.e., the node/hyper-edge affinities) are drawn in
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Table 2. Matching accuracy on the WILLOW dataset (%).

WILLOW-Car WILLOW-Motorbike

Match-

Sync [26]

Match-

Opt [34]

Match-

Grad [33]

Tensor-

MDA

Tensor-

HGM

Tensor-

MGM

Match-

Sync [26]

Match-

Opt [34]

Match-

Grad [33]

Tensor-

MDA

Tensor-

HGM

Tensor-

MGM

4-graph 54.2 57.1 63.3 62.2 68.7 79.5 75.9 78.7 78.4 78.3 69.7 87.5

8-graph 61.5 69.6 74.3 62.6 49.6 75.7 84.6 82.5 86.3 76.5 65.7 85.6

12-graph 55.8 66.0 80.5 55.4 40.3 67.1 81.3 84.3 87.1 70.5 58.7 80.3

WILLOW-Winebottle WILLOW-Duck

Match-

Sync [26]

Match-

Opt [34]

Match-

Grad [33]

Tensor-

MDA

Tensor-

HGM

Tensor-

MGM

Match-

Sync [26]

Match-

Opt [34]

Match-

Grad [33]

Tensor-

MDA

Tensor-

HGM

Tensor-

MGM

4-graph 49.8 71.2 64.2 81.2 82.7 97.0 35.3 42.3 40.0 60.2 58.2 65.8

8-graph 37.5 91.2 82.9 78.9 76.4 94.3 40.8 45.8 50.6 60.6 48.2 61.3

12-graph 69.0 92.7 93.1 71.3 63.2 93.7 45.9 56.6 72.7 49.4 33.8 58.3

Figure 5. Matching results of the proposed approach across three

graphs in the Building sequence. The nodes and matches are color-

coded, and correct matches appear in the same color as the nodes

they connect. White circles denote outliers. Best viewed in color.

Figure 6. The curve of affinity score across iterations. Left: curves

for matching the house images; Right: curves for matching the

motorbike images.

the figure. It is clear that the optimization objective gradual-

ly climbs to the extreme with the iteration proceeding, and

the proposed algorithm has the convergence property.

Optimization. It can be observed from the experiments

that both Tensor-MDA and Tensor-HGM have moderate

performances. By uniting the two complementary affinity

scores, the proposed approach obtains a much better result,

which suggests the necessity of incorporating high-order

information across both multiple graphs and hyper-edges.

Furthermore, the proposed algorithm is accommodative to

diverse (hyper-)edge affinity scores, such as the pairwise

edge similarity, the third or higher order hyper-edge affinity,

and even the hybrid of different order hyper-edge affinities.

Affinity. The proposed approach has its advantage to

explore the high-order node affinity which is not available

in the state-of-the-arts. Currently, we take advantage of an

oversimplified affinity measure which is sensitive to the fac-

tors such as large deformations of graphs. In the future, we

will probe kinds of powerful high-order node affinities.

Complexity. The amount of group-wise matches grows

exponentially with the number of graphs. ForK+1 graphs,

each graph has I nodes and each node N matching candi-

dates, there are INK matchings and K(IN)3 hyper-edge

triples. In this way, the complexity is O(MINKK2 +
MK(IN)3) for M iterations. A divide-and-conquer strat-

egy could be used for acceleration. In the experiments, all

tests run on a laptop (2.1GHz Intel Core i7 with 8G mem-

ory) without code optimization, and the running times for

matching 4 graphs, 8 graphs and 12 graphs are about 0.1

second, 3 seconds and 10 minutes respectively.

6. Conclusion

Starting from the pairwise graph matching (PGM) for-

mulation, the work firstly derives the high-order optimiza-

tion on multi-graph matching (MGM). The extension of the

formulation from the PGM to MGM is self-evident, but

surprisingly the insight is totally new to our knowledge.

Furthermore, we formulate the optimization objective in-

to the tensor products and propose an effective power it-

eration solution. The proposed approach is ready for ex-

ploring various kinds of high-order node affinities, accom-

modative to various edge/hyper-edge affinities, and has the

full matching consistency. These merits make our approach

much powerful, especially for small and the middle size

graph matching. Finally, the experimental validations on

diverse datasets illustrate the effectiveness of the proposed

approach.
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