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Figure 1: (Best viewed in color) With the local representations extracted from Convolutional Neural Networks (CNNs), the ‘sand’ pixels (in the first image)

are likely to be misclassified as ‘road’, and the ‘building’ pixels (in the second image) are easy to get confused with ‘streetlight’. Our DAG-RNN is able to

significantly boost the discriminative power of local representations by modeling their contextual dependencies. As a result, it can produce smoother and

more semantically meaningful labeling maps.

Abstract

In image labeling, local representations for image

units are usually generated from their surrounding image

patches, thus long-range contextual information is not ef-

fectively encoded. In this paper, we introduce recurrent

neural networks (RNNs) to address this issue. Specifically,

directed acyclic graph RNNs (DAG-RNNs) are proposed to

process DAG-structured images, which enables the network

to model long-range semantic dependencies among image

units. Our DAG-RNNs are capable of tremendously enhanc-

ing the discriminative power of local representations, which

significantly benefits the local classification. Meanwhile,

we propose a novel class weighting function that attends to

rare classes, which phenomenally boosts the recognition ac-

curacy for non-frequent classes. Integrating with convolu-

tion and deconvolution layers, our DAG-RNNs achieve new

state-of-the-art results on the challenging SiftFlow, CamVid

and Barcelona benchmarks.

1. Introduction

Scene labeling refers to associating one of the semantic

classes to each pixel in a scene image. It is usually defined

as a multi-class classification problem based on their sur-

rounding image patches. However, some classes may be in-
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distinguishable in a close-up view. As an example in Figure

1, the ‘sand’ and ‘road’ pixels are hard to be distinguished

even for humans with limited context. In contrast, their dif-

ferentiation becomes conspicuous when they are considered

in the global scene. Thus, how to equip local features with

a broader view of contextual awareness is a pivotal issue in

image labeling.

In this paper, recurrent neural networks (RNNs) [10][18]

are introduced to address this issue by modeling the con-

textual dependencies of local features. Specifically, we

adopt undirected cyclic graphs (UCGs) 1 to represent the

connectivity of pixels in images. Due to the loopy prop-

erty of UCGs, RNNs are not directly applicable to UCG-

structured images. Thus, we decompose the UCG to several

directed acyclic graphs (DAGs). In other words, an UCG-

structured image is represented by the combination of sev-

eral DAG-structured images. Then, we develop the DAG-

RNNs, a generalization of RNNs [9][10], to process DAG-

structured images. Each hidden layer is generated indepen-

dently through applying DAG-RNNs to the corresponding

DAG-structured image, and they are aggregated to produce

the context-aware feature maps. In this case, the local rep-

resentations are able to embed the abstract gist of the image,

so their discriminative power are enhanced remarkably.

We integrate the DAG-RNNs with the convolution and

deconvolution layers, thus giving rise to an end-to-end train-

able full labeling network. Functionally, the convolution

1UCG refers to the undirected graph in which there exists a closed walk

with no repetition of edges.
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layer transforms RGB raw pixels to compact and discrimi-

native representations. Based on them, the proposed DAG-

RNNs model the contextual dependencies of local features,

and output the improved context-aware representation. The

deconvolution layer upsamples the feature maps to match

the dimensionality of the desired outputs. Overall, the full

labeling network accepts variable-size images and gener-

ates the corresponding dense label prediction maps in a sin-

gle feed-forward network pass. Furthermore, considering

that the class frequency distribution is highly imbalanced in

natural scene images, we propose a novel class weighting

function that attends to rare classes.

We test the proposed labeling network on three popu-

lar and challenging scene labeling benchmarks (SiftFlow

[15], CamVid [2] and Barcelona [28]). On these datasets,

we show that our DAG-RNNs are capable of greatly en-

hancing the discriminative power of local representations,

which leads to dramatic performance improvements over

baselines (CNNs). Meanwhile, the proposed class weight-

ing function is able to boost the recognition accuracy for

rare classes. Most importantly, our full labeling network

significantly outperforms current state-of-the-art methods.

Next, related works are firstly reviewed, compared and

discussed in Section 2. Section 3 elaborates the details of

the DAG-RNNs and how they are applied to image labeling.

Besides, it presents the details of the full labeling network

and the class weighting function. The detailed experimental

results and analysis are presented in Section 4. In the end,

section 5 concludes the paper.

2. Related Work

Scene labeling (also termed as scene parsing, semantic

segmentation) is one of the most challenging problems in

computer vision. It has attracted more and more attention

in recent years. Here we would like to highlight and discuss

three lines of works that are most relevant to ours.

The first line of work is to explore the contextual mod-

eling. One attempt is to encode context into local repre-

sentation. For example, Farabet et al. [8] stacks surround-

ing contextual windows from different scales; Pinheiro et

al. [19] increases the size of input windows. Sharma et al.

[20] adopts recursive neural networks to propagate global

context to local regions. However, they do not consider

any connectivity structure for image units, thus their cor-

relations are not effectively captured. In contrast, we in-

terpret the structure of images as UCGs, within which the

connections of image units allow the DAG-RNNs to ex-

plicitly model the their dependencies. Another attempt is

to pass context to local classifiers by building probabilistic

graphical models (PGM). For example, Shotton et al. [21]

formulates the unary and pairwise features in a 2nd-order

Conditional Random Field (CRF). Krähenbühl et al. [12]

build a fully connected graph to enforce higher order la-

beling coherence. Zheng et al.[36] transforms the efficient

Conditional Random Fields (CRF) [12] to a neural network,

so the inference of CRF equals to applying the same neural

network recurrently until some fixed point (convergence) is

reached. Shuai et al.[22] transfers the global-order depen-

dencies in a non-parametric framework to disambiguate the

local confusions. Our work also differs from them. First,

the label dependencies are defined in terms of compatibility

functions over cliques in PGMs, while such dependencies

are modeled through a recurrent weight matrix in RNNs.

Some of the previous work exploit ‘recurrent’ ideas in

a different way. They generally refer to applying the iden-

tical model recurrently at different iterations (layers). For

example, Pinheiro et al.[19] attachs the RGB raw data with

the output of the Convolutional Neural Network (CNN) to

produce the input for the same CNN in the next layer. Tu

et al.[30] augments the patch feature with the output of the

classifier to be the input for the next iteration, and the clas-

sifier parameters are shared across different iterations. Our

work differs from them significantly. They model the con-

text in the form of intermediate outputs (usually local be-

liefs), which implicitly encodes the neighborhood informa-

tion. In contrast, the contextual dependencies are modeled

explicitly in DAG-RNNs by propagating information via

the recurrent connections.

Recurrent neural networks (RNNs) have achieved great

success in temporal dependency modeling for chain-

structured data, such as natural language and speeches. Zuo

et al. [38] applies 1D-RNN to model weak contextual de-

pendencies in image classification. Graves et al. [9] gener-

alizes 1D-RNN to multi-dimensional RNN (MDRNN) and

applies it to offline arabic handwriting recognition. Shuai

et al.[23] also adopts 2D-RNN to real-world image label-

ing. Recently, Tai et al.[27] and Zhu et al.[37] demon-

strate that considering tree structure (constituent / parsing

trees for sentences) is beneficial for modeling the global

representation of sentences. Our proposed DAG-RNN is a

generalization of chain-RNNs [1][11], tree-RNNs [27][37]

and 2D-RNNs [9][23], and it enables the network to model

long-range semantic dependencies for graphical structured

images. The most relevant work to ours is [23]. Comparing

with it, (1), we generalize 2D-RNN to DAG-RNN and show

benefits in quantitative labeling performance; (2), we inte-

grate the convolution layer, deconvolution layer with our

DAG-RNNs to a full labeling network; and (3), we adopt a

novel class weighting function to address the extremely im-

balanced class distribution issue in natural scene images.

Moreover, the proposed network achieves state-of-the-art

performance on a variety of scene labeling benchmarks.

3. Approach

To densely label an image I , our full labeling network

process the image sequentially: (1), Convolution layer pro-
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duces the corresponding feature map x. Each feature vector

in x summarizes the information from a local region in I .

(2), DAG-RNNs model the contextual dependency among

elements in x, and generates the intermediate feature map

h, whose element is a feature vector that implicitly embeds

the abstract gist of the image. (3), Deconvolution layer [16]

upsamples the feature maps. From which, the dense label

prediction maps are derived. We start by introducing the

proposed DAG-RNNs, and the details of the full network

are elaborated in the following sections.

3.1. RNNs Revisited

A recurrent neural network (RNN) is a class of artificial

neural network that has recurrent connections, which equip

the network with memory. In this paper, we focus on the

Elman-type network [7]. Specifically, the hidden layer h(t)

in RNNs at time step t is expressed as a non-linear function

over current input x(t) and hidden layer at previous time

step h(t−1). The output layer y(t) is connected to the hid-

den layer h(t). Mathematically, given a sequence of inputs

{x(t)}t=1:T , an Elman-type RNN operates by computing

the following hidden and output sequences:

h(t) = f(Ux(t) +Wh(t−1) + b)

y(t) = g(V h(t) + c)
(1)

where U,W are weight matrices between the input and hid-

den layers, and among the hidden units themselves, while

V is the output matrix connecting the hidden and output

layers; b, c are corresponding bias vectors and f(·), g(·) are

element-wise nonlinear activation functions. The local in-

formation x(t) is progressively stored in the hidden layers

by applying Equation 1. In other words, the contextual

information (the summarization of past sequence informa-

tion) is explicitly encoded into local representation h(t).

Training a RNN can be achieved by optimizing a dis-

criminative objective with a gradient-based method. Back

Propagation through time (BPTT) [32] is usually used to

calculate the gradients. This method is equivalent to un-

folding the network in time and using back propagation in

a very deep feed-forward network except that the weights

across different time steps (layers) are shared.

3.2. DAG-RNNs

The aforementioned RNN is designed for chain-

structured sequential data (e.g. sentences or speeches),

where temporal dependency is modeled. However, the con-

nectivity structure of image units are beyond chain. In other

words, traditional chain-structured RNNs are not suitable

for images. For instance, we can reshape the feature tensor

x ∈ R
h×w×d to x̂ ∈ R

(h·w)×d, and generate the chain rep-

resentation by connecting contiguous elements in x̂. Such

a structure loses spatial relationship of image units, as two

Figure 2: An 8-neighborhood UCG and one of its induced DAG in the

southeastern (SE) direction.

adjacent units in image plane may not necessarily be neigh-

bors in the chain. The graphical representations that respect

the 2-D neighborhood system are more plausible solutions,

and they are pervasively adopted in probabilistic graphical

models (PGM). Therefore in this work, undirected cyclic

graphs (UCG , an example is shown in Figure 2) are used to

represent the connectivity structure of image units.

Due to the loopy structure of UCGs, they are unable

to be unrolled to an acyclic processing sequence. There-

fore, RNNs are not directly applicable to UCG-structured

images. To address this issue, we approximate the topol-

ogy of UCG by a combination of several directed acyclic

graphs (DAGs), each of which is applicable for our pro-

posed DAG-RNNs (one of the induced DAGs is depicted

in Figure 2). Namely, an UCG-structured image is repre-

sented as the combination of a set of DAG-structured im-

ages. We now start introducing the detailed mechanism of

our DAG-RNNs here, and later elaborate how they are ap-

plied to UCG-structured images in the next section.

We first assume that the topology of an image I is repre-

sented as a DAG G = {V , E}, where V = {vi}i=1:N is the

vertex set and E = {eij} is the arc set (eij denotes an arc

from vi to vj). The structure of the hidden layer h follows

the same topology as G. Therefore, a forward propagation

sequence can be generated by traversing G, on the condition

that one node should not be processed until all its predeces-

sors are processed. The hidden layer h(vi) is represented as

a nonlinear function over its local input x(vi) and the sum-

marization of hidden representation of its predecessors. The

local input x(vi) is obtained by aggregating (e.g. average

pooling) from constituent elements in the feature tensor x.

In detail, the forward operation of DAG-RNNs is calculated

by the following equations:

ĥ(vi) =
∑

vj∈PG(vi)

h(vj)

h(vi) =f(Ux(vi) +W ĥ(vi) + b)

o(vi) =g(V h(vi) + c)

(2)

where x(vi),h(vi),o(vi) are the representations of input,

hidden and output layers located at vi respectively, PG(vi)
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is the direct predecessor set of vertex vi in the graph G, ĥ(vi)

summarizes the information of all the predecessors of vi.

Note that the recurrent weight W in Equation 2 is shared

across all predecessor vertexes in PG(vi). We may learn a

specific recurrent matrix W for each predecessor when ver-

texes (except source and sink vertex) if the DAG G have a

fixed number of predecessors. In this case, a finer-grained

dependency may be captured.

The derivatives are computed in the backward pass, and

each vertex is processed in the reverse order of forward

propagation sequence. Specifically, to derive the gradients

at vi, we look at equations (besides Equation 2) that involve

h(vi) in the forward pass:

∀vk ∈ SG(vi)

h(vk) = f(Ux(vk) +Wh(vi) +W h̃(vk) + b)

h̃(vk) =
∑

vj∈PG(vk)−{vi}

h(vj)
(3)

where SG(vi) is the direct successor set for vertex vi in

the graph G. It can be inferred from Equation 2, 3 that

the errors backpropagated to the hidden layer (dh(vi)) at vi

have two sources: direct errors from vi ( ∂o
(vi)

∂h(vi)
), and sum-

mation over indirect errors propagated from its successors

(
∑

vk

∂o(vk)

∂h(vk)
∂h(vk)

∂h(vi)
). The derivatives at vi can then be com-

puted by the following equations:

∆V (vi) = g′(o(vi))(h(vi))T

dh(vi) = V T g′(o(vi)) +
∑

vk∈SG(vi)

WT dh(vk) ◦ f ′(h(vk))

∆W (vi) =
∑

vk∈SG(vi)

dh(vk) ◦ f ′(h(vk))(h(vi))T

∆U (vi) = dh(vi) ◦ f ′(h(vi))(x(vi))T

(4)

where ◦ denotes the Hadamard product. By abuse of nota-

tion, g′(·) = ∂L
∂o

∂o
∂g is the derivative of loss function L with

respect to the output function g, and f ′(·) = ∂h
∂f . 2 It is

the second term of dh(vi) in Equation 4 that enables DAG-

RNNs to propagate local information, which behaves sim-

ilarly to the message passing [34] in probabilistic graphic

models.

3.3. Decomposition

We decompose the UCG U to a set of DAGs GU =
{G1, . . . ,Gd, . . .}. Hence, the UCG-structured image is rep-

resented as the combination of a set of DAG-structured im-

ages. Next, DAG-RNNs are applied independently to each

DAG-structured image, and the corresponding hidden layer

2Here, g (and f ) are composition functions. For instance, o = g(p(h))
where p(h) = V h+ c. ∂o

∂g
actually refers to ∂o

∂p(h)
.

Convolution 

Layer

DAG-Recurrent 

Neural Network

Deconvolution 

Layer

Figure 3: The architecture of the full labeling network, which consists of

three functional layers: (1), convolution layer: it produces discriminative

feature maps; (2), DAG-RNN: it models the contextual dependency among

elements in the feature maps; (3), deconvolution layer: it upsamples the

feature maps to output the desired sizes of label prediction maps.

hd is generated. The aggregation of the independent hidden

layers yields the output layer o. These operations can be

mathematically expressed as follows:

h
(vi)
d = f(Udx

(vi) +
∑

vj∈PGd
(vi)

Wdh
(vj)
d + bd)

ô(vi) = g(
∑

Gd∈GU

Vdh
(vi)
d + c)

(5)

where Ud,Wd, Vd and bd are weight matrices and bias vec-

tor for the DAG Gd, PGd
(vi) is the direct predecessor set

of vertex vi in Gd. This decomposition strategy is reminis-

cent of the tree-reweighted max-product algorithm (TRW)

[31], which represents the problem on the loopy graphs as a

convex combination of tree-structured problems.

We consider the following criterions for the decompo-

sition. Topologically, the combination of DAGs should be

equivalent to the UCG U , so any two vertexes can be reach-

able. Besides, the combination of DAGs should allow the

local information to be routed to anywhere in the image. In

our experiment, we use the four context propagation direc-

tions (southeast, southwest, northwest and northeast) sug-

gested by [9][23] to decompose the UCG. One example of

the induced DAG of the 8-neighborhood UCG in the south-

east direction is shown in Figure 2.

3.4. Full Labeling Network

The skeleton architecture of the full labeling network is

illustrated in Figure 3. The network is end-to-end train-

able, and it takes input as raw RGB images with any size.

It outputs the label prediction maps with the same size of

inputs. In more detail, the convolution layer is used to pro-

duce compact yet highly discriminative features for local

regions. Next, the proposed DAG-RNN is used to model

the semantic contextual dependencies of local representa-

tions. Finally, the deconvolution layer [16] is introduced to

upsample the feature maps by learning a set of deconvolu-

tion filters.

To train the network, we adopt the average weighted

cross entropy loss. It is formally written as:

L = −
1

N

∑

vi∈I

c∑

j=1

wjy
(vi)
j log(õ

(vi)
j )

õ = deconv(ô)

(6)
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Figure 4: Graphical visualization of the class frequencies (left) and weights

(right) on the siftFlow datasets [15]. The classes are sorted in the descend-

ing order based on their occurrence frequencies in training images.

where N is the number of image units in image I; w is the

class weight vector, in which wj stands for the weight for

class j; y(vi) is the binary label indicator vector for the im-

age unit located in vi; õ
(vi) is the corresponding class like-

lihood vector, which is upsampled from ô(vi) by the decon-

volution layer. The errors propagated from DAG-RNNs to

the convolution layer for image unit vi are calculated based

on the following equations:

∆x(vi) =
∑

Gd∈GU

UT
d dh

(vi)
d ◦ f ′(h

(vi)
d ). (7)

3.5. Attention to Rare Classes

In scene images, the class distribution is extremely im-

balanced. Namely, very few classes account for large per-

centage of pixels in images. An example is demonstrated

in Figure 4. It’s therefore common to put more attention to

rare classes, in order to boost their recognition precisions.

In the patch-based CNN training, Farabet et al. [8] and

Shuai et al. [24] oversample the rare-class pixels to address

this issue. (Different sampling methods are introduced and

discussed in [24].) It’s however inapplicable to adopt this

strategy in our network training, which is a complex struc-

ture learning problem. Meanwhile, as the classes are dis-

tributed severely unequally in scene images, it’s also prob-

lematic to weight classes according to their inverse frequen-

cies. As an example, the frequency ratio between the most

frequent (sky) and the most rare class (moon) on the Sift-

Flow dataset is 3.5× 104. If the above class weighting cri-

terion is adopted like in [5][17], the frequent classes will be

under-attended. Hence, we define the weighting function w

as follows:

wj = k⌈log10(η/fj)⌉ (8)

where ⌈·⌉ is the integer ceiling operator, fj is the occur-

rence frequency of the class j, η denotes the threshold that

discriminates the rare classes. Specifically, a class is identi-

fied as rare if its frequency is smaller than η, otherwise, it is

a frequent class. k is a constant that controls the importance

of rare classes (k = 2 in our experiments). The proposed

weighting function has the following properties: (1), it at-

tends to rare classes by assigning them higher weights; (2),

the degree of attention for rare classes grows exponentially

based on their ratio magnitudes w.r.t the threshold η; We

use the following criterion to determine the value of η: the

accumulated frequency of all the non-rare classes is 85%.

We call it 85%-15% rule, and [33] uses a similar rule.

4. Experiments

We justify our method on three popular and challeng-

ing real-world scene image labeling benchmarks: SiftFlow

[15], CamVid [2] and Barcelona [28]. Two types of scores

are reported: the percentage of all correctly classified pixels

(Global), and average per-class accuracy (Class).

4.1. Baselines

The convolution neural network (CNN), which jointly

learns features and classifiers is used as our first baseline.

In this case, the parameters are optimized to maximize the

independent prediction accuracy for local patches. Another

baseline is the network that shares the same architecture

with our DAG-RNNs, while removes the recurrent connec-

tions. Mathematically, the Wd and bd in Equation 5 are

fixed to 0 . In this case, the DAG-recurrent neural network

degenerates to an ensemble of four plain two-layer neural

networks (CNN-ENN). The performance disparity between

the baselines and DAG-RNNs clearly illuminates the effi-

cacy of our dependency modeling method.

4.2. Implementation Details

We use the following two networks to be the convolution

layers in our experiments:

• CNN-65: The network consists of five convolutional

layers, the kernel sizes of which are 8 × 8 × 3 × 64,

6×6×64×128, 5×5×128×256, 4×4×256×256
and 1×1×256×64 respectively. Each of the first three

convolutional layers are followed by a ReLU and non-

overlapping 2 × 2 max pooling layer. The parameters

of this network is learned from image patches (65×65)

of the target dataset only (Setting 1).

• VGG-conv5: The network borrows its architecture

and parameters from VGG-verydeep-16 net [25]. In

detail, we discard all the layers after the 5th pooling

layer to yield the desired convolution layer. The net-

work is pre-trained on ImageNet dataset and fine-tuned

on the target dataset. [6] (Setting 2).

In DAG-RNNs, the adopted non-linear functions (refer

to Equation 2) are ReLU [13] for hidden neurons: f(x) =
max(0, x) and softmax for output layer g. The dimen-

sionality of hidden layer h is empirically set to 64 for CNN-

65 and 128 for VGG-conv5 respectively. 3 In our experi-

3Based on our preliminary results, we didn’t observe too much perfor-

mance improvement by using larger h (e.g. 128 in CNN-65, and 256 in

VGG-conv5) on the siftFlow dataset. In addition, the networks with larger

capacity incur much heavier computation burdens.
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UCG(4) DAG(4) G4
nw UCG(8) DAG(8) G8

nw

Figure 5: Two UCGs (with 4, 8 neighborhood system) and their induced

DAGs in the northwestern (NW) direction.

ments, we consider two UCGs with 4 and 8 neighborhood

systems. Their induced DAGs in the northwestern direc-

tion are shown in Figure 5. In comparison with DAG(4),

DAG(8) enables information to be propagated in shorter

paths, which is critical to prevent the long-range informa-

tion from vanishing. As exemplified in Figure 5, the length

of propagation path from v9 to v1 in G8
nw is halved to that

in G4
nw (4 → 2 steps). In practice, we apply the function

g after the deconvolution layer. The upsampling factor for

the deconvolution layer is set to be 2 and 4 for CNN-65 and

VGG-conv5 respectively. Namely, the ground truth maps

are subsampled during training, while the label prediction

maps are further upsampled by bilinear operation in the test-

ing (validation) phase.

The full labeling network is trained by stochastic gradi-

ent descent with momentum. The parameters are updated

after one image finishes its forward and backward passes.

The learning rate is initialized to be 10−3, and decays expo-

nentially with the rate of 0.9 after 10 epoch. The reported

results are based on the model trained in 35 epoches. We

tune the parameters and diagnoses the network performance

based on CNN-65. We also include the results of VGG-

conv5 to see whether our proposed DAG-RNNs are bene-

ficial for the highly discriminative representation from the

state-of-the-art VGG-verydeep-16 net [25].

4.3. SiftFlow Dataset

The SiftFlow dataset has 2688 images generally captured

from 8 typical outdoor scenes. Every image has 256× 256
pixels, which belong to one of the 33 semantic classes. We

adopt the training/testing split protocol (2488/200 images)

provided by [15] to perform our experiments. Following the

85%-15% criterion, the class frequency threshold η = 0.05.

Statistically, out of 33 classes, 27 of them are regarded as

infrequent class. The graphical visualization of the weights

for different classes are depicted in Figure 4.

The quantitative results are listed in Table 1, where the

upper part presents the performance of methods under set-

ting 1. Our baseline CNN-65 achieves very promising re-

sults, which proves the effectiveness of the convolution

layer. We also notice that results of CNN-65 fall behind

CNN-65-ENN on the average class accuracy. This phe-

nomenon is also observed on the CamVid and Barcelona

benchmarks, as shown by Table 2 and 3 respectively. This

Methods Global Class

Byeon et al. [4] 70.1% 22.6%

Liu et al.[15] 74.8% N/A

Farabet et al. [8] 78.5% 29.4%

Pinheiro et al. [19] 77.7% 29.8%

Tighe et al.[29] 79.2% 39.2%

Sharma et al.[20] 79.6% 33.6%

Shuai et al.[22] 80.1% 39.7%

Yang et al.[33] 79.8% 48.7%

CNN-65 76.1% 32.5%

CNN-65-ENN 76.1% 37.0%

CNN-65-DAG-RNN(4) 80.5% 42.6%

CNN-65-DAG-RNN(8) 81.1% 48.2%

Long et al.[16] 85.2% 51.7%

Caesar et al.[5] N/A 55.6%

VGG-conv5-ENN 84.0% 48.8%

VGG-conv5-DAG-RNN(8) 85.3% 55.7%

Table 1: Quantitative performance of our method on the siftFlow dataset.

The numbers (in brackets) following the DAG-RNN denote the neighbor-

hood system of the UCG.

result indicates that the proposed class weighting func-

tion significantly boosts the recognition accuracy for rare

classes. By adding DAG-RNN(8), our network reaches

81.1% (48.2%) on global (class) accuracy 4 , which outper-

forms the baseline (CNN-65-ENN) by 5% (11.2%). Mean-

while, we observe promising accuracy gain (global: 0.6%

/ class: 5.6% ) by switching DAG-RNN (4) to DAG-RNN

(8), in which we believe that long-range dependencies are

better captured as information propagation paths in DAG(8)

are shorter than those in DAG(4). Such performance ben-

efits can be observed consistently on the CamVid (0.5% /

2.0%) and Barcelona (1.1% / 1.6%) datasets, as evidenced

in Table 2 and 3 respectively. Moreover, in comparison

with other representation learning nets, which are fed with

much richer contextual input (133×133 patch in [19], 3-

scale 46×46 patches in [8]), our DAG-RNNs outperform

theirs by a large margin. Importantly, our results match the

state-of-the-art under this setting.

Furthermore, we initialize our convolution layers with

VGG-verydeep-16 [25], which has been proven to be the

state-of-the-art feature extractor. The quantitative results

under setting 2 are listed in the lower body of Table 1. Our

baseline VGG-conv5-ENN (pre-trained on ImageNet [6])

surpasses the best performance of methods under setting

1. This result indicates the significance of large-scale data

in deep neural network training. Interestingly, our DAG-

RNN(8) is still able to further improve the discriminative

power of local features by modeling their dependencies,

thereby leading to a phenomenal (6.9%) average class accu-

racy boost. Note that Fully Convolution Networks (FCNs)

[16] uses activations (feature maps) from multiple convolu-

4If we disassemble the full labeling network to two disjoint parts -

CNN-65 and DAG-RNN(8), and they are optimized independently, the

corresponding accuracies are 80.1% and 42.7%. The performance discrep-

ancy indicates the importance of the joint optimization for the full network.
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Methods Global Class

Tighe et al.[28] 78.6% 43.8%

Sturgess et al.[26] 83.8% 59.2%

Zhang et al.[35] 82.1% 55.4%

Bulò et al.[3] 82.1% 56.1%

Ladický et al.[14] 83.8% 62.5%

Tighe et al. [29] 83.9% 62.5%

CNN-65 84.3% 53.2%

CNN-65-ENN 84.1% 58.1%

CNN-65-DAG-RNN(4) 88.2% 66.3%

CNN-65-DAG-RNN(8) 88.7% 68.3%

VGG-conv5-ENN 91.0% 76.5%

VGG-conv5-DAG-RNN (8) 91.6% 78.1%

Table 2: Quantitative performance of our method on the CamVid dataset.

tion layers, whereas our VGG-conv5-ENN only use feature

maps from conv5 layer. Hence, there is a slight performance

gap between our VGG-conv5-ENN and FCNs. Nonethe-

less, our VGG-conv5-DAG-RNN(8) still performs compa-

rably with FCNs on global accuracy, and significantly out-

performs it on the class accuracy. Importantly, our full

labeling network also achieves new state-of-the-art perfor-

mance under this setting. The detailed per-class accuracy is

listed in Table 4.

4.4. CamVid Dataset

The CamVid dataset [2] contains 701 high-resolution im-

ages (960 × 720 pixels) from 4 driving videos at daytime

and dusk (3 daytime and 1 dusk video sequence). Images

are densely labelled with 32 semantic classes. We follow

the usual split protocol [26][29] (468/233) to obtain train-

ing/testing images. Similar to other works [2][3][26][29],

we only report results on the most common 11 categories.

According to the 85%-15% rule, 4 classes are identified as

rare, and η is 0.1.

The quantitative results are given in Table 2. Our base-

line networks (CNN-65, CNN-65-ENN) achieve very com-

petitive results. By explicitly modeling contextual depen-

dencies among image units, our CNN-65-DAG-RNN(8)

brings phenomenal performance benefit (4.6% and 10.2%

for the global and class accuracy respectively). Moreover,

in comparison with state-of-the-art methods [3][14][26]

[29], our CNN-65-DAG-RNN(8) outperforms theirs by a

large margin (4.8% / 5.8%), demonstrating the profitabil-

ity of adopting high-level features learned from CNN and

context modeling with our DAG-RNNs. Furthermore, the

VGG-conv5-ENN alone performs excellently. Even though

the performance starts saturating, our DAG-RNN(8) is able

to consistently improve the labeling results.

4.5. Barcelona Dataset

The barcelona dataset [28] consists of 14871 training and

279 testing images. The size of the images varies across dif-

ferent instances, and each pixel is labelled as one of the 170

Methods Global Class

Tighe et al.[28] 66.9% 7.6%

Farabet et al. [8] 46.4% 12.5%

Farabet et al. [8] 67.8% 9.5%

CNN-65 69.0% 10.5%

CNN-65-ENN 69.0% 11.0%

CNN-65-DAG-RNN(4) 71.3% 12.9%

CNN-65-DAG-RNN(8) 72.4% 14.5%

VGG-conv5-ENN 73.3% 21.1%

VGG-conv5-DAG-RNN(8) 74.6% 24.6%

Table 3: Quantitative performance of our method on the Barcelona dataset.

semantic classes. The training images range from indoor

to outdoor scenes, whereas the testing images are only cap-

tured from the barcelona street scene. These issues pose

Barcelona as a very challenging dataset. Based on the 85%-

15% rule, 147 classes are identified as rare classes, and the

class frequency threshold η is 0.005.

Table 3 presents the quantitative results. From which,

we clearly observe that our baseline networks (CNN-65 and

CNN-65-ENN) achieve very competitive results, which has

already matched the state-of-the-art results. The introduc-

tion of DAG-RNN(8) leads to promising performance im-

provement, therefore the full labeling network clinches the

new state-of-the-art under setting 1. More importantly, un-

der setting 2, even though the VGG-conv5-ENN is extraor-

dinarily competitive, the DAG-RNN(8) is still able to en-

hance its labeling performance significantly.

4.6. Effects of DAG-RNNs to Per-class Accuracy

In this section, we investigate the effects of our DAG-

RNNs for each class. The detailed per-class accuracy for the

SiftFlow dataset is listed in Table 4. Under setting 1, we find

that the contextual information encoded through our DAG-

RNN(8) is beneficial for almost all classes. In this case, the

local representations from CNN-65 are not strong, so their

discriminative power can be greatly enhanced by modeling

their dependencies. In line with it, we observe remark-

able performance benefit (+11.2%) for almost all classes.

Under setting 2, the VGG-conv5 net is pre-trained on the

ImageNet dataset [6], and it recognizes most classes excel-

lently. Notwithstanding the local representations are highly

discriminative in this situation, our DAG-RNN(8) further

tremendously improves their representative power for rare

classes. Statistically, we observe a phenomenal 8.6% accu-

racy gain for rare classes. Under both settings, modeling

the dependencies among local features enables the classifi-

cation to be contextual aware. Therefore, the local ambigu-

ities are mitigated to a large extent. However, we fail to ob-

serve commensurate accuracy improvements for extremely-

small-size and rare ’object’ classes (e.g. bird and bus), we

conjecture that the weak local information may have been

overwhelmed by context (e.g. a small bird is swallowed by

the broad sky in Figure 1).
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Frequency 27.1 20.2 12.6 12.4 6.93 5.61 3.64 1.64 1.41 1.37 1.33 1.22 1.07 0.89 0.85 0.36 0.26 0.24 0.23 0.18 0.11 0.11 0.06 0.05 0.04 0.03 0.03 0.02 0.01 0.004 - -

CNN-65-ENN 94.1 84.9 77.6 74.2 80.9 61.1 30.7 71.0 27.7 34.7 21.8 63.5 27.8 47.0 21.0 8.8 35.7 33.7 29.3 6.8 0.37 16.3 1.4 48.1 0 0.43 34.5 6.0 71.4 0 76.1 37.0

CNN-65-DAG-RNN(8) 95.9 87.3 82.5 77.9 85.8 70.2 43.5 80.1 52.9 65.4 37.2 57.8 40.4 59.1 27.6 31.4 51.8 38.0 35.6 50.9 7.8 31.0 5.14 82.8 0 0 54.9 8.59 85.5 0 81.1 48.2

VGG-conv5-ENN 96.0 91.1 84.4 82.9 90.4 83.5 48.8 77.5 63.5 57.6 32.6 60.2 34.9 66.0 25.8 20.0 51.9 44.0 38.6 45.9 26.5 33.7 14.9 50.2 1.1 0 32.7 9.1 99.9 0 84.0 48.8

VGG-conv5-DAG-RNN(8) 96.3 90.8 82.1 85.1 89.2 84.8 55.4 84.2 67.9 75.3 51.5 64.8 45.2 63.5 45.7 37.3 56.8 44.7 36.2 58.7 18.3 40.0 63.3 65.2 18.4 1.4 45.8 5.4 97.9 0 85.3 55.7

Table 4: Per-class accuracy comparison on the SiftFlow dataset. All the numbers are displayed in the percentage scale. The statistics for class frequency is

obtained in test images. For reading convenience, the frequent and rare classes are placed in the same block.

90.8% (77.6%) 97.5% (95.3%) 86.9% (56.1%) 94.8% (72.7%)

75.5% (69.7%) 94.9% (91.5%) 55.9% (65.2%) 85.4% (87.7%)

74.8% (50.9%) 87.2% (52.4%) 64.0% (57.3%) 83.2% (72.8%)

87.9% (75.6%) 94.3% (85.9%) 55.1% (50.8%) 87.2% (42.3%)

Figure 6: (Best viewed in color) Qualitative labeling results. We show input images, local prediction maps (CNN-65-ENN), contextual labeling maps

(CNN-65-DAG-RNN(8)) and their ground truth respectively. The numbers outside and inside the parentheses are global and class accuracy respectively.

4.7. Discussion of Modeled Dependency

We show a number of qualitative labeling results in Fig-

ure 6. By looking into them, we can have some interesting

observations. The DAG-RNNs are capable of (1), enforcing

local consistency: neighborhood pixels are likely to be as-

signed to the same labels. In Figure 6, the left-panel exam-

ples show that confusing regions are smoothed by using our

DAG-RNNs. (2), ensuring semantic coherence: the pixels

that are spatially far away are usually given labels that could

co-occur in a meaningful scene. For example, the ‘desert’

and ‘mountain’ classes are usually not seen together with

‘trees’ in a ‘open country’ scene, so they are corrected to

‘stone’ in the second example of the right panel. More ex-

amples of this kind are shown in the right panel. These

results illuminate that useful contextual dependencies may

have been captured by our DAG-RNNs.

5. Conclusion

In this paper, we propose DAG-RNNs to model the con-

textual dependencies of local features. DAG-RNNs are able

to encode the global gist of images to local features, so their

discriminative power can be enhanced. Furthermore, the

proposed class weighting function is experimentally proved

to be effective towards the recognition enhancement for rare

classes. Integrating with the convolution and deconvolu-

tion layers, our DAG-RNNs achieve state-of-the-art results

on three challenging scene labeling benchmarks. We also

demonstrate that useful contexts are captured by our DAG-

RNNs, which is helpful for generating smooth and seman-

tically sensible labeling maps in practice.
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