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Abstract

Learning the distance metric between pairs of examples

is of great importance for learning and visual recognition.

With the remarkable success from the state of the art convo-

lutional neural networks, recent works [1, 31] have shown

promising results on discriminatively training the networks

to learn semantic feature embeddings where similar exam-

ples are mapped close to each other and dissimilar exam-

ples are mapped farther apart. In this paper, we describe an

algorithm for taking full advantage of the training batches

in the neural network training by lifting the vector of pair-

wise distances within the batch to the matrix of pairwise

distances. This step enables the algorithm to learn the state

of the art feature embedding by optimizing a novel struc-

tured prediction objective on the lifted problem. Addition-

ally, we collected Stanford Online Products dataset: 120k

images of 23k classes of online products for metric learn-

ing. Our experiments on the CUB-200-2011 [37], CARS196

[19], and Stanford Online Products datasets demonstrate

significant improvement over existing deep feature embed-

ding methods on all experimented embedding sizes with the

GoogLeNet [33] network. The source code and the dataset

are available at: https://github.com/rksltnl/

Deep-Metric-Learning-CVPR16.

1. Introduction

Comparing and measuring similarities between pairs of

examples is a core requirement for learning and visual com-

petence. Being able to first measure how similar a given pair

of examples are makes the following learning problems a

lot simpler. Given such a similarity function, classification

tasks could be simply reduced to the nearest neighbor prob-

lem with the given similarity measure, and clustering tasks

would be made easier given the similarity matrix. In this

regard, metric learning [13, 39, 34] and dimensionality re-

duction [18, 7, 29, 2] techniques aim at learning semantic

distance measures and embeddings such that similar input

objects are mapped to nearby points on a manifold and dis-

similar objects are mapped apart from each other.

Query Retrieval

Figure 1: Example retrieval results on our Stanford Online

Products dataset using the proposed embedding. The im-

ages in the first column are the query images.

Furthermore, the problem of extreme classification [6,

26] with enormous number of categories has recently at-

tracted a lot of attention in the learning community. In this

setting, two major problems arise which renders conven-

tional classification approaches practically obsolete. First,

algorithms with the learning and inference complexity lin-

ear in the number of classes become impractical. Sec-

ond, the availability of training data per class becomes

very scarce. In contrast to conventional classification ap-

proaches, metric learning becomes a very appealing tech-

nique in this regime because of its ability to learn the gen-

eral concept of distance metrics (as opposed to category

specific concepts) and its compatibility with efficient near-

est neighbor inference on the learned metric space.

With the remarkable success from the state of the art con-

volutional neural networks [20, 33], recent works [1, 31]

discriminatively train neural network to directly learn the

the non-linear mapping function from the input image to a

lower dimensional embedding given the input label annota-

tions. In high level, these embeddings are optimized to pull

examples with different class labels apart from each other

and push examples from the same classes closer to each

other. One of the main advantages of these discriminatively
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trained network models is that the network jointly learns the

feature representation and semantically meaningful embed-

dings which are robust against intra-class variations.

However, the existing approaches [1, 31] cannot take

full advantage of the training batches used during the mini

batch stochastic gradient descent training of the networks

[20, 33]. The existing approaches first take randomly sam-

pled pairs or triplets to construct the training batches and

compute the loss on the individual pairs or triplets within

the batch. Our proposed method lifts the vector of pairwise

distances (O(m)) within the batch to the matrix of pairwise

distances (O(m2)). Then we design a novel structured loss

objective on the lifted problem. Our experiments show that

the proposed method of learning the embedding with the

structured loss objective on the lifted problem significantly

outperforms existing methods on all the experimented em-

bedding dimensions with the GoogLeNet [33] network.

We evaluate our methods on the CUB200-2011 [37],

CARS196 [19], and Stanford Online Products dataset we

collected. The Stanford Online Products has approximately

120k images and 23k classes of product photos from on-

line e-commerce websites. To the best of our knowledge,

the dataset is one of the largest publicly available dataset in

terms of the number and the variety of classes. We plan to

maintain and grow the dataset for the research community.

In similar spirit of general metric learning where the task

is to learn a generic concept of similarity/distance, we con-

struct our train and test split such that there is no intersection

between the set of classes used for training versus testing.

We show that the clustering quality (in terms of standard

F1 and NMI metrics [23]) and retrieval quality (in terms

of standard Recall@K score) on images from previously

unseen classes are significantly better when using the pro-

posed embedding. Figure 1 shows some example retrieval

results with the Stanford Online Products dataset using the

proposed embedding. Although we experiment on cluster-

ing and retrieval tasks, the conceptual contribution of this

paper - lifting a batch of examples into a dense pairwise

matrix and defining a structured learning problem - is gener-

ally applicable to a variety of learning and recognition tasks

where feature embedding is employed.

2. Related works

Our work is related to three lines of active research: (1)

Deep metric learning for recognition, (2) Deep feature em-

bedding with convolutional neural networks, and (3) Zero

shot learning and ranking.

Deep metric learning: Bromley et al. [3] paved the way

on deep metric learning and trained Siamese networks for

signature verification. Chopra et al. [5] trained the network

discriminatively for face verification. Chechik et al. [4]

learn ranking function using triplet [39] loss. Qian et al.

[27] uses precomputed [20] activation features and learns a

feature embedding via distance metric for classification.

Deep feature embedding with state of the art convolu-

tional neural networks: Bell et al. [1] learn embedding

for visual search in interior design using contrastive [14]

embedding, FaceNet [31] uses triplet [39] embedding to

learn embedding on faces for face verification and recog-

nition. Li et al. [22] learn a joint embedding shared by

both 3D shapes and 2D images of objects. In contrast to the

existing approaches above, our method computes a novel

structured loss and the gradient on the lifted dense pairwise

distance matrix to take full advantage of batches in SGD.

Zero shot learning and ranking: Frome et al., Socher

et al., and Weston et al. [12, 32, 40] leverage text data to

train visual ranking models and to constrain the visual pre-

dictions for zero shot learning. Wang et al. [38] learns to

rank input triplet of data given human rater’s rank ratings

on each triplets and also released a triplet ranking dataset

with 5,033 triplet examples [8]. However, the approach is

not scalable with the size of the training data because it’s

very costly to obtain ranking annotations in contrast to mul-

ticlass labels (i.e., product name) and because the approach

is limited to ranking the data in triplet form. Lampert et

al. [21] does zero shot learning but with attributes (such as

objects’s color or shape) provided for both the train and the

test data. On a related note, [24, 25, 28] do zero-shot learn-

ing for visual recognition but rely on the WordNet hierarchy

for semantic information of the labels.

The paper is organized as follows. In section 3, we start with

a brief review of recent state of the art deep learning based

embedding methods [14, 31]. In section 4, we describe how

we lift the problem and define a novel structured loss. In

section 5 and 6, we describe the implementation details and

the evaluation metrics. We present the experimental results

and visualizations in section 7.

3. Review

In this section, we briefly review recent works on discrimi-

natively training networks to learn semantic embeddings.

Contrastive embedding [14] is trained on the paired data

{(xi,xj , yij)}. The contrastive training minimizes the dis-

tance between a pair of examples with the same class label

and penalizes the negative pair distances for being smaller

than the margin α. The cost function is defined as,

J =
1

m

m/2∑

(i,j)

yi,jD
2
i,j + (1− yi,j) [α−Di,j ]

2
+ , (1)

where m stands for the number of images in the batch,

f(·) is the feature embedding output from the network,
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x1 x2 x3 x4 x5 x6

x x x x x x

(a) Contrastive embedding

x1 x2 x3 x4 x5 x6

(b) Triplet embedding

x1 x2 x3 x4 x5 x6

(c) Lifted structured embedding

Figure 2: Illustration for a training batch with six examples.

Red edges and blue edges represent similar and dissimilar

examples respectively. In contrast, our method explicitly

takes into account all pair wise edges within the batch.

Di,j = ||f(xi) − f(xj)||2, and the label yi,j ∈ {0, 1}
indicates whether a pair (xi,xj) is from the same class

or not. The [·]+ operation indicates the hinge function

max(0, ·). Please refer to [14] for more details.

Triplet embedding [39, 31] is trained on the triplet data{(
x
(i)
a ,x

(i)
p ,x

(i)
n

)}
where

(
x
(i)
a ,x

(i)
p

)
have the same class

labels and
(
x
(i)
a ,x

(i)
n

)
have different class labels. The x

(i)
a

term is referred to as an anchor of a triplet. Intuitively, the

training process encourages the network to find an embed-

ding where the distance between x
(i)
a and x

(i)
n is larger than

the distance between x
(i)
a and x

(i)
p plus some margin α. The

cost function is defined as,

J =
3

2m

m/3∑

i

[
D2

ia,ip −D2
ia,in + α

]
+
, (2)

where Dia,ip = ||f(xa
i )− f(xp

i )|| and Dia,in = ||f(xa
i )−

f(xn
i )||. Please refer to [31, 39] for the complete details.

4. Deep metric learning via lifted structured

feature embedding

We define a structured loss function based on all positive
and negative pairs of samples in the training set:

J =
1

2|P̂|

∑

(i,j)∈P̂

max (0, Ji,j)
2
, (3)

Ji,j =max

(

max
(i,k)∈N̂

α−Di,k, max
(j,l)∈N̂

α−Dj,l

)

+Di,j

where P̂ is the set of positive pairs and N̂ is the set of

negative pairs in the training set. This function poses two

computational challenges: (1) it is non-smooth, and (2)

both evaluating it and computing the subgradient requires

mining all pairs of examples several times.

We address these challenges in two ways: First, we

optimize a smooth upper bound on the function instead.

Second, as is common for large data sets, we use a stochas-

tic approach. However, while previous work implements

a stochastic gradient descent by drawing pairs or triplets

of points uniformly at random [14, 1, 22], our approach

deviates from those methods in two ways: (1) it biases

the sample towards including “difficult” pairs, just like a

subgradient of Ji,j would use the close negative pairs 1; (2)

it makes use of the full information of the mini-batch that

is sampled at a time, and not only the individual pairs.

Figures 2a and 2b illustrate a sample batch of size

m = 6 for the contrastive and triplet embedding. Red edges

in the illustration represent positive pairs (same class) and

the blue edges represent negative pairs (different class) in

the batch. In this illustration, it is important to note that

adding extra vertices to the graph is a lot more costly than

adding extra edges because adding vertices to the graph

incurs extra I/O time and/or storage overhead.

To make full use of the batch, one key idea is to

enhance the mini-batch optimization to use all O(m2)
pairs in the batch, instead of O(m) separate pairs. Figure

2c illustrates the concept of of transforming a training

batch of examples to a fully connected dense matrix

of pairwise distances. Given a batch of c-dimensional

embedded features X ∈ R
m×c and the column vec-

tor of squared norm of individual batch elements

x̃ =
[
||f(x1)||

2
2, . . . , ||f(xm)||22

]⊺
, the dense pairwise

squared distance matrix can be efficiently constructed

by computing, D2 = x̃1
⊺ + 1x̃

⊺ − 2XX⊺, where

D2
ij = ||f(xi) − f(xj)||

2
2. However, it is important to

note that the negative edges induced between randomly

sampled pairs carry limited information. Most likely, they

are different from the much sharper, close (“difficult”)

neighbors that a full subgradient method would focus on.

Hence, we change our batch to be not completely ran-

dom, but integrate elements of importance sampling. We

sample a few positive pairs at random, and then actively

add their difficult neighbors to the training mini-batch. This

augmentation adds relevant information that a subgradient

would use. Figure 3 illustrates the mining process for one

positive pair in the batch, where for each image in a posi-

1Strictly speaking, this would be a subgradient replacing the nested

max by a plus.
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tive pair we find its close (hard) negative images. Note that

our method allows mining the hard negatives from both the

left and right image of a pair in contrast to the rigid triplet

structure [31] where the negative is defined only with re-

spect to the predefined anchor point. Indeed, the procedure

of mining hard negative edges is equivalent to computing

the loss augmented inference in structured prediction set-

ting [35, 17]. Our loss augmented inference can be effi-

ciently processed by first precomputing the pairwise batch

squared distance matrix D2.

x1 x2 x3 x4 x5 x6

x1 x2 x3 x4 x5 x6

Figure 3: Hard negative edge is mined with respect to each

left and right example per each positive pairs. In this il-

lustration with 6 examples in the batch, both x3 and x4 in-

dependently compares against all other negative edges and

mines the hardest negative edge.

Furthermore, mining the single hardest negative with

nested max functions (eqn. 4) in practice causes the net-

work to converge to a bad local optimum. Hence we opti-

mize the following smooth upper bound J̃(D(f(x))). Con-

cretely, our loss function per each batch is defined as,

J̃i,j = log




∑

(i,k)∈N

exp{α−Di,k}+
∑

(j,l)∈N

exp{α−Dj,l}



+Di,j

J̃ =
1

2|P|

∑

(i,j)∈P

max
(
0, J̃i,j

)2
, (4)

where P denotes the set of positive pairs in the batch andN
denotes the set of negative pairs in the batch. The back prop-

agation gradients for the input feature embeddings can be

derived as shown in algorithm 1, where the gradients with

respect to the distances are,

∂J̃

∂Di,j

=
1

|P|
J̃i,j ✶[J̃i,j > 0] (5)

∂J̃

∂Di,k

=
1

|P|
J̃i,j ✶[J̃i,j > 0]

− exp{α−Di,k}

exp{J̃i,j −Di,j}
(6)

∂J̃

∂Dj,l

=
1

|P|
J̃i,j ✶[J̃i,j > 0]

− exp{α−Dj,l}

exp{J̃i,j −Di,j}
, (7)

where ✶[·] is the indicator function which outputs 1 if the

expression evaluates to true and outputs 0 otherwise. As

shown in algorithm 1 and equations 5, 6, and 7, our method

provides informative gradient signals for all negative pairs

as long as they are within the margin of any positive pairs

(in contrast to only updating the hardest negative) which

makes the optimization much more stable.

input : D,α
output: ∂J̃/∂f(xi), ∀i ∈ [1,m]
Initialize: ∂J̃/∂f(xi) = 0, ∀i ∈ [1,m]
for i = 1, . . . ,m do

for j = i+ 1, . . . ,m, s.t. (i, j) ∈ P do

∂J̃/∂f(xi)← ∂J̃/∂f(xi) + ∂J̃/∂Di,j
∂Di,j/∂f(xi)

∂J̃/∂f(xj)← ∂J̃/∂f(xj) + ∂J̃/∂Di,j
∂Di,j/∂f(xj)

for k = 1, . . . ,m, s.t. (i, k) ∈ N do

∂J̃/∂f(xi)← ∂J̃/∂f(xi)+∂J̃/∂Di,k
∂Di,k/∂f(xi)

∂J̃/∂f(xk)← ∂J̃/∂f(xk)+∂J̃/∂Di,k
∂Di,k/∂f(xk)

end

for l = 1, . . . ,m, s.t. (j, l) ∈ N do

∂J̃/∂f(xj)← ∂J̃/∂f(xj)+∂J̃/∂Dj,l
∂Dj,l/∂f(xj)

∂J̃/∂f(xl)← ∂J̃/∂f(xl)+∂J̃/∂Dj,l
∂Dj,l/∂f(xl)

end

end

end

Algorithm 1: Backpropagation gradient

Having stated the formal objective, we now illustrate and

discuss some of the failure modes of the contrastive [14]

and triplet [31, 39] embedding in which the proposed em-

bedding learns successfully. Figure 4 illustrates the fail-

ure cases in 2D with examples from three different classes.

Contrastive embedding (Fig. 4a) can fail if the randomly

sampled negative (xj) is collinear with the examples from

another class (purple examples in the figure). Triplet em-

bedding (Fig. 4b) can also fail if such sampled negative

(xn) is within the margin bound with respect to the sam-

pled the positive example (xp) and the anchor (xa). In

this case, both contrastive and triplet embedding incorrectly

pushes the positive (xi/xa) towards the cluster of examples

from the third class. However, in the proposed embedding

(Fig. 4c), given sufficiently large random samples m, the

hard negative examples (xk’s in Fig. 4c) within the margin

bound pushes the positive xi towards the correct direction.
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xixj

(a) Contrastive embedding

xa

xp

xn

(b) Triplet embedding

xj

xi

xk1

xk2

xk3

(c) Lifted structured similarity

Figure 4: Illustration of failure modes of contrastive and triplet loss with randomly sampled training batch. Brown circles,

green squares, and purple diamonds represent three different classes. Dotted gray arcs indicate the margin bound (where the

loss becomes zero out of the bound) in the hinge loss. Magenta arrows denote the negative gradient direction for the positives.

5. Implementation details

We used the Caffe [16] package for training and test-

ing the embedding with contrastive [14], triplet [31, 39],

and ours. Maximum training iteration was set to 20, 000
for all the experiments. The margin parameter α was set to

1.0. The batch size was set to 128 for contrastive and our

method and to 120 for triplet. For training, all the convo-

lutional layers were initialized from the network pretrained

on ImageNet ILSVRC [30] dataset and the fully connected

layer (the last layer) was initialized with random weights.

We also multiplied the learning rate for the randomly ini-

tialized fully connected layers by 10.0 for faster conver-

gence. All the train and test images are normalized to 256

by 256. For training data augmentation, all images are ran-

domly cropped at 227 by 227 and randomly mirrored hor-

izontally. For training, we exhaustively use all the positive

pairs of examples and randomly subsample approximately

equal number of negative pairs of examples as positives.

6. Evaluation

In this section, we briefly introduce the evaluation met-

rics used in the experiments. For the clustering task, we use

the F1 and NMI metrics. F1 metric computes the harmonic

mean of precision and recall. F1 = 2PR
P+R . The normalized

mutual information (NMI) metric take as input a set of clus-

ters Ω = {ω1, . . . , ωK} and a set of ground truth classes

C = {c1, . . . , cK}. ωi indicates the set of examples with

cluster assignment i. cj indicates the set of examples with

the ground truth class label j. NMI is defined by the ratio of

mutual information and the average entropy of clusters and

the entropy of labels. NMI (Ω,C) = I(Ω;C)
2(H(Ω)+H(C)) . We di-

rect interested readers to refer [23] for complete details. For

the retrieval task, we use the Recall@K [15] metric. Each

test image (query) first retrieves K nearest neighbors from

the test set and receives score 1 if an image of the same class

is retrieved among the K nearest neighbors and 0 otherwise.

7. Experiments

We show experiments on CUB200-2011 [37], CARS196

[19], and our Stanford Online Products datasets where we

use the first half of classes for training and the rest half

classes for testing. For testing, we first compute the em-

bedding on all the test images at varying embedding sizes

{64, 128, 256, 512} following the practice in [1, 31]. For

clustering evaluation, we run affinity propagation cluster-

ing [11] with bisection method [10] for the desired number

of clusters set equal to the number of classes in the test set.

The clustering quality is measured in the standard F1 and

NMI metrics. For the retrieval evaluation, we report the re-

sult on the standard Recall@K metric [15] in log space of

K. The experiments are performed with GoogLeNet [33].

7.1. Ablation study: effect of the batch size m

F1 NMI R@1

m = 32 18.4 53.2 42.4

m = 48 19.1 53.8 42.1

m = 64 19.9 53.8 42.4

m = 128 19.7 54.1 42.8

Table 1: CUB200

F1 NMI R@1

m = 32 20.5 55.6 46.9

m = 48 21.2 55.9 49.4

m = 64 22.7 56.6 50.3

m = 128 22.8 56.7 49.5

Table 2: Cars196

Tables 1 and 2 show the effect of batch size (m) for CUB-

200-211 and CARS196 datasets in terms of F1, NMI, and

R@1. On GoogLeNet, the maximum batch size is limited

to 128 due to GPU (NVIDIA K80) memory constraint. The

minimum batch size where the training doesn’t diverge due

to unstable gradient is around 32. Computing the proposed

smooth structured estimation provides stability in terms of
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Figure 5: F1, NMI, and Recall@K score metrics on the test split of CUB200-2011 with GoogLeNet [33].
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Figure 6: F1, NMI, and Recall@K score metrics on the test split of CARS196 with GoogLeNet [33].

the batch size as shown in tables 1 and 2.

7.2. CUB­200­2011

The CUB-200-2011 dataset [37] has 200 classes of birds

with 11,788 images. We split the first 100 classes for train-

ing (5,864 images) and the rest of the classes for testing

(5,924 images). Figure 5 shows the quantitative clustering

quality for the contrastive [14], triplet [39, 31], and using

pool5 activation from the pretrained GoogLeNet [33] net-

work on ImageNet [30], and our method on both F1, NMI,

and Recall@K metrics. Our embedding shows significant

performance margin both on the standard F1, NMI, and Re-

call@K metrics on all the embedding sizes. Please refer to

the supplementary material for qualitative retrieval results

on the test split of CUB200-2011 [37] dataset. Figure 7

shows the Barnes-Hut t-SNE visualization [36] on our 64
dimensional embedding. Although t-SNE embedding does

not directly translate to the high dimensional embedding,

it is clear that similar types of birds are quite clustered to-

gether and are apart from other species.

7.3. CARS196

The CARS196 data set [19] has 198 classes of cars with

16,185 images. We split the first 98 classes for training

(8,054 images) and the other 98 classes for testing (8,131

images). Figure 6 shows the quantitative clustering qual-

ity for the contrastive [14], triplet [39, 31], and using pool5

activation from pretrained GoogLeNet [33] network on Im-

ageNet [30]. Our embedding shows significant margin in

terms of the standard F1, NMI, and Recall@K metrics on

all the embedding sizes. Please refer to the supplementary

material for qualitative retrieval results on the test split of

Cars196 [19] dataset. Figure 8 shows the Barnes-Hut t-SNE

visualization [36] on our 64 dimensional embedding. We

can observe that the embedding clusters the images from

the same brand of cars despite the significant pose varia-

tions and the changes in the body paint.

7.4. Stanford Online Products dataset

We used the web crawling API from eBay.com [9] to

download images and filtered duplicate and irrelevant im-

ages (i.e. photos of contact phone numbers, logos, etc).

The preprocessed dataset has 120,053 images of 22,634 on-

line products (classes) from eBay.com. Each product has

approximately 5.3 images. For the experiments, we split

59,551 images of 11,318 classes for training and 60,502

images of 11,316 classes for testing. Figure 9 shows the

quantitative clustering and retrieval results on F1, NMI,

and Recall@K metric with GoogLeNet. Figures 10 and 11
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Figure 7: Barnes-Hut t-SNE visualization [36] of our embedding on the test split (class 101 to 200; 5,924 images) of CUB-

200-2011. Best viewed on a monitor when zoomed in.

Figure 8: Barnes-Hut t-SNE visualization [36] of our embedding on the test split (class 99 to 196; 8,131 images) of CARS196.

Best viewed on a monitor when zoomed in.
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Figure 9: F1, NMI, and Recall@K score metrics on the test split of Stanford Online Products with GoogLeNet [33].

Figure 10: Examples of successful queries on our Stanford

Online Products dataset using our embedding (size 512).

Images in the first column are query images and the rest are

five nearest neighbors.

show some example queries and nearest neighbors on the

dataset for both successful and failure cases. Despite the

huge changes in the viewpoint, configuration, and illumi-

nation, our method can successfully retrieve examples from

the same class and most retrieval failures come from fine

grained subtle differences among similar products. Please

refer to the supplementary material for the t-SNE visual-

Figure 11: Examples of failure queries on Stanford Online

Products dataset. Most failures are fine grained subtle dif-

ferences among similar products. Images in the first column

are query images and the rest are five nearest neighbors.

ization of the learned embedding on our Stanford Online

Products dataset.

8. Conclusion

We described a deep feature embedding and metric

learning algorithm which defines a novel structured predic-

tion objective on the lifted pairwise distance matrix within

the batch during the neural network training. The experi-

mental results on CUB-200-2011 [37], CARS196 [19], and

Stanford Online Products datasets show state of the art per-

formance on all the experimented embedding dimensions.
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