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Abstract

Scene labeling task is to segment the image into mean-

ingful regions and categorize them into classes of objects

which comprised the image. Commonly used methods typi-

cally find the local features for each segment and label them

using classifiers. Afterwards, labeling is smoothed in order

to make sure that neighboring regions receive similar la-

bels. However, these methods ignore expressive connections

between labels and non-local dependencies among regions.

In this paper, we propose to use a sparse estimation of pre-

cision matrix (also called concentration matrix), which is

the inverse of covariance matrix of data obtained by graph-

ical lasso to find interaction between labels and regions. To

do this, we formulate the problem as an energy minimiza-

tion over a graph, whose structure is captured by applying

sparse constraint on the elements of the precision matrix.

This graph encodes (or represents) only significant interac-

tions and avoids a fully connected graph, which is typically

used to reflect the long distance associations. We use local

and global information to achieve better labeling. We as-

sess our approach on three datasets and obtained promising

results.

1. Introduction

Semantic image segmentation, assigning a label to each

pixel of an image, is a classic and challenging task in com-

puter vision, due to the efforts needed to simultaneously

segment and recognize the image regions. One of the

widely used approaches to address this problem is to exploit

MAP (maximum a posteriori) inference in a multi-class

conditional random field (CRF). This is the extension of the

binary CRF, which has been widely used to find foreground-

background in images. Common CRF models are defined

over pixels, patches or super-pixels of the image. These

models generally comprise of the unary or association po-

tential, which measures how likely a pixel (or a super-pixel)

can be assigned a particular label without taking into ac-

count the properties of other parts of the image, and the

smoothing or interaction potential, which assesses (evalu-
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Figure 1. Given an image, we aim to improve the semantic labels

of the regions, originally miss-labeled by classifiers. (a) shows a

query image, (b) shows the human annotated image (ground truth),

(c) shows labels obtained by classifiers, (d) shows labels via spatial

smoothing and (e) shows our results.

ates) how the labels of the other connected nodes (pixels

or super-pixels) interact to maximize the assignment agree-

ment.

Commonly, the structure of the CRF is specified man-

ually; in images typically a 2D lattice is used to build an

adjacency CRF using the neighboring pixels. However, this

model has two important limitations. First, it is unable to in-

corporate long-range (long-distance) connections between

different regions of the image. Second, it may not be able

to model the contextual relationships among labels and may

not be capable of capturing the complexity in the labels.

One of the approaches to overcome this problem is to use a

fully connected CRF, in which pair-wise potentials are de-

fined between all pairs of the nodes (pixels or super-pixels).

However, the main limitation of this method is the complex-

ity of the inference. The overwhelming number of edges in
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the model makes the problem difficult to be solved in an ac-

ceptable time. Furthermore, since the optimization solution

to the multi-label CRF is not exact, the complexity in the

structure leads to reduced accuracy.

In this paper, we propose to learn the label graph (the

correlation graph between labels in the dataset) and find

the structure of the super-pixels within the image using the

sparse precision matrix (also called concentration matrix)

estimated using graphical lasso. We aim to infuse the rela-

tions between labels in the model, without expensive learn-

ing of parameters in training the CRF. By doing this, we find

the compatibility among labels instead of using Potts model

for all pairs of labels, thus the cost for different combination

of labels would be dependent on their correlation and the

way they influence each other. However, we consider only

nodes (regions) in the image, which have interactions with

other regions and which are not limited to spatial smooth-

ness only.Also, our model facilitates using smaller elements

(smaller super-pixels or pixels) of the image. Due to the

fact that, we do not need to encode all interactions between

these elements, we can find finer and more accurate bound-

aries using smaller super-pixels. In our approach, in addi-

tion to utilizing the scene semantics by employing the struc-

ture and dependency among labels and regions, we also ex-

ploit global context by refining local probabilities achieved

by classifiers using a retrieval set, which is obtained based

on k nearest neighbors of image employing GIST features.

In order to demonstrate the performance of our method,

we report experimental results on three benchmark datasets

including MSRC2 [20], Stanford Background [7] and SIFT-

flow [16]. In summary, we make the following contribu-

tions:

• We find the structure of the graphical model between

labels and regions using sparse precision matrix to ex-

ploit helpful long distance interactions without consid-

ering all connections.

• We improve the scores of super-pixels by combining

local classifiers results and probabilities obtained by a

retrieval set based on global information of a scene.

• We incorporate discovered significant interactions be-

tween labels (positive or negative correlations) in pair-

wise cost term of the energy minimization problem.

The rest of the paper organized as follow: section 2 reviews

related work proposed for scene labeling, and in section

3 our proposed method is described in detail. The exper-

iments and evaluations of our method are presented in sec-

tion 4, and finally in section 5 we conclude our paper.

2. Related Work

Recently, semantic segmentation has been the subject of

many research works. Proposed methods are different in

terms of employed features and descriptors, primitive el-

ements (pixels, patches or regions), classifier choices and

incorporation of different techniques for context. A major-

ity of methods employ Conditional Random Fields [14].

These methods use mainly appearance (local features) as

unary potential and smoothness between neighboring ele-

ments as the pairwise term [20]. In order to integrate po-

tentials of the features at different levels (pixels and super-

pixels) higher order CRF have also been explored [19], [7].

In addition to local features, some methods benefit from

object detectors and combine the results from detectors and

context information [14], [26]. In some approaches, the im-

age segments are labeled by transferring the labels from a

dataset of known labels. To do so, for a given image, simi-

lar images are retrieved from a sample data using a nearest

neighbor algorithm, then by using Markov Random Field

model, pixels (or super-pixels) in the image are labeled [16],

[25] and [27]. There are many extensions of this type of

labeling, for instance, in [2] authors propose to learn the

weights of descriptors in an off-line manner to reduce the

impact of incorrectly retrieved super-pixels. Also, authors

in [22] proposed to use a locally adaptive distance metric to

find the relevance of features for small patches in the image

and to transfer the labels from retrieved candidates to small

patches of the image. In [8], instead of using a retrieval set

to transfer the labels, a graph of dense overlapping patch

correspondences is constructed; and the query image is la-

beled by using established patch correspondences.

In some other papers, authors incorporate context infor-

mation in their modeling, using global features of the image

or applying co-occurrence of the labels [29]. Deep learning

techniques have also been used in scene labeling. For each

pixel of the image, multi-scaled features are obtained and a

neural network is trained to aggregate feature maps and to

label the regions with highest scores. Note that, these mod-

els need a large data for training [3], [23]. In [11] authors

proposed to represent an image as a collage of warped, lay-

ered objects which are sampled from reference images. For

a given image, they retrieve a dictionary of object segment

candidates that match the image, then represent the image

by combining these matched segments. For this purpose,

they need a dataset of label exemplars. Moreover, in [10]

the authors use detectors to find the bounding boxes of the

objects and label regions using information from detectors

and surface occlusions, in addition, they use RGB-depth to

understand the scene.

In contrast to these models, we automatically find the

relations of classes, and incorporate the context in refining

scores as well as pairwise costs to achieve better label as-

signments without highly expensive training or merely us-

ing common scene to model the relations among classes.
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Figure 2. The overview of our approach: We begin by extracting the feature matrix, and segmenting the image into super-pixels. Then

classifiers (random forest) are trained. We detect the relations between labels using the sparse estimated partial correlation matrix of the

training data. In the inference part, for a given image the label scores are obtained via the classifiers (random forest and nearest neighbors),

then the energy function of a sparse graphical model on super-pixels is optimized to label each super-pixel.

3. Proposed Approach

Our approach consists of two main steps. The first step

consists of off-the-shelf parts including feature extraction

and classifier training based on local features of the sample

training images. Also, in this phase using the training data,

we capture the structure of semantic label interactions graph

to be later employed in the pair-wise cost computation. In

the second step, which is the inference, for a given query

image, using scores computed by the classifiers for each

possible label, and the pair-wise costs obtained by label cor-

relations and appearance features of the image, the MAP in-

ference in CRF framework is applied and each super-pixel

is assigned a label. An overview of our proposed model is

shown in figure 2.

In training, first we segment images using efficient graph

based segmentation [4]. Next, for each super-pixel, local

features, including SIFT, color histogram, mean and stan-

dard deviation of color, area and texture, are extracted.

Given these local features, classifiers (random forest) are

trained to label super-pixels using their local features. Also,

in training phase we build the sparse precision matrix based

on the sample data to highlight the important relations (pos-

itive or negative correlations) between labels. In testing, for

a query image we find the unary terms, for its segments,

using scores from local classifiers refined with the probabil-

ities obtained from a retrieval set based on global features.

Then, we use a fast implementation of graphical lasso to

find the structure of the dependency graph between super-

pixels and assign weights to edges based on correlation val-

ues. Finally, we use α expansion to optimize the energy

function and assign a label to each super-pixel.

3.1. Graphical Lasso and Sparse Precision Matrix

In order to find the structure of the graph of our model,

we employ the precision matrix (the inverse of covariance

matrix) to capture the dependency between variables. The

partial correlation between two variables X and Y , given

other variable Z, measures the association between X and

Y , after regressing X and Y on Z. If the partial correla-

tion between two variables given all other variables is zero,

there will be no edge between them in the corresponding

partial correlation graph. The matrix of partial correlations

between variables can be defined using the inverse of co-

variance matrix Ω. Therefore, zeros in the inverse covari-

ance indicate that there is no edge in the graph. Even though

empirical covariance of the data is a decent approximation

of the true covariance, this is not valid for the precision ma-

trix. Furthermore, when the dimension of the data increases,

the covariance matrix may not be invertible. We assume the

data follows Gaussian distribution and use graphical lasso.

Let X = (X(1), ..., X(p)) be a p-dimensional random

vector. Assume, we have a set of n random samples

X1, ..., Xn, we are interested in identifying conditional in-

dependence between the pair of variables (features) X(i)

and X(j), given other variables. In doing so, X can be

represented by a graph G = (V,E), where vertices cor-

respond to p variables and the edges represent the correla-

tions between variables. In the Gaussian (Normal) distribu-

tion, the correlation and dependency graph are equivalent.

Even though the data may not have a normal distribution,

since conditional independence graphs are hard to estimate,
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employing partial correlation is a reasonable alternative to

find the structure of the interactions between the variables.

Let the matrix C = {ρi,j} ∈ R
p×p be a partial correlation

matrix, where ρi,j captures the partial correlations between

variables X(i) and X(j) , and

ρi,j = −Ωi,j/
√

Ωi,i,Ωj,j , (1)

where Ω = Σ−1 is the inverse of the covariance matrix

of the data with covariance Σ. Using sample covariance

matrix to estimate the matrix C is not proper for high di-

mensional data, due to the limited number of samples, the

covariance matrix may not be invertible. Also, more impor-

tantly, the inverse of empirical covariance matrix may not

be sparse and consequently not resulting in a sparse graph.

In order to find the structure of the graph and obtain a cer-

tain number of influential edges, it is desirable to have zeros

in the precision matrix, since zeros determine the indepen-

dent (uncorrelated) variables. Therefore, imposing sparsity

constraint on the elements of precision matrix enforces that

insignificant and noisy relations are discarded and meaning-

ful dependencies are persevered. To achieve sparsity, [30]

proposed to use a lasso (Least Absolute Shrinkage and Se-

lection Operator) model [24] to estimate each variables us-

ing others as predictor and by applying L1 regularization on

coefficients to enforce sparsity. Therefore, the edges in the

graph are removed for the variables for which correspond-

ing coefficients are zero. In [5], an algorithm, named graph-

ical lasso (glasso), was proposed to maximize the Gaus-

sian log-likelihood of the data with L1 penalty on preci-

sion matrix elements to impose sparsity. This approach uses

block coordinate gradient to solve the optimization prob-

lem, which is fast and suitable for our application. Let S be

the empirical covariance matrix of the data, then Ω can be

obtained by,

argmax
Ω

logdet Ω− tr(SΩ)− λ ‖Ω‖1 , (2)

where tr is the trace of the matrix and ‖‖1 is the L1norm

(sum of the absolute values) of the matrix. In brief, one can

model the dependency between variables using their partial

correlation graph. The partial correlation graph has an edge

between j and k when ρj,k 6= 0. Furthermore, as mentioned

above, partial correlation has a direct relation with inverse

of covariance of the data (equation 1). Therefore, by es-

timating a sparse precision matrix (inverse of covariance),

one could obtain the structure of the dependency graph be-

tween variables, where zeros in the precision matrix mean

there is no edge between corresponding variables. In fol-

lowing sections we explain each part of the approach in de-

tail.

3.2. Local Classifiers

In this section, we explain the first step of the model.

In training, we start with segmenting each sample image

into super-pixels using efficient graph-based segmentation

method [4], followed by computing a feature vector( includ-

ing, SIFT, color mean) for each super-pixel in the image.

Since the ground truth for each image is pixel based, each

super-pixel is assigned a label which correspond to the ma-

jority of its pixels. We use the same features as used in [25].

In order to rescale the classifier scores and give chance to

other classes to compete during optimization phase, we use

a sigmoid function. By doing so, if the classifier mislabels

a super-pixel, theres is more chance that the label would

be changed during the inference phase. We adapt the pa-

rameters of the sigmoid function using the validation data.

We use random forest classifiers [15] to classify each super-

pixel in a test image. Due to the fact that super-pixels may

break the structure of the data, since training data inevitably

is noisy, the bagging using subset of training examples and

subsets of features is used to reduce the effects of the noisy

data. Unlike some of the other methods, which train object

detectors in addition to the region classifiers, we only use

region features and small scale classifiers to obtain the ini-

tial label scores for each super-pixel. In our experiments,

random forest achieved better results in terms of average

accuracy among all the classes, even though we randomly

discard some of the samples during the training, due to large

number of super-pixels.

3.3. Global Retrieval

Since the local classifiers treat each super-pixel individ-

ually, the context information may be missed, therefore we

propose to refine the scores obtained from the classifiers by

leveraging the global feature extracted from the data. By

doing this, we enforce that global information of the scene

and geometrical features play a role in labeling the data.

We use GIST features to retrieve a subset of the nearest

neighbors of the query image from the training data. We

use the method proposed in [17] to speedup the retrieval

process and make it scalable for large databases. Next, we

compute the probability of assigning each label, l, at a spe-

cific location by counting the number of super-pixels with

the label l in the retrieval set, and normalize it with respect

to the total number of labels. Thus, we have a probability

as pg(label = li|location = (x, y)). Finally, for each la-

bel we modify the obtained scores from the classifiers with

these probabilities (corresponding to the super-pixels) using

the following late fusion formulation:

wnew(i, j) = w(i, j)γ × pg(i, j)
1−γ , (3)

where γ is the combination coefficient and wnew(i, j) is the

new probability of ith label for the super-pixel j.

3.4. Scene Graph Structure

In order to capture the structure of the label graph, we

start by building a matrix comprising of the sample data.
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Figure 3. The first row is obtained by using the output (scores) of

each classifier and treating it as a random sample. The second row

is obtained using the features of the super-pixels to find the cor-

relation between them. The first column corresponds to empirical

inverse of covariance matrix of the data; as shown the entries are

very noisy and finding true interactions among the super-pixels is

difficult. However, the estimated sparse precision matrix provide

fewer and more meaningful interactions.

Each image in the training set is represented by a vector of

size equal to the number of classes; we want to discover the

influences of labels, therefore our random variables (fea-

tures) are labels in the dataset. For example, in the SIFT-

flow data set we have 33 labels, therefore each vector has

dimension of 33. The value of a particular variable (spe-

cific label) in this representation is the probability of seeing

that label in the image. These probabilities are obtained by

counting the pixels belonging to the class and normalizing

them by the image size. Then, using equation 2 the preci-

sion (concentration) matrix is estimated. The degree of the

sparsity is handled by parameter λ. Partial correlations of

labels are used to find the interaction between labels, which

will be used for pairwise-cost (interaction potential) in the

CRF formulation instead of using Potts model. Therefore,

if two connected nodes do not have the same label, assign-

ing different pair of labels contribute differently in finding

the conditional probability of the assignment.

In addition, in order to capture the structure of the graph

for the image elements (here super-pixels) in the inference

step, we use the graphical lasso to obtain the relationships

between the super-pixels. By doing this, if two super-pixels

are related but assigned irrelevant labels, the cost of the as-

signment is increased. To do so, each super-pixel is treated

as a random variable, and by using the classifiers which are

trained for class labels, we generate samples for these vari-

ables. Thus, the length of each vector is equal to the number

of super-pixels and we will have L vectors, where L is num-

ber of the classes. Then, we again use graphical lasso and

estimate a sparse precision matrix (inverse of covariance),

and subsequently obtain the partial correlation graph, where

the zero indicates no edge between super-pixels. Note that

since the number of super-pixels can be large, the covari-

ance matrix may be singular and not invertible, due to the

fact that the number of available samples (e.g. scores from

classifiers) is limited. Therefore, in such cases using the

sparse estimation can be beneficial. Not only do we find the

structure and the connections between regions, we also use

these values to incorporate relevancy of super-pixels in pair-

wise potentials. As it is shown in figure 3, the inverse of the

sample covariance matrix is very noisy due to the fact that

the covariance matrix can be singular (or close to singular).

By using the graphical lasso we can capture the structure of

the graph, (as shown in the figure) and also preserve the cor-

relation between spatial neighbors of super-pixels. The al-

ternative for finding the relations between super-pixels is to

use their features and try to find dependency between super-

pixels, by sparse representation of each super-pixels using

other super-pixels as predictors. The example is shown in

the bottom row of the figure 3. We use features of super-

pixels after reducing the dimension by PCA. In our exper-

iments, we use the scores from classifiers as sample data

since they are more efficient.

3.5. Energy Function Optimization

As we obtain graph structure for the query image, we

build a CRF over the super-pixels given the features of the

image, and formulate an energy function E as follows:

E(y, x) =
∑

si

U(yi, x)+τ
∑

i,j∈rel set(i,j)

V (yi, yj , x), (4)

where the goal is to assign a label yi ∈ L = 1, 2, ..., l to

each super-pixel i, while leveraging correlations between

labels to refine the individual labeling. Also, we aim to in-

corporate local smoothness between relevant super-pixels

as well. rel set(i, j) represents the set of the edges, which

correspond to non-zero entires in the precision matrix. And,

τ is a weight to control the balance of smoothness. The

unary term, U , here is defined as the cost of assigning a la-

bel c to a super-pixel si, which we obtain by using scores

provided by the classifier wi for a particular super-pixel:

U(yi = c|xsi) = 1−
1

1 + e−wi,c
. (5)

The pairwise term considers both appearance similarity

between super-pixel i and j as well as correlation between

labels, as follows:

V (yi = l, yj = k|xsi , xsj ) = δ(l, k)× F (si, sj), (6)

δ(l, k) = − log(σ(ρl,k)), (7)

where ρl,k is the correlation between labels which is found

in the training step, σ is a sigmoid function, and F is the

measure of similarity between super-pixels based on color

and position features. This term adds cost to the energy
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Figure 4. Some samples from SIFTflow data set: We show the image, the labels based on classifier scores, results after smoothing using

spatial neighborhood and Potts model, and results using our method employing super-pixel correlation graphs.

in cases where related or similar super-pixels are given ir-

relevant labels. However, it also applies different costs to

different combinations of labels. It should be noted that

here that the edges are not limited to spatial neighbors of

the super-pixels only, we also include significant (relevant)

long interactions. However, despite fully connected con-

figurations, we do not consider all interactions, thus only

significant relations are taken into account. In this structure

irrelevant and noisy interactions are avoided. Moreover, we

incorporate the partial correlations between super-pixels in

the function F given below. This provides the notion of

dependency between super-pixels apart from only the ap-

pearance similarity.

F (si, sj) = (w1 e
−‖Ii−Ij‖+w2 e

−‖pi−pj‖)R(si, sj), (8)

where Ii is the feature for super-pixel i, namely color mean ,

pi is the center position of the super-pixel i, and R measures

the relevancy of two super-pixels. This can be computed as

exp(σ(ρsi,sj )), where σ is a sigmoid function.

4. Experiments and Results

We evaluate our method on three benchmark datasets.

The first dataset is Stanford-background, which has 8

classes and 715 images, and following [21] data is randomly

split into 80% for training and the rest for testing with 5-fold

cross validation. As shown in table 1 we compare our re-

sults with state-of-the-art methods, and we achieve better

results.

Table 1. Accuracy on StandfordBG dataset

Method Avg Accuracy

Farabet natural [3] 81.4

Gould [9] 77.1

Shauai [21] 80.1

Local Classifier 72.8

Local Classifier + Global 78.9

Local + Global + Spatial smoothing 82.2

Ours Final (sparse structure) 84.6
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Figure 5. On the top row, we show two graphs: LEFT: obtained by the sparse partial correlation matrix , and the RIGHT: obtained using

an empirical inverse of covariance matrix. As it is clear, more relevant relations are maintained and irrelevant edges are removed. Below

the graphs, we show some sample images which have been properly labeled using the positive or negative correlation between labels.

(a) sample image, (b) ground truth, (c) classifier result, (d) spatial neighborhood smoothing with Potts model, (e) results obtained by our

approach.

The second dataset that we assess our approach with is

SIFTflow dataset [16], which consists of 2,488 training im-

ages and 200 testing images from 33 classes collected from

LabelMe [18]. The quantitative results of our approach are

reported in table 2 and qualitative results are shown in figure

4. As it is shown, our method is able to achieve promising

results without using computationally expensive features or

object detectors. Note that the main aim of our method is to

improve the local labeling via capturing the proper interac-

tions among labels and super-pixels in addition to leverage

from context information. Thus, improving the initial label-

ing leads to better final results.

We also applied our method on third dataset, MSRCV2

[20], which has 591 images of 23 classes. We use the

provided split, 276 images in training and 255 images.

Here again our method improves the classifiers results and

achieves comparable results to the other methods which use

different features. For instance, authors in [12] extract fea-

tures for each pixel, and build a fully connected graph on

pixel levels, where the unary classifier gives 84% accuracy.
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Figure 6. This example demonstrate that adding long distance edges can prevent over-smoothing and also refine the labels.

Table 2. Accuracy on SIFTflow dataset

Method Avg Accuracy

Farabet [3] 78.5

Tighe [26] 78.6

Collage Parsing [28] 77.1

Shauai [21] 80.1

Gerorge without Fisher Vectors[6] 77.5

Gerorge Full [6] 81.7

Local Classifiers 71.2

Local Classifiers + Global 75.3

Local +Global + Spatial smoothing 77.7

Ours Final (sparse structure) 80.6

They improve the results by 2%, while our improvement

is about 8% which is significant. If the classifiers are im-

proved, our results can be improved even more.

Table 3. Accuracy on MSRC2 dataset

Method Avg Accuracy

Harmony Potentials [1] 83

Fully Connected CRF [12] 86

Segment CRF with Co-Occurrence [13] 80

Local Classifier 76.6

Local Classifier + Global 77.1

Local +Global + Spatial smoothing 81.7

Ours Final (sparse structure) 84.1

In table 4 the average accuracy results per class are re-

ported. As it is shown, our method does not compromise

the per class accuracy for smoothing.

Table 4. Avg Accuracy Per Class

Method StanfordBG SIFTflow MSRC2

Local Classifier 53.8 37.6 71.3

Our Result 77.3 45.8 76.8

4.1. Discussion

Our method improves results obtained from the classi-

fiers in two folds. First, by imposing some constraints on

label graph, more meaningful pairwise costs are applied for

scene labeling. For example, in the label graph as shown in

figure 5, building and mountain have negative partial corre-

lation, on the other hand, building and windows have high

positive correlation. Therefore, as shown in the top row of

examples in figure 5, the mountain segments are refined.

Also, since windows-building have less pairwise-cost, the

windows super-pixels are not smoothed out as it was the

case in column (d).

In addition, expanding the connectivities beyond imme-

diate vicinities boosts the strength of the model. Selective

edges based on partial correlation between segments pre-

vent the model from over-smoothing and enforce the corre-

lated segments to be assigned relevant labels. For instance,

in the image shown in figure 6 super-pixel 18 and 15 are

not immediately adjacent; however, in the sparse correla-

tion matrix they are positively correlated. Thus, there is an

edge between them and consequently, since their similarity

and correlation is high, they are labeled correctly.

5. Conclusion

In this paper, we proposed to incorporate context infor-

mation in both label space and observation space (super-

pixels) to boost local classifier results in order to better se-

mantically label segments in an image. We used graphi-

cal lasso to estimate the sparse precision matrix of data to

find relevant long distance interactions in addition to spatial

smoothness. We have shown that, this model can refine la-

bel assignment using the correlation between labels as well

as segments. Also, our model does not smooth out fore-

ground labels as can be seen in spatial labeling. We reported

improved experimental results on the SIFTflow, Standford

background and MSRC2 benchmark datasets.
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[14] L. Ladickỳ, P. Sturgess, K. Alahari, C. Russell, and P. H.

Torr. What, where and how many? combining object detec-

tors and crfs. In Computer Vision–ECCV 2010, pages 424–

437. Springer, 2010.

[15] A. Liaw and M. Wiener. Classification and regression by

randomforest.

[16] C. Liu, J. Yuen, and A. Torralba. Sift flow: Dense correspon-

dence across scenes and its applications. Pattern Analysis

and Machine Intelligence, IEEE Transactions on, 33(5):978–

994, 2011.

[17] M. Muja and D. G. Lowe. Scalable nearest neighbor algo-

rithms for high dimensional data. Pattern Analysis and Ma-

chine Intelligence, IEEE Transactions on, 36, 2014.

[18] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Free-

man. Labelme: a database and web-based tool for image

annotation. International journal of computer vision, 77(1-

3):157–173, 2008.

[19] C. Russell, P. H. Torr, and P. Kohli. Associative hierarchical

crfs for object class image segmentation. In in Proc. ICCV.

Citeseer, 2009.

[20] J. Shotton, J. Winn, C. Rother, and A. Criminisi. Textonboost

for image understanding: Multi-class object recognition and

segmentation by jointly modeling texture, layout, and con-

text. International Journal of Computer Vision, 81(1):2–23,

2009.

[21] B. Shuai, G. Wang, Z. Zuo, B. Wang, and L. Zhao. Integrat-

ing parametric and non-parametric models for scene label-

ing.

[22] G. Singh and J. Kosecka. Nonparametric scene parsing with

adaptive feature relevance and semantic context. In Com-

puter Vision and Pattern Recognition (CVPR), 2013 IEEE

Conference on, pages 3151–3157. IEEE, 2013.

[23] R. Socher, C. C. Lin, C. Manning, and A. Y. Ng. Parsing nat-

ural scenes and natural language with recursive neural net-

works. In Proceedings of the 28th international conference

on machine learning (ICML-11), pages 129–136, 2011.

[24] R. Tibshirani. Regression shrinkage and selection via the

lasso. Journal of the Royal Statistical Society. Series B

(Methodological), pages 267–288, 1996.

[25] J. Tighe and S. Lazebnik. Superparsing: scalable nonpara-

metric image parsing with superpixels. In Computer Vision–

ECCV 2010, pages 352–365. Springer, 2010.

[26] J. Tighe and S. Lazebnik. Finding things: Image parsing

with regions and per-exemplar detectors. In Computer Vision

and Pattern Recognition (CVPR), 2013 IEEE Conference on,

pages 3001–3008. IEEE, 2013.

[27] J. Tighe, M. Niethammer, and S. Lazebnik. Scene parsing

with object instances and occlusion ordering. In Computer

Vision and Pattern Recognition (CVPR), 2014 IEEE Confer-

ence on, pages 3748–3755. IEEE, 2014.

[28] F. Tung and J. J. Little. Collageparsing: Nonparametric

scene parsing by adaptive overlapping windows. In Com-

puter Vision–ECCV 2014, pages 511–525. Springer, 2014.

[29] T. L. Vu, S.-W. Choi, and C. H. Lee. Improving accuracy for

image parsing using spatial context and mutual information.

In Neural Information Processing, pages 176–183. Springer,

2013.

[30] M. Yuan and Y. Lin. Model selection and estimation in the

gaussian graphical model. Biometrika, 94(1):19–35, 2007.

3658


