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Abstract

We propose a material classification method using raw

time-of-flight (ToF) measurements. ToF cameras capture

the correlation between a reference signal and the temporal

response of material to incident illumination. Such mea-

surements encode unique signatures of the material, i.e.

the degree of subsurface scattering inside a volume. Sub-

sequently, it offers an orthogonal domain of feature rep-

resentation compared to conventional spatial and angular

reflectance-based approaches. We demonstrate the effec-

tiveness, robustness, and efficiency of our method through

experiments and comparisons of real-world materials.

1. Introduction

Material classification is a popular, yet difficult, problem

in computer vision. Everyday scenes may contain a variety

of visually similar, yet structurally different, materials that

may be useful to identify. Autonomous robots and self driv-

ing vehicles, for example, must be aware of whether they

are driving on concrete, metal, pavement, or black ice. As

further advances in robotics and human computer interac-

tion are made, the need for more accurate material classifi-

cation will grow.

One aspect of materials that has seen little use in clas-

sification is the way light temporally interacts with a ma-

terial. As light interacts with an object, e.g. via reflection

and subsurface scattering, it creates a temporal point spread

function (TPSF), a unique signature that can describe the

physical properties of each material. Past efforts to cap-

ture and analyze this signature have relied on detailed re-

constructions of this temporal point spread function in the

form of transient images. These can be captured either di-

rectly using bulky and expensive equipment such as streak

cameras and femtosecond lasers [25, 27], or indirectly with

inexpensive time of flight cameras [6], albeit at a significant

computational cost as well as a lower resolution.

1Each material was captured under the exact same illumination and

camera settings. No adjustments were made except for some white balanc-

ing only for reproducing the images.

Figure 1: Visually similar1but structurally distinct material

samples in RGB.

Our approach exploits raw measurements from ToF cam-

eras’ correlation image sensor for material feature represen-

tation. This method requires very few frequency sweeps

allowing for near one-shot captures similar to coded flash

methods. By completely circumventing the inverse problem

which is neither easy to solve nor able to produce robust

solutions [6], our features can be directly fed into a pre-

trained material classifier that predicts results in a timely

manner. Furthermore, our method allows for per pixel la-

beling which enables more accurate material classification.

Nevertheless, there are significant challenges inherent to

this approach, including depth and noise which create am-

biguities due to the correlation nature of the ToF image for-

mation model, and the camera’s limited temporal resolution

[6] relative to that of a streak camera [25].

In this work, we take the first step to collect a dataset

consisting of visually similar but structurally distinct mate-

rials, i.e. paper, styrofoam, towel, and wax as seen in Fig-

ure 1. To ensure that our classifier is robust to both distance

and angle variations, we take measurements from a variety

of positions. Experimental results show that classification

from ToF raw measurements alone can achieve accuracies

up to 81%. We also present superior results of our method
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compared to those based on reflectance in real world sce-

nario where the latter fail, e.g. classifying printed replicas.

Together these experiments show that the representation of

materials with raw ToF measurements, although at the ex-

pense of sacrificing temporal resolution, has the potential to

work well on material classification tasks.

Our specific contributions are:

• We develop a method to represent materials as raw

measurements from inexpensive and ubiquitous corre-

lation image sensors which are both budget and com-

putational friendly;

• Near single-shot, pixel wise material classification

which is robust to ambient light and thus can be po-

tentially deployed in everyday environments;

• Finally, we show that our recognition results can be

further improved by including spatial information.

2. Related Work

Material classification. The robust classification of ma-

terials from optical measurements is a long-standing chal-

lenge in computer vision. Existing techniques rely on color,

shading, and texture in both active and passive settings;

some even use indirect information like the shape or affor-

dance of an object. For a comprehensive overview of the

state of the art, we refer the reader to a recent survey by

Weinmann and Klein [26]. Here we identify the following

groups of works, some of which are associated with refer-

ence databases:

• techniques based on natural RGB images and textures

[1, 12, 24];

• gonioreflectometric techniques [11, 28, 19, 13] that in-

vestigate materials’ response to directional illumina-

tion;

• techniques that use patterned active illumination to re-

cover parameters of subsurface light transport [22],

and finally,

• techniques that employ other aspects of materials, such

as their thermal properties [18], micro-scale surface

geometry obtained through mechanical contact [9], or

other physical parameters like elasticity [2].

Common to all these approaches is that they fail if suit-

able information is not available or their capture conditions

are not strictly met. Some methods, in particular ones that

rely on natural RGB images, are susceptible to adversar-

ial input and could easily be fooled by human intervention,

printed photos of objects, or reflections. Furthermore, these

techniques often rely on object detection to infer material

information [21]. As a whole, the problem of classifying

materials remains unsolved. With our method, we pro-

pose temporal analysis of subsurface scattering as a new

source of information. To our knowledge, it is the first

method capable of per-pixel classification without the need

for structured illumination or gonioreflectometric measure-

ments. We demonstrate that our method is capable of pro-

ducing robust results under lab conditions, and that it forms

a valuable complement to existing techniques.

Correlation image sensors. Correlation image sensors

are a class of device that have been well explored for use

in depth acquisition [20, 5] and since extended for various

applications. When operated as range imagers, the qual-

ity delivered by correlation sensors suffers from multi-path

interference, whose removal has therefore been the sub-

ject of extensive research [3, 4, 14]. Contrary to this line

of work, our method is enabled by the insight that time-

domain effects of multi-path scattering can carry valuable

information about the material. To our knowledge, the only

other work that explicitly makes use of this relation is a

method by Naik et al. [15], in which low-parameter mod-

els are fitted to streak tube images to recover the reflectance

of non-line-of-sight scenes. In a sense, Naik et al.’s method

maps angular information to the time domain where it is

picked up by a high-end opto-electronic imaging system.

Our proposed method, in contrast, does not make use of

angular or spatial distributions and works on a type of mea-

surement that is routinely available from both configurable

ToF development toolkits such as ESPROS EPC 660 and TI

OPT8241-CDK-EVM, and consumer-grade hardware like

the Microsoft Kinect v2 and Google’s Project Tango smart-

phone (with multi-frequency functionality enabled) .

3. ToF Sensors and Material Properties

In this section we relate raw ToF measurements to ma-

terial optical properties. Here we focus on two phenomena

in particular: multiple scattering inside of a surface volume

(e.g. between strands of a towel), and subsurface scattering

which commonly occurs in wax and styrofoam. Throughout

this paper we restrict materials to planar geometries and ig-

nore macro-scale multi-bounce reflections between object

surfaces. This results in the TPSF model in Equation 9,

which is simpler than the mixture model found in [8].

3.1. Image Formation Model of Correlation Sensors

The image formation model of correlation sensors in ho-

modyne mode has been derived in previous works [6, 8, 7].

Following Heide et al.’s interpretation [6], a correlation

pixel measures the modulated exposure

b =

∫ T

0

E(t)fω (t− φ/ω) dt, (1)
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gω(t)

fω(t− φ/!)

bω,φ

⊗

light source

correlation image sensor

material target

Z
τmax

0

α(τ)g!(t− τ)dτ

Figure 2: Temporal interaction of light and material. A cor-

relation image sensor correlates the reference signal with a

mixture of (a) direct surface reflection (black); (b) surface

inter-reflection or multiple scattering inside surface volume

(red); and (c) subsurface scattering (green). The camera ob-

serves a mixture of (a),(b) and (c), as indicated in blue.

where E(t) is the pixel irradiance, fω(t) is a periodic ref-

erence function of angular frequency ω and programmable

phase offset φ, both evaluated at time t. Typically, this ref-

erence function is zero-mean to make the imager insensitive

to ambient light, i.e. the DC component of E(t).
Materials with different reflection or scattering proper-

ties can cause multiple path contributions to be linearly

combined in a single sensor pixel, as shown in Figure 2. In

an active illumination setting where the light source gω(t)
is intensity modulated at the same frequency, E(t) becomes

a superposition of many attenuated and phase shifted copies

of gω(t), along all possible paths p ∈ P:

E(t) =

∫

P

αpgω(t− |p|)dp (2)

We define the temporal point spread function (TPSF)

α(τ) as the summed contribution of all paths of equal length

|p| = τ :

α(τ) =

∫

P

αpδ(|p| − τ)dp. (3)

The combined multi-path backscatter can thus be expressed

as the convolution of gω(t) with the TPSF α(τ):

E(t) =

∫ τmax

0

α(τ)gω(t− τ)dτ. (4)

By substituting E(t) in Equation 1, we obtain a corre-

lation integral of sensor response and optical impulse re-

sponse:

bω,φ =

∫ T

0

fω(t− φ/ω)

∫ τmax

0

α(τ)gω(t− τ)dτdt (5)

=

∫ τmax

0

α(τ)

∫ T

0

fω(t− φ/ω)gω(t− τ)dt

︸ ︷︷ ︸

dτ (6)

=:

∫ τmax

0

α(τ) · c (ω, φ/ω + τ) dτ, (7)

where the scene-independent functions fω and gω have been

folded into a correlation function c(ω, φ/ω+ τ) that is only

dependent on the imaging device and can be calibrated in

advance (Section 4.1). Expressing the real-valued c by its

Fourier series we arrive at:

bω,φ =

∞∑

k=1

gk

∫ τmax

0

α(τ) cos (kω (φ/ω + τ) + φk) dτ, (8)

where gk is the amplitude and φk the phase of the kth har-

monic. In essence, Equation 8 shows that the correlation

sensor probes a TPSF’s frequency content. The change in

the temporal profile α(τ) will be reflected in its Fourier

spectrum. This is the effect we expect to see in the mea-

surement bω,φ between structurally different materials.

3.2. Material Signatures From Raw Measurements

Our camera images a material target while cycling

through the relative phases {φj=1...n} and frequencies

{ωi=1...m} from Equation 8, generating m measurement

vectors b1...m, each of which corresponds to one modula-

tion frequency and is sampled at n different phases. We

stack all these vectors together and obtain the total mea-

surement matrix B = (b1 . . .bm). The latent TPSF α(τ)
only helps with the derivation and is never reconstructed.

Both the strength and challenges of using correlation

measurements as material features can be illustrated via

simulation. In Figure 3, for example, we demonstrate the

simulation of B at φ = 0 and π/2 and why it is necessary

to address depth ambiguities.

First, we approximate α(τ) with an exponentially mod-

ified Gaussian model which Heide et al. [8] found to com-

pactly represent typical TPSFs:

α(τ ; a, σ, λ, µ) = a · exp
(

(σλ)
2
/2− (τ − µ)λ

)

·
(

1 + erf

(
(τ − µ)− σ2λ√

2σ

))

.
(9)

The intensity of TPSF at any given time τ is a function

of amplitude a, Gaussian width σ, skew λ, and peak center

µ. While λ relates to a material’s scattering coefficient [27],

a and µ are connected to albedo, light falloff and depth re-

lated parameters which are irrelevant to material structural

properties. Similarly, σ models the temporal resolution of a

correlation image sensor, which, without lack of generality,

remains constant in our simulation.

To test our concept in simulation, we assume the corre-

lation function c(ω, φ/ω + τ) (Equation 7) to be a pure si-

nusoid. By applying Equation 8 to the given c(ω, φ/ω + τ)
and α(τ), we simulate measurements at several discrete fre-

quencies ωi from 10 to 120 MHz and two modulation delays

φ = 0 and φ = π/2.

On the top row of Figure 3 we show three TPSFs with

varying peak centers and skews. Specifically, Figure 3a and
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(a) Material 1 at distance 1.
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(b) Material 1 at distance 2.
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(c) Material 2 at distance 2.

Figure 3: Simulation of TPSF α, measurement B and B
aligned at φ = 0 (blue) and φ = π/2 (red). Note that for effect the

time scale of the TPSF has been exaggerated. The temporal support of the true TPSF is typically below a nanosecond.

(a) Dataset acquisition setup.

light source sensor

diffusor

(b) Noise removal setup.

Figure 4: Illustrations of experimental setup.

Figure 3b differ in µ, while Figure 3b and Figure 3c differ

in λ. As can be compared in the middle row of Figure 3,

B is affected by both the material-independent parameter

µ, and material-dependent λ. To make B invariant to µ,

i.e., to depth variations, we need to compensate for a global

temporal shift that originates from translation.

To this end, we have developed a depth normalization

method which is detailed in Section 4.1. An example of nor-

malized measurements are plotted along the bottom row of

Figure 3. While the depth dependent differences are elimi-

nated in Figures 3a and 3b, the material intrinsic properties

remain intact when comparing Figures 3b and 3c.

4. Methods

4.1. Data Preprocessing

Removing fixed pattern noise. Our measurements show

that there exists modulation frequency dependent fixed pat-

tern noise which necessitates per-pixel calibration for their

removal. Similar to [17], and as illustrated in Figure 4b, we

expose the camera sensor to diffuse light to create a noise

calibration matrix. We can then divide this amplitude nor-

malized data from future measurements to compensate for

the fixed pattern noise.

Depth normalization. Next we describe how unwanted

variations in amplitude and phase were removed from the

input data. This serves to align measurements regardless of

distance and intensity while leaving frequency-dependent

effects unaffected. First, we take measurements from a set

of modulation frequencies {ωi=1...m} and choose one to

serve as a point of reference for each material – for the sake

of convenience, let ω1 be the reference frequency for any

given material.

The following procedure summarized, is performed for

all pixels, materials, and distances independently. It deter-

mines the total temporal delay of a given measurement vec-

tor by analyzing the phase shift at the fundamental of the

ω1 measurement. It then shifts all measurements by the re-

spective phase to compensate for this delay.

1. Determine the complex amplitude of the signal at its
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base frequency ω1. To this end, we take the vector of

n phase-shifted {φi=1...n} measurements bω1,φj
and,

using a discrete Fourier transform, obtain coefficients

cω1,k such that

bω1,φi
=

n/2−1
∑

k=0

cω1,k · eikφi , cω1,k ∈ C (10)

Note that the negative spectral coefficients follow di-

rectly from the convex conjugate and are thus omitted

from our derivation. From the coefficient of the fun-

damental frequency, cω1,1, we obtain the desired delay

τref and amplitude factor aref by which we will com-

pensate:

τref = ∠(cω1,1)/ω1, aref = |cω1,1| (11)

2. We then propagate this correction to the measured sig-

nal at all modulation frequencies ωi=1...m by altering

their corresponding Fourier coefficients. Again, we

Fourier transform the n phase samples for modulation

frequency ωi as in Equation 10.

bωi,φi
=

n/2−1
∑

k=0

cωi,k · eikφi , cωi,k ∈ C (12)

Next, we phase-shift the coefficients cωi,k to compen-

sate for the delay τref, and normalize their amplitude

with respect to aref:

caligned

ωi,k
= cωi,k · e−ikωiτref/aref (13)

=
cωi,k

|cω1,1|
·
(

cω1,1

|cω1,1|

)−|k|ωi/ω1

(14)

3. Finally, by substituting the new coefficients caligned

ωi,k

back into Equation 12 we obtain the compensated mea-

surements baligned

ωi,φj
.

An equivalent algorithm which is more compact and

straightforward to implement is provided in Algorithm 1.

4.2. Features

After preprocessing, the raw correlation measurement at

each pixel is denoted by B
aligned, where each element is a

depth and amplitude normalized complex number baligned

ωi,φj
.

This complex matrix is then vectorized into an n×m×2 di-

mensional feature vector for training and testing. Repre-

senting materials in such a high dimensional space poses

well known challenges to classification. Overfitting could

be unavoidable if our number of data points is limited. Fur-

thermore, higher dimensional feature data requires longer

training time.

Algorithm 1 Depth alignment for measurements at modu-

lation frequency ωi

Input: bω1
: vector of n phase-shifted {µl=1..n} measurements at

base modulation frequency ω1; bωi
: vector of n phase-shifted

measurements at other frequency ωi

Output: Aligned measurement: baligned
ωi

1: b̂ω1
:= FFT(bω1

)
2: b̂ωi

:= FFT(bωi
)

3: for k = 1 to #harmonics do

4: b̂
aligned

ωi,k
:=

b̂ωi,k

|b̂ω1,1|
·
(

b̂ω1,1

|b̂ω1,1|

)−|k|ωi/ω1

5: end for

6: b
aligned
ωi

:= IFFT(b̂aligned
ωi

)

Phase (rad)
0 : 2:

A
m

pl
itu

de

-1

0

1
20 MHz

Phase (rad)
0 : 2:

A
m

pl
itu

de

-1
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1
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measured
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Figure 5: Our modulation signal φω(t) at 20MHz and

80MHz.

To address these two issues, we compare the classifica-

tion accuracy using features in both the original space and

dimensional reduced space, e.g. after PCA. In theory, fea-

tures that share similar rows in B
aligned are highly correlated,

as the only difference between the fundamentals of baligned

ωi,φj1

and baligned

ωi,φj2
is a fixed phase shift |φj2 − φj1 |. Our modula-

tion signal φω(t) is nearly sinusoidal, see Figure 5, therefore

most features in the original space may still be correlated to

a certain degree. We show a comparison between the two

with a real dataset and how the number of required mea-

surements can be minimized in Section 5.2.

4.3. Learning Models

It is important to see whether the classification accuracy

is benefited most from tweaking parameters for different

learning models, or from the features themselves. To this

end we evaluated several supervised learning methods in-

cluding Nearest Neighbors, Linear SVM, RBF SVM, Deci-

sion Tree, Random Forest, AdaBoost, LDA, and QDA using

both the MATLAB classificationLearner and Scikit-learn

[16] implementations. The best results from every model

can be found in Table 1.

Training and validation. During the training stage we

performed 5-fold cross validation and reported the mean ac-

curacy. A confusion matrix of the best performing model is

given in Section 5.2.
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Testing. Additionally, several test cases are reported in

Section 5.3 and 5.4. These tests include special cases such

as detecting material photo replicas, and scene labeling.

5. Experiments and Results

5.1. Dataset Acquisition

A prototype ToF camera system composed of a custom

RF modulated light source and a demodulation camera was

used to collect our dataset, similar to that used in [8]. Our

light source is an array of 650 nm laser diodes equipped

with a diffusor sheet to provide full-field illumination. The

sensor is a PMD CamBoard nano development kit with a

clear glass PMD Technologies PhotonICs 19k-S3 sensor

(without NIR filter), a spatial resolution of 165×120 pixels,

and a custom 2-channel modulation source with 150 MHz

bandwidth that serves to generate the signals f(t) and g(t)
(Section 3). In our experiments, we limit ourselves to the

frequency range from 10 MHz to 80 MHz that is also com-

monly used by other ToF sensor vendors.

Data points. We collected data from 4 structurally differ-

ent yet visually similar materials

• paper: a stack of normal printing paper;

• styrofoam: a regular piece of polystyrene foam;

• towel: two layers of a hand towel;

• wax: a large block of wax.

A photo of our experimental setup can be seen in Fig-

ure 4a. To cover a wide range of distances and viewing

angles, we placed the material samples at 10 distances rang-

ing from 1 to 2 meters from the camera. The three viewing

angles, flat, slightly tilted and more tilted, were achieved

by adjusting the tripod to set positions. Under each phys-

ical and modulation setting, a total of 4 frames were cap-

tured with identical exposure times to account for noise.

We then randomly sample 25 locations from the raw cor-

relation frames as data points. In total, our dataset consists

of 10× 3× 4× 25 = 3000 observations for each material.

Features. Under each of the 30 physical distance and an-

gle settings, a total of 64 frames were captured to cover a

wide range of modulation frequencies ω and phases φ in B,

including,

• 8 frequencies: 10, 20, . . . , 80 MHz, and

• 8 equispaced delays from 0 to 2π

We then follow the data preprocessing method in Sec-

tion 4.1 to normalize the depth and amplitudes, where ω1 is

(a) PCA visualization of features before preprocessing.

(b) PCA visualization of features after preprocessing.

Figure 6: Effectiveness of depth normalization, visualized

in the dimensional reduced [23] feature space.

chosen as 10 MHz. This leaves us with a 64-dimensional

complex-valued or, equivalently, a 128-dimensional real-

valued feature B
aligned at each data point. Finally, before

training each feature is standardized to have zero mean and

unit variance.

Figure 6 shows a 2D projection of the wax and paper fea-

tures from our dataset before and after preprocessing. It’s

clear that the removal of fixed pattern noise and normaliza-

tion of amplitude and phase significantly improve the sepa-

rability of our features.

5.2. Classification Results

As previously mentioned in Section 4.3, we now report

and analyze the classification accuracies of different learn-

ing models. The mean validation accuracy for each method

can be found in Table 1. We observe that while SVM with

an RBF kernel generally has the greatest precision, most

methods (Decision Tree, Nearest Neighbor, SVM and Ran-

dom forest) perform comparably. This suggests that the

power of our algorithm is a result of the features, i.e. the
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Original After PCA High freqs

Decision tree 72.2 64.3 68.4

Nearest neighbor 69.5 74.7 69.1

Linear SVM 76.9 69.8 68.6

RBF SVM 80.9 77.7 71.5

Random forest 79.9 75.1 70.0

AdaBoost 72.1 61.1 69.3

LDA 60.0 58.3 62.7

QDA 62.6 60.4 64.8

Table 1: Validation accuracies (%) from different learning

models.

paper styrofoam towel wax

paper 62.7 3.9 33.5 0.0

styrofoam 6.1 82.2 11.7 0.0

towel 18.3 4.1 77.6 0.0

wax 0.0 0.1 0.0 99.9

Table 2: Confusion matrix (%). Labels in the left most col-

umn denote the true labels, while those in the top row cor-

respond to predicted labels.

without

spatial coherence

with

spatial coherence

paper 70.6 80.0

styrofoam 90.8 95.8

towel 72.0 74.1

wax 100.0 100.0

Table 3: Testing accuracies (%) with and without consider-

ing spatial coherence.

ToF raw measurements, rather than the learning model.

The confusion matrix in Table 2 shows how often each

category is misclassified as another. Paper and towel, for ex-

ample, are most commonly misclassified to each other. One

possible explanation could be that the paper used in our ex-

periments had stronger absorption, thus behaving similarly

to the surface inter-reflectance of the towel. Wax, however,

comes with a greater degree of subsurface scattering com-

pared to the other materials which is reflected directly in

its accuracy. Throughout this experiment, we fix the RBF

kernel scale as σ =
√
P , where P is the number of features.

To study if we are able to further reduce the dimension-

ality of discriminative feature representation for each ma-

terial, we performed two experiments. First, we reduce

the feature dimension by performing a principal component

analysis prior to training, validation, and testing. If 95%

variance is kept, we are left with 5D features. These ac-

curacies are shown in the center column of Table 1. We

also empirically handpicked b at two higher modulation fre-

quencies: 70MHz and 80MHz as features. These accuracies

are shown in the rightmost column of Table 1. As we can

(a) Styrofoam. (b) Towel. (c) Wax.

Figure 7: Our classifier successfully recognizes the actual

material of each paper printed replica when attached to a pa-

per stack. Top: Reference RGB images taken with a DSLR

camera which could be confusing to RGB based methods

and even human eyes. Bottom: classification results over-

layed on top of the ToF amplitude image. Green dots indi-

cate a correct classification (paper) and red indicates a mis-

classification. For clarity, the boundaries of each printed

replica are highlighted in blue.

see, although the highest validation accuracy is achieved by

representing features in the original high dimensional space,

there is a balance between the number of features and ac-

ceptable accuracy which warrants further research. Futher-

more, when only the selected higher frequencies are used

for measuring and predicting unseen material, the capturing

time is greatly reduced from 12.3s to 3.0s.

Lastly, we test our best trained classifier on a separate

testing set. These test accuracies are reported in column

“without spatial consistency” in Table 3. We also show

that by simply introducing spatial consistency in our test-

ing stage, up to a 10% improvement can be reached for pa-

per. This spatial consistency is implemented by ranking all

the predicted labels within a region of interest in each test

frame. Then the label with highest probability is chosen

as the final prediction. These results are shown in column

“with spatial consistency”.

5.3. Comparison with RGB Based Approaches

Reflectance-based methods can be easily fooled by repli-

cas, e.g. printed pictures of actual materials, as the RGB in-

formation itself is insufficient to represent the intrinsic ma-

terial properties. Furthermore, they are sensitive to even

small changes in illumination. While a colored ambient

light source may change the RGB appearance and there-
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fore its classification using traditional methods, the material

structure is unchanged.

To validate the advantages and robustness of our method

over RGB approaches we devised a simple experiment.

First, we photographed our raw materials, making small

post-processing alterations to ensure the photos appear as

similar to our lab conditions as possible. Those photos were

then printed to regular printing paper, similar to those used

in our earlier classification experiments, and placed on top

of the paper stack used earlier before taking ToF measure-

ments.

Experimental results, shown along the bottom row of

Figure 7, reveal that our feature representation is invariant

to RGB textures, as all paper replicas were correctly classi-

fied as the actual material: paper. Reference RGB images

captured by a Canon EOS 350D DSLR camera next to the

ToF camera can be seen in the top row of Figure 7. It is

worth noting that this approach is limited by the fact that

printed paper itself is less reflective, and therefore darker,

than the actual materials.

Due to the different scope and nature of our methods,

direct comparison with RGB based approaches may be un-

fair because they unavoidably rely on object cues. Never-

theless, we explored results from many of the best trained

RGB-based Deep Neural Nets methods. When testing our

photo replicas (seen previously in Figure 7, top) on a pre-

trained CaffeNet model based on the network architecture

of Krizhevsky et al. [10] for ImageNet, the wax replica is

classified as “doormat”, while both towel and styrofoam are

tagged with “towel” as the top predictions. When only a

central region within the blue boundary of our photo repli-

cas are fed to the network, wax, towel and styrofoam repli-

cas are recognized as “water snake”, “paper towel” and

“velvet” respectively. These results are not surprising as

these models only use local correlation from RGB informa-

tion whereas our approach exploits completely new features

for classification.

5.4. Scene Labeling

Finally, we created a scene, shown in Figure 8, where

each material was placed at different distances and angles

from the camera. In this scene we used an 8mm wide angle

lens with the TOF camera instead of the 50mm lens used

previously as it was difficult to assemble the materials into

such a narrow field of view without significant occlusion.

As we can see, the entire wax region is correctly labeled

at each pixel. For the most part both styrofoam and pa-

per are correctly classified as well. Towel, on the other

hand, is recognized as wax and styrofoam. One possible

explanation could be that as it is placed at the edge of the

frame, vignetting becomes significant and introduces addi-

tional noise to the features after preprocessing.

(a) Scene of materials. (b) Segmented and labeled.

Figure 8: Our classifier successfully labeled the segmented

scene. (a) Scene of materials captured by the reference

RGB camera; (b) Labeled amplitude image from our ToF

camera. Red: paper; green: styrofoam; blue: towel; yellow:

wax.

6. Summary

We have proposed a method for distinguishing between

materials using only ToF raw camera measurements. While

these are merely the first steps towards ToF material clas-

sification, our technique is already capable of identifying

different materials which are very similar in appearance.

Furthermore, through careful removal of noise and depth

dependencies, our method is robust to depth, angle, and am-

bient light variations allowing for classification in outdoor

and natural settings.

Future work. Although we are able to achieve high ac-

curacy with our current classifiers and datasets, our method

could be further refined by additional training data and a

more diverse set of materials. As a valuable complement

to existing techniques, we believe that our method could

also be used in combination with state of the art RGB al-

gorithms, or by incorporating traditional spatial and image

priors. In the future, we would also like to relax the restric-

tion of planar materials and investigate the robustness of our

method to object shape variations.
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