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Abstract

This paper aims to classify and locate objects accurately

and efficiently, without using bounding box annotations. It

is challenging as objects in the wild could appear at ar-

bitrary locations and in different scales. In this paper, we

propose a novel classification architecture ProNet based on

convolutional neural networks. It uses computationally ef-

ficient neural networks to propose image regions that are

likely to contain objects, and applies more powerful but

slower networks on the proposed regions. The basic build-

ing block is a multi-scale fully-convolutional network which

assigns object confidence scores to boxes at different loca-

tions and scales. We show that such networks can be trained

effectively using image-level annotations, and can be con-

nected into cascades or trees for efficient object classifica-

tion. ProNet outperforms previous state-of-the-art signifi-

cantly on PASCAL VOC 2012 and MS COCO datasets for

object classification and point-based localization.

1. Introduction

We address the problem of object classification and lo-

calization in natural images. As objects could be small and

appear at arbitrary locations, several frameworks [18, 37]

rely on bounding boxes to train object-centric classifiers,

and apply the classifiers by searching over different loca-

tions of the images. However, the annotation process for

object bounding boxes is usually resource intensive and dif-

ficult to scale up. In light of this, we aim to simultaneously

classify and locate objects given only image-level annota-

tions for training.

To cope with the lack of object-level annotations, several

methods [2, 10, 28] extract feature activations from convo-

lutional neural networks (CNN) by scanning over different

image regions. They then aggregate the extracted features

into image-level representations for classification purpose.

Under this scheme, regions that belong to the background

are considered as important as regions that contain objects.
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No
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Probably
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Figure 1. We approach object classification problem by zoom-

ing onto promising image boxes. No object-level annotations are

needed during training.

Such global approaches tend to be sensitive to background,

and cannot be used directly for localization.

We choose to use the fully-convolutional network (FCN)

architecture [16, 19, 23, 27, 21] for simultaneous ob-

ject classification and localization. It replaces the fully-

connected layers of a standard CNN (e.g. AlexNet [12])

with convolutional layers. This enables an FCN to take

images of arbitrary sizes, and generate classification score

maps efficiently. Each element in a score map corresponds

to a rectangular box (receptive field) in the original image.

The score maps can then be used for classification and lo-

calization.

The sampling strides and box sizes are determined by

the FCN’s network architecture. As box sizes are fixed,

FCN might face difficulty dealing with objects of different

scales. We address this problem by using a multi-stream

multi-scale architecture. All streams share the same param-

eters, but take input images of different scales. To train

the multi-scale FCN without object-level annotations, we

generate image-level scores by pooling the score maps over

multiple-scales, and compute the losses with image-level la-
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bels for back-propagation.

Once a multi-scale FCN is trained, it can be used for

classification and localization directly. From another per-

spective, it also proposes a set of promising boxes that are

likely to contain objects. We can then build a cascade archi-

tecture by zooming onto those promising boxes, and train

new classifiers to verify them. The cascade allows the sys-

tem to balance accuracy and speed: each stage filters out

parts of image regions that are unlikely to contain objects.

We name this propose and zoom pipeline as ProNet. Fig-

ure 1 provides the high-level intuition behind ProNet: three

boxes are proposed for bird, potted plant and cat categories.

The boxes are cropped out and verified further, until a cer-

tain decision is made.

To train the later classifiers in ProNet, we sample hard

negatives based on image-level labels. For positives, as no

object-level annotations are available, it is impossible to tell

objects from background. To avoid over-fitting, we ran-

domly sample positive boxes above a relative low threshold.

Different positive boxes from the same image can be sam-

pled at different iterations of the stochastic gradient descent

training process. At test time, only a small subset of boxes

(10 to 20 per image) with highest object confidence scores

are fed to the later classifiers. This allows us to utilize CNNs

that have stronger representation power with little computa-

tional overhead.

ProNet is highly configurable: for example, one could

set a list of important object categories, and only verify the

proposed boxes for those categories. Moreover, apart from

a traditional chain-structured cascade, we show that it is

also possible to build tree-structured cascades, where each

branch handles categories from a particular domain (e.g. set

of vehicles or animals).

In summary, our paper makes the following contribu-

tions:

• We propose ProNet, a cascaded neural network frame-

work that zooms onto promising object-specific boxes

for efficient object classification and localization.

• We introduce strategies to train ProNet with image-

level annotations effectively; and demonstrate the im-

plementations of chain- and tree-structured cascades.

• We show that ProNet outperforms previous state-of-

the-art significantly on the object classification and

point-based localization tasks of the PASCAL VOC

2012 dataset and the recently released MS COCO

dataset.

2. Related Work

Object classification is a fundamental problem in Com-

puter Vision. Earlier work [11, 13, 26] focused on classi-

fication from object-centric images. They usually extract

hand-crafted low-level features [17] and aggregate the fea-

tures into image-level feature vectors [22, 34]. More chal-

lenging datasets [7, 15, 24] have since been collected. They

are of larger scale, and contain smaller objects which could

be partially occluded.

Recently, deep convolutional neural networks (CNN)

have achieved state-of-the-art performance on a wide range

of visual recognition tasks, including object classifica-

tion [12, 28, 27] and detection [9, 8]. Although CNNs re-

quire large amount of data for training, it has been shown

that they are able to learn representations that generalize

to other tasks. Such representations can be adapted to im-

age classification by fine-tuning [18], or extracted as holistic

features for classification with linear SVMs [2]. When used

as generic feature extractors, feature aggregation techniques

designed for hand-crafted features can also work with CNN

embeddings and achieve competitive performance [10].

An alternative approach for object classification is via

detection. Among those utilizing bounding box annota-

tions, RCNN [9] achieves competitive performance by di-

rectly representing image boxes with CNN features and

learning classifiers on top of the features. Object proposal

techniques [32, 39] are used to sample the image patches

for classification. A recent framework, fast RCNN [8], uses

fully-convolutional networks (FCN) to generate box-level

features in batch, and is thus more computational efficient.

Object localization with image-level annotations is a

weakly-supervised problem. It can be formulated as a mul-

tiple instance learning problem, and has been addressed to

learn concept detectors from Internet data [3, 6, 36]. It has

also been studied for object detection [1, 4, 29, 25] and

segmentation [5, 20, 23]. For object classification, Wei et

al. [35] treat images as bags of patches, where the patches

are selected using objectness criteria. They then use max

pooling to fine-tune CNNs based on image-level annota-

tions. Oquab et al. [19] follow a similar approach, but

make the training process end-to-end by converting CNNs

into FCNs. The proposal generation network in ProNet is

also based on FCN, but uses a multi-stream architecture and

cross-scale LSE pooling to achieve scale-awareness.

Cascaded classifiers [33] are a well-studied technique in

Computer Vision. Cascades with CNNs have been explored

for facial point detection [30], face detection [14] and pose

estimation [31]. However, such methods require fully an-

notated training examples. ProNet adopts the cascade phi-

losophy to balance speed and accuracy, but does not require

object bounding boxes for training. Since ProNet is a gen-

eral object classifier, it can also be extended to have tree

structure, where each leaf is a domain expert.

3. ProNet Framework

ProNet has two basic components: an object-specific

box proposal unit, and a verification unit. For each image,

for each object category, the box proposal unit generates a

list of confidence scores of the presence of the object in-
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Figure 2. Illustration of the proposed ProNet framework. Given a test image, it first applies a multi-scale fully-convolutional network to

select boxes that are likely to contain objects. It then feeds the selected boxes to CNNs trained on harder instances for verification. CNNs

at different levels are connected as chains or trees, and trained in a cascade fashion.

stances, and the (x, y) coordinates indicating the locations

of the objects. ProNet then zooms onto image boxes with

higher scores to further verify if they are positive or hard

negatives. The verification units can either take all boxes,

which forms a chain structure; or a subset of boxes cor-

responding to certain domains (e.g. animal), which forms

a tree structure. We implement these two units with con-

volutional neural networks. Figure 2 illustrates the overall

ProNet framework.

3.1. Proposal Generation

The first stage in our framework is to generate object-

specific box proposals with CNNs. For an input image I
and object category c, we want to learn a proposal scoring

function

P (I, c, l) ∈ R

where l = {x1, y1, x2, y2} corresponds to the location of a

rectangular image region denoted by its top left and bottom

right corners.

A typical CNN architecture for image classification task

(e.g. AlexNet [12]) involves a hierarchy of convolutional

layers and fully connected layers. The convolutional layers

operate on local image patches to extract feature represen-

tations. For a W ×H color image with 3 channels, the con-

volutional layers generate a feature map of D × W ′ × H ′

elements, where D is the output feature dimension. W ′ and

H ′ correspond to the width and height of the feature map,

they are controlled by input image size, as well as the kernel

size, sampling step and padding size of the convolutional

layers. The fully connected layers serve as classifiers which

take fixed-size inputs, thus require the width and height of

input images to be fixed. Therefore, one possible way to

compute P (I, c, l) is to enumerate locations and scales in

a sliding window fashion or with bounding box proposals,

and feed such image regions to CNNs.

We take an alternative approach based on fully convo-

lutional networks (e.g. OverFeat [27]). Fully convolu-

tional networks (FCN) do not contain fully-connected lay-

ers. Rather, they use only the convolutional layers, which

allows them to process images of arbitrary sizes. The out-

puts of FCNs are in the form of C×W ′×H ′ feature maps,

where C is the number of categories. Each element in a fea-

ture map corresponds to the activation response for a partic-

ular category over a certain region. Such regions are called

receptive fields for the activations. Compared with region

sampling with sliding windows or bounding box propos-

als, FCNs offer a seamless solution for end-to-end train-

ing under the CNN framework, and also naturally allow the

sharing of intermediate features over overlapping image re-

gions.

Scale adaptation with multi-stream FCNs. One issue

in use of FCNs is that the sizes of receptive fields are typi-

cally fixed, while the object scales may vary a lot. We ad-

dress this problem by using a multi-stream architecture.

Assume an FCN has been trained with inputs where ob-

jects have been resized to the same scale. We expand the

network into K streams, where every stream shares the

same parameters as the pre-trained one. Given an image

I, we scale it to different sizes {I1, I2, ..., IK} and feed to

the K-stream FCN. The output feature map of each stream

corresponds to a different scale in the original image.

Training with image-level annotations. When object

bounding boxes are available, training FCNs is straight-

forward: one could either crop images with the bounding

boxes, or use a loss function which operates directly on fea-

ture maps and takes the object locations into account. As
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Figure 3. Illustration of 3-stream FCN with LSE pooling.

such supervision is absent, we need to aggregate local re-

sponses into global ones so that image-level labels can be

used for training. We use the log-sum-exp (LSE) pooling

function applied by [23] for semantic segmentation:

sc = r−1 log





1

M

∑

x,y,k

exp(r · sc,x,y,k)



 (1)

where c is the category, k corresponds to the k-th stream

of FCN, x, y correspond to location in the feature map, M

is the total number of such elements and r is a hyper pa-

rameter. The function’s output is close to average when r is

small and maximum when r is large. Setting r larger makes

the aggregation focus on a smaller subset of image boxes,

and has the potential to handle smaller objects better.

LSE pooling function can be implemented as a layer in a

neural network. As illustrated in Figure 3, it is connected to

the final layers of all K-stream FCNs and produces a C di-

mensional vector for each image. We then compute the loss

for each category and back-propagate the error gradients to

the earlier layers.

Computing proposal scores. Once the FCNs have been

trained, we compute proposal scores P (I, c, l) from the fea-

ture maps. Specifically, for every neuron in the final layer

of single-stream FCN, we compute its receptive field and

use it as the location l; the corresponding activation of the

neuron is used as proposal score.

Although the exact receptive field may vary due to dif-

ferent padding strategies, we use a simple estimation which

has been reported to work well in practice [27]. Denote the

sampling stride of a spatial convolutional layer Ci as dCi

and the kernel size of a max pooling layer Mj as kMj
, the

overall sampling stride D is given by

D =
∏

C

dCi
·
∏

M

kMj
(2)

where C is the collection of all convolutional layers and M
is the collection of all max pooling layers.

Implementation. Our K-stream FCNs are implemented

with Torch. For each stream, we use the CNN-M 2048

architecture proposed in [2]. It has 5 convolutional lay-

ers and 3 fully-connected layers. It achieves higher accu-

racy on ImageNet than AlexNet, while being faster and less

memory consuming than very deep CNNs [28]. We use the

model parameters released by the authors, which were pre-

trained from ImageNet dataset with 1,000 categories. We

convert the model into an FCN by replacing the three fully-

connected layers with convolutional layers. The first convo-

lutional layer has 512 input planes, 4096 output planes and

kernel size of 6. The second has 4096 input planes, 2048

output planes and kernel size of 1. Since the final layer is

task-specific, it is initialized from scratch with 2048 input

planes, |C| output planes and kernel size of 1. To adapt

the model parameters for object classification on different

datasets, we only fine-tune the final two layers and freeze

the model parameters from previous layers. The sampling

stride of feature maps is 32 pixels, and the window size is

223 pixels.

We set the number of streams to be 3. During training, all

three streams share the same set of parameters. To facilitate

training with mini-batches, every image is rescaled to 300×
300, 500 × 500 and 700 × 700 pixels. As the aspect ratios

of images could be different, we rescale the longer edge to

300, 500 and 700 respectively, and fill the empty pixels by

mirroring the images.

Traditional cross entropy loss for multi-class classifica-

tion introduces competition between different classes, thus

it is not suitable for images with multiple labels. We com-

pute the loss with binary cross entropy criteria for each class

separately, and sum up the error gradients from losses of all

classes for back-propagation.

3.2. Cascade­style Proposal Verification

By setting thresholds on proposal scores, a small subset

of image boxes which might contain objects are selected.

Similar to object detection frameworks, we run CNN clas-

sifiers on the selected boxes. The proposal step also serves

as a filter whose goal is to preserve the object boxes with

high recall rate, while removing the easy negatives. The

verification classifiers then address a more focused problem

on a smaller set of instances. Connecting the two steps is

essentially the same as training a cascade of classifiers.

Verification network architecture. As a later classi-

fier in the cascade, accuracy is more important than speed.

We choose the VGG-16 network architecture [28]. Com-

pared with AlexNet variants, it offers better accuracy for

most visual recognition tasks, but is also slower and more

memory demanding. We use the VGG-16 model param-

eters released by the authors, which was trained on 1,000

ImageNet categories. We use the same binary cross entropy

criterion to compute losses. To make the training process

faster, we only fine-tune the final two fully-connected lay-

ers and freeze all previous layers.
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Algorithm 1: Mini-batch sampling algorithm for train-

ing cascade classifier with stochastic gradient descent.

Input : Training images with proposal scores Ip,

batch size b, threshold t ∈ [0, 1]
1 while stopping criteria not met do

2 Randomly select b images I1, ..., Ib from Ip;

3 Initialize mini-batch T;

4 for j = 1, b do

5 if Ij has proposal with score ≥ t then

6 Randomly sample a proposal l where

P (Ij , c, l) ≥ t;

7 Set the sample’s active class to c;

8 Add proposed region to T;

9 end

10 else

11 Resize and add full image to T;

12 Set all classes as active;

13 end

14 end

15 Forward pass with T;

16 Compute loss for the active class of each sample;

17 Update model parameters.

18 end

Training strategy for the cascade. Ideally, we want

the verification network to handle hard examples from both

positive and negative data. When a proposed region from an

image not containing a given label has a high score of that

class, we know it is a hard negative. However, it is impos-

sible to tell a hard positive from background without using

bounding box annotations. We attempt to avoid using back-

ground by selecting only the top scoring image region for

each positive class. This results in significant over-fitting

and poor generalizability for the trained verification net.

The main problem with the above sampling strategy is

that for positive instances, only easy examples which have

been learned well are preserved. To fix this, we use a ran-

dom sampling strategy as described in Algorithm 1. For

each image, we randomly select an image box whose pro-

posal score is higher than threshold t for class c. In prac-

tice, the threshold is set to a relative low value (e.g. 0.1). If

c is labeled as positive for the image, we treat the box as

a positive instance (though it might belong to background),

and otherwise negative. Note that the sampled box could

be easy negatives for classes beyond c. To avoid oversam-

pling the easy negatives, we set c as the active class during

back-propagation and only compute the loss for the active

class.

Inference with cascade. During inference, an image is

passed to the proposal generation FCN to compute proposal

scores. A small subset of proposed boxes with high scores

Multi-scale FCN

images

boxes

Verification CNN

boxes

Multi-scale FCN

boxes

Verification CNN

Scores

Locations

Scores

Locations

Scores

Locations

Scores

Locations

Multi-scale FCN

images

Scores

Locations

subset  

of boxes

subset  

of boxes

subset  

of boxes

Verification 

 CNN #1

Verification 

 CNN #2

Verification 

 CNN #3

Scores

Locations

Scores

Locations

Scores

Locations

Figure 4. The chain-structure and tree-structure cascades we used

in implementing ProNet.

are then passed to the verification network. For each class,

we select the top k scoring proposals if the scores are higher

than threshold t. We then use the following equation to

combine the outputs from both networks:

sc =







max
l∈Lc

slc if Lc 6= ∅

spc otherwise
(3)

where Lc is the set of selected proposals for class c, spc is the

score of class c from the proposal network after LSE pool-

ing, and slc is the verification network’s output for class c on

region l. When no proposal is selected, we preserve scores

from the proposal network without calibration as they are

typically low.

Discussion. Decomposing classification into cascade

of proposal and verification networks allows the system to

achieve high accuracy while maintaining a reasonable com-

putational cost. It is also a flexible framework for different

design choices. For example, one could decide to verify a

subset of object classes which require higher accuracy. With

the cascade training algorithm, we can build tree-structured

cascaded neural networks, where each branch focuses on a

subset of categories. We can also extend the cascade to have

more stages, and train the new stages with newly annotated

training data. Figure 4 illustrates these structures.

4. Experiments

Experimental setup. We work with the PASCAL VOC

2012 dataset [7] and the MS COCO dataset [15]. VOC

2012 has 5,000 images for training, 5,000 for validation

and 10,000 for testing. There are 20 object classes in to-

tal. COCO has 80,000 images for training and 40,000 im-

ages for validation. It has 80 object classes in 12 super-

categories.
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Average pooling Max pooling LSE pooling
Figure 5. Heat map for class train generated by proposal network trained with average pooling, max pooling and LSE pooling respectively.

We evaluated ProNet on object classification and point-

based object localization tasks. For object classification,

we use the average precision metric. We used VOC’s re-

sult server to compute average precisions on the VOC 2012

dataset. For point-based object localization, we use the cri-

teria introduced in [19]. For every image and every class,

we output a location with maximum response for that class.

The location is deemed correct if it falls into any bounding

box associated with that class, with a tolerance of 18 pixels

as used in [19]. This information is then used to compute

average precision. Although object extent is not evaluated,

the metric remains challenging as shown by [19]. To gener-

ate localization coordinates for evaluation, we kept track of

the image boxes which give highest responses at each stage,

and used the center point of the selected boxes.

We tried different values of hyper-parameter r for LSE

pooling, and found that r ∈ [5, 12] generally gave good

performance. We fixed r = 10 in all the following exper-

iments. We used the stochastic gradient descent algorithm

for training. To train proposal network, the learning rate

was set to 0.01; to train verification network, the learning

rate was set to 0.001. We set the filtering threshold for cas-

cade to 0.1.

Which pooling method is better? We compare max-

imum pooling, average pooling and LSE pooling methods

to train proposal network with image-level supervision. Ta-

ble 1 lists the classification and localization performance

of the three different pooling methods. We can see that

LSE achieves the best classification mAP. Average pool-

ing is 3.7% worse than LSE, which we believe is because

it assigns equal importance to foreground and background.

Max pooling is 1.4% worse; compared with LSE pooling, it

only uses a single patch to generate image-level score, thus

is more sensitive to noise and model initialization during

training.

We also generated visualizations to study the impact of

pooling method on trained models. Figure 5 shows heat

maps of the class train when different models are applied to

the same image. We can see that the model trained by av-

erage pooling has high activations not only on the train but

Method Classification Localization

Oquab et al. [19] 81.8 74.5

RCNN [9] 79.2 74.8

Fast RCNN [8] 87.0 81.9

Proposal (Max) 83.4 72.5

Proposal (Mean) 81.1 62.8

Proposal (LSE) 84.8 74.8

Cascade 88.1 77.7

Second Cascade 89.0 78.5

Table 1. Classification and localization mAPs on VOC 2012 vali-

dation set. Higher mAP is better. Second cascade uses additional

training data from MS COCO.

Method Classification Localization

Oquab et al. [19] 62.8 41.2

Proposal 67.8 43.5

Chain cascade 69.2 45.4

Tree cascade 70.9 46.4

Table 2. Classification and localization mAPs on COCO validation

set. Higher mAP is better.

also on part of the background. For max pooling, only the

wheel of the train has high response, presumably because

it is the most discriminative for the train. Model trained by

LSE pooling has high response on the train, but not on the

background.

Does cascade help? We study the impact of adding cas-

caded classifiers on classification and localization perfor-

mance. We first use a single level of cascade with one multi-

scale FCN and one verification network. For each image

and each class, we selected the top 3 regions per scale if

their scores are higher than 0.1. The average number of re-

gions to be verified is 24 per image. In Table 1, we can see

that on PASCAL VOC 2012, using a cascade helps improve

classification mAP by 3.3% and localization mAP by 2.9%.

Is a longer cascade better? We are interested in observ-

ing how the performance changes with more levels of cas-

cade. For this purpose, we first trained another set of pro-

posal and verification networks using PASCAL VOC data

alone, but found that the network overfitted easily. Since

the training set of VOC 2012 has only 5,000 images, we
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Figure 6. Object localization examples on COCO images. For each object class, we show the box with max score if greater than 0.8. Center

point of each box is used for point-based localization evaluation.

k Ave. #Proposals Cls. Loc.

1 9.0 87.7 76.3

2 16.6 87.9 76.8

3 23.9 88.1 77.1

Fast RCNN #Proposals Cls. Loc.

10 43.2 34.7

50 70.1 63.2

500 85.8 80.8

1000 87.0 81.9

Table 3. Impact of number of boxes passed to verification network

on VOC 2012 validation set. We also compare the impact of se-

lective search proposal number for fast RCNN.

found that the first set of proposal and verification networks

“perfectly solved” this training set, leaving little room to

improve its generalizability.

In light of this, we used the 80,000 images from COCO

training set as complementary data source. It covers the 20

categories used in VOC but also has 60 other categories.

Rather than re-training all the networks by combining VOC

and COCO data, we take that the previous CNNs in the cas-

cade have already been trained and fixed, and only train new

CNNs with the extra data. Note that our cascade architec-

ture offers a natural way to select the challenging instances

from such incoming images.

The final row in Table 1 shows the mAPs after adding a

new set of cascades trained from COCO images. We can

see that it offers another 1% improvement over the previous

cascade, which indicates that it is desirable to train a longer

cascade when more training data becomes available.

Expanding cascades into trees. We also investigated

the effect of building tree-structured cascades. COCO

dataset is used for evaluation as it has 3 times more cate-

gories than VOC.

We trained 12 verification networks corresponding to the

12 super-categories of COCO. Each network focuses on

a single super-category, and processes the sampled boxes

whose active classes belong to that super-category. At test

time, each proposed box only goes through a single root

to leaf path in the tree. The final row of Table 2 shows its

classification and localization performance. We can see that

compared with the chain structured cascade, tree-structured

cascade achieves better performance, probably because it

trains the neural networks to be focused on a small subset

of similar categories.

Comparison with detection based approaches. We

compare our proposed framework with two recent state-

of-the-art object detection methods: RCNN [9] and Fast

RCNN [8]. Unlike our framework, they require bounding

box annotations for training. Both methods use selective

search to generate object proposals and CNNs for classifica-

tion. RCNN uses AlexNet [12] pre-trained from ImageNet,

while fast RCNN uses VGG-16 [28] pre-trained from Im-

ageNet. To generate classification and localization results,

for each class we select the detection output with maximum

confidence score, and use the center of the detected bound-

ing box for localization evaluation.

We first fix the number of window proposals to 1000

for RCNN and fast RCNN. Table 1 shows the performance

comparison. We can see that for classification, our proposed

framework outperforms both RCNN and fast RCNN. For

localization, our proposed framework outperforms RCNN,
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Method BBox plane bike bird boat btl bus car cat chair cow tabl dog hors moto pers plant sheep sofa train tv mAP

NUS-PSL [37] Yes 97.3 84.2 80.8 85.3 60.8 89.9 86.8 89.3 75.4 77.8 75.1 83.0 87.5 90.1 95.0 57.8 79.2 73.4 94.5 80.7 82.2

Oquab et al. [18] Yes 94.6 82.9 88.2 84.1 60.3 89.0 84.4 90.7 72.1 86.8 69.0 92.1 93.4 88.6 96.1 64.3 86.6 62.3 91.1 79.8 82.8

NUS [35]+[37]⋆ Yes 98.9 91.8 94.8 92.4 72.6 95.0 91.8 97.4 85.2 92.9 83.1 96.0 96.6 96.1 94.9 68.4 92.0 79.6 97.3 88.5 90.3

Zeiler et al. [38] No 96.0 77.1 88.4 85.5 55.8 85.8 78.6 91.2 65.0 74.4 67.7 87.8 86.0 85.1 90.9 52.2 83.6 61.1 91.8 76.1 79.0

Chatfield et al. [2] No 96.8 82.5 91.5 88.1 62.1 88.3 81.9 94.8 70.3 80.2 76.2 92.9 90.3 89.3 95.2 57.4 83.6 66.4 93.5 81.9 83.2

NUS-HCP [35] No 97.5 84.3 93.0 89.4 62.5 90.2 84.6 94.8 69.7 90.2 74.1 93.4 93.7 88.8 93.2 59.7 90.3 61.8 94.4 78.0 84.2

Oquab et al. [19] No 96.7 88.8 92.0 87.4 64.7 91.1 87.4 94.4 74.9 89.2 76.3 93.7 95.2 91.1 97.6 66.2 91.2 70.0 94.5 83.7 86.3

Simonyan et al. [28]⋆ No 99.0 88.8 95.9 93.8 73.1 92.1 85.1 97.8 79.5 91.1 83.3 97.2 96.3 94.5 96.9 63.1 93.4 75.0 97.1 87.1 89.0

Our Proposal No 97.0 88.3 92.4 89.8 67.9 90.7 86.2 95.5 73.0 85.5 76.7 94.8 91.1 91.9 97.0 66.1 87.8 68.1 94.1 87.0 86.0

Our Cascade⋆ No 97.6 91.3 94.3 93.2 74.3 93.0 88.5 96.8 78.4 90.7 80.1 96.3 95.2 94.8 98.0 70.9 90.3 75.8 96.3 89.4 89.3

Table 4. Classification performance measured by average precision on PASCAL VOC 2012 test set. BBox column indicates whether the

training algorithm uses bounding box annotation or not. ⋆: uses VGG-16 models.

Method BBox plane bike bird boat btl bus car cat chair cow tabl dog hors moto pers plant sheep sofa train tv mAP

RCNN [9] Yes 92.0 80.8 80.8 73.0 49.9 86.8 77.7 87.6 50.4 72.1 57.6 82.9 79.1 89.8 88.1 56.1 83.5 50.1 81.5 76.6 74.8

Fast RCNN [8] Yes 95.2 88.2 88.4 77.9 49.0 93.4 83.6 95.1 59.4 86.6 71.0 92.6 93.1 93.0 92.2 58.2 88.0 63.6 91.9 77.3 81.9

Oquab et al. [19] No 90.3 77.4 81.4 79.2 41.4 87.8 66.4 91.0 47.3 83.7 55.1 88.8 93.6 85.2 87.4 43.5 86.2 50.8 86.8 66.5 74.5

Our Proposal No 91.6 82.0 85.1 78.6 45.9 87.9 67.1 92.2 51.0 72.9 60.8 89.3 85.1 85.3 86.4 45.6 83.5 55.1 85.6 65.9 74.8

Our Cascade No 92.6 85.6 87.4 79.6 48.3 88.7 68.9 94.2 54.6 83.2 62.8 92.0 89.9 88.2 87.1 49.2 86.9 57.2 86.8 70.0 77.7

Table 5. Localization performance measured by average precision on PASCAL VOC 2012 validation set.

but is 4% worse than fast RCNN.

We also study the impact of number of proposed boxes

on our system’s performance. For this purpose, we let the

proposal network select top k = 1, 2, 3 regions per scale for

each class, and compute the average number of proposed

boxes per image. For comparison, we ask fast RCNN to

use up to 10, 50, 500 and 1000 selective search proposals

per image. Table 3 shows the classification and localiza-

tion performances respectively. We can see that ProNet is

quite robust to the number of proposed boxes, and achieves

reasonably good performance with only 9 boxes on aver-

age. This confirms that ProNet offers better accuracy with

relatively small computational overhead. Meanwhile, fast

RCNN requires many more proposals to reach peak perfor-

mance, presumably because the selective search proposals

are for general objectness and not optimized for object clas-

sification in cascade fashion.

Comparison with other weakly-supervised methods.

We compare ProNet with several state-of-the-art object

classification frameworks. Classification and localization

performance on PASCAL VOC 2012 are shown in Table 4

and Table 5 respectively. Table 2 and Figure 6 show results

and localization examples on COCO dataset. Among the

compared systems, Oquab et al. and NUS-HCP use CNNs

pre-trained on the expanded ImageNet data with more than

1500 categories, which has been shown to be useful for clas-

sification. Since ProNet uses cascades or trees of CNNs,

it can apply a more powerful CNN model VGG-16 with

small computational overhead. This helps our system out-

perform most of the previous state-of-the-art systems signif-

icantly on both datasets. ProNet is also slightly better than

Simonyan et al. which extracts VGG-16 features at three

different scales over full images. Their system is 3x to 6x

slower than our cascade at test time.

Limitation. We evaluate ProNet using the standard IOU

metric, which considers object extent as well as location.

Since the boxes generated by our proposal CNN have fixed

aspect ratios, we follow [19] to aggregate the heat maps over

1000 bounding box proposals generated by selective search

per image. No bounding box regression is conducted. Cas-

cade CNN is then used to verify the high-scoring proposals.

On PASCAL VOC 2012 validation set, our proposal CNN

has an mAP of 13.0% when overlap threshold is 0.5. The

cascade CNN improves the mAP to 15.5%. Although both

results are higher than 11.7% as reported by [19], there is

still a huge gap between the state-of-the-art object detec-

tion pipelines. Our proposal network tends to select the

most discriminative / confusing parts of objects, which is

good for cascade classification but bad for getting full ob-

ject extents. Separating and counting multiple objects are

also challenging issues.

5. Conclusion

We proposed ProNet, a cascaded neural network for ob-

ject classification and localization. ProNet learns to propose

object-specific boxes by multi-scale FCNs trained from

image-level annotations. It then sends a small subset of

promising boxes to latter CNNs for verification. Detailed

experimental evaluations have shown the effectiveness of

ProNet on the challenging PASCAL VOC 2012 dataset and

MS COCO dataset.
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