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Abstract

We present a fast, practical method for personalizing a

hand shape basis to an individual user’s detailed hand shape

using only a small set of depth images. To achieve this, we

minimize an energy based on a sum of render-and-compare

cost functions called the golden energy. However, this energy

is only piecewise continuous, due to pixels crossing occlu-

sion boundaries, and is therefore not obviously amenable to

efficient gradient-based optimization. A key insight is that

the energy is the combination of a smooth low-frequency

function with a high-frequency, low-amplitude, piecewise-

continuous function. A central finite difference approxima-

tion with a suitable step size can therefore jump over the dis-

continuities to obtain a good approximation to the energy’s

low-frequency behavior, allowing efficient gradient-based

optimization. Experimental results quantitatively demon-

strate for the first time that detailed personalized models

improve the accuracy of hand tracking and achieve competi-

tive results in both tracking and model registration.

1. Introduction

The ability to accurately and efficiently reconstruct the

motion of the human hand from images promises exciting

new applications in immersive virtual and augmented reali-

ties, robotic control, and sign language recognition. There

has been great progress in recent years, especially with the

arrival of consumer depth cameras [16, 25, 26, 28, 29, 30,

32, 33, 36]. However, it remains a challenging task [31]

due to unconstrained global and local pose variations, fre-

quent occlusion, local self-similarity, and a high degree of

articulation.

Most recent approaches combine the best of discrimina-

tive and generative approaches: the ‘bottom-up’ discrimi-

native component attempts to make a prediction about the

state of the hand directly from the image data, which then

guides a ‘top-down’ generative component by deforming the

parameters of a model to try to explain the data. Discrimina-

tive methods can be faster and typically require no temporal

history. In contrast a good generative model can use its ex-
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Figure 1: We show how to fit a deformable hand shape basis

model [17] to a small set of depth images. Our method

jointly optimizes over the shape β ∈ R
K and F poses θf

to maximize the model’s alignment to the data in F depth

images. The initial hand poses are automatically determined

by a hand tracker that uses the mean shape βmean, but there

is clearly poor alignment between model and data. After our

optimization to obtain personalized shape βpersonalized, the

alignment is much better, with remaining errors largely due

to sensor noise.

planatory power and priors to produce what is usually a more

accurate result, even in the presence of occlusion.

Generative models of hands are limited by their capacity

to accurately explain the image observations. High-quality,

though expensive and off-line, models have been shown to

reliably fit both the pose and shape of complex sequences [4].

However, most interactive (real-time) hand tracking systems

(e.g. [25, 30]) approximate the hand surface using primitives

such as spheres or cylinders, parameterized to articulate the

surface geometry. Others [28] use a detailed hand mesh

model, though only attempt to fit the hand poses using a

fixed template shape. To improve the model’s capacity, some

approaches [22, 30] allow shape deformations of primitive

spheres and cylinders, but these models can only compensate

for gross model-data mismatches.

Recent work [35] has investigated an off-line process for

‘personalizing’ a detailed 3D mesh model to an individual’s

hand shape using a set of depth images of the hand in varied

poses, each paired with a manually-annotated initialization

pose. The mesh shape is optimized to jointly explain the
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depth data from each frame, yielding the user’s personalized

model. Unfortunately, this system is likely to be too brittle

and slow for an online setting, as the parameterization of

each mesh vertex yields a very high-dimensional optimiza-

tion problem,

A promising alternative is to create a much lower-

dimensional model that parameterizes the hand shape of

an entire population of individuals. Khamis et al. [17] take a

cue from the human body shape modeling literature [3, 14]

and build a detailed 3D shape basis for human hands by

parameterizing a mesh model using a small set of ‘shape

coefficients’. Each setting of these coefficients induces a

hand model whose deformations are parameterized by a set

of semantically meaningful pose parameters (e.g. joint an-

gles). Unfortunately, even though Khamis et al. [17] show

how to personalize their model for a new user, the lack of a

‘background penalty’ leaves local minima where the model

has grown unrealistically in an attempt to explain the data.

To avoid these local minima, they rely on a high-quality

initialization that would be difficult to obtain reliably in an

online setting. Further, they did not investigate whether the

use of a personalized model was important for the accuracy

of online hand tracking systems.

In this paper, we address these concerns and show how to

use the trained shape basis from [17] to robustly personalize

to an individual in a quick and easy calibration step. As

illustrated in Fig. 1, our approach fits a single set of shape

coefficients β and per-frame poses {θf}Ff=1 to a set of F

depth images (each supplied with a rough initialization pose

given by a template-based hand tracking system [28]). To do

so, we exploit the ‘golden energy’ from [28], whose ‘render-

and-compare’ formulation implicitly penalizes protrusions

into free space. The energy appears to be the combination of

a smooth low-frequency function with a high-frequency, low-

amplitude, piecewise-continuous function (see Fig. 4). The

discontinuities in the latter function are the result of occlu-

sion boundaries travelling across locations being discretely

sampled by each pixel. This seems to preclude gradient-

based optimization, as following the exact gradient on either

side of such a jump would not generally yield a good step

direction.

One optimization option might be stochastic search

(e.g. Particle Swarm Optimization) to avoid relying on deriva-

tives, but this converges slowly and typically only works well

for low-dimensional optimization problems. Our optimiza-

tion space (one shape and F poses) is high-dimensional,

however, and thus we would like to use a gradient-based

optimizer. Although we could carefully work out the true

derivatives of a continuous form of this energy [10], it is

not obvious if we could compute them quickly. We thus

choose to instead use an approximate derivative calculated

using central differences. The step size must be right: large

enough to jump over nearby occlusion boundaries, and small

enough to capture the smooth global behavior of the func-

tion. We use a GPU-based tiled renderer to rapidly perform

the extra function evaluations that this finite differencing

requires. Given our ability to calculate the golden energy

and calculate approximate derivatives, we are able to exploit

Levenberg-Marquardt to minimize the energy in under a

second for a small set of images (e.g. F = 5).

We can therefore demonstrate for the first time the poten-

tial for detailed personalization to quantifiably improve the

accuracy of a real-time hand tracker. To this end, we adapt

[28] to track using the personalized model, and compare tem-

plate to personalized model tracking accuracy across several

datasets. We show that our personalized hand tracking is

able to achieve results that are competitive with the state of

the art.

2. Related Work

A large amount of work has been done constructing de-

tailed low-dimensional models of shape and pose variation

for human bodies and faces [1, 2, 6, 9, 12, 13, 18, 19, 37, 38].

While hands may be similar to human bodies in the num-

ber of degrees of freedom, hands exhibit significantly more

self-occlusion. They are also much smaller, which means

images from current depth cameras contain fewer foreground

pixels and suffer from more camera noise. Additionally, the

space of hand poses is likely larger than that of the space

of body poses. Consequently, it is only recently that simi-

lar detailed low-dimensional models were built for human

hands [17]. Given various RGB-D sensor measurements,

these approaches aim to find the low-dimensional shape and

pose subspaces by fitting the entire set of observed data.

This typically amounts to optimizing a very large number

of parameters [7, 17, 21]. Despite the success of these ap-

proaches, the number of parameters prohibits their suitability

for online fitting, although some systems may be close [21].

Recently, morphable subdivision surface models have

been used to model other categories of deformation. Cash-

man and Fitzgibbon [8] demonstrate that extremely limited

data (30 silhouette images) can be used to learn such a model

for a variety of objects and animals. In more closely-related

work, Taylor et al. [35] learn a personalized hand model

from a set of noisy depth images for a single user, which was

the approach adapted by Khamis et al. [17] to train a hand

shape model on a large dataset of hands.

Other related work tackles differentiation for a render-

and-compare energy function, which may at first seem un-

approachable due to occlusion boundaries. When the image

domain is kept continuous, however, one can show that such

energies are naturally differentiable and their exact gradient

can be laboriously worked out [11]. Nonetheless, current

practical systems discretize the image domain by taking a

point sample at each pixel, which introduces discontinuities

in the energy caused by occlusion boundaries moving from
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pixel to pixel. In order to avoid such difficulties, it is tempt-

ing to instead approximate the gradient by peering behind

these boundaries [5]. Interestingly, Oberweger et al. [24]

side-stepped this issue completely by training a convolu-

tional neural network to render hands, as gradients are then

easily obtainable using the standard back-propagation rules

for such networks.

3. Shape and Pose Model

The model developed by Khamis et al. [17] parameter-

izes both hand pose θ ∈ R
28 and hand shape β ∈ R

K to

deform an M -vertex triangular mesh, assumed to have a

fixed triangulation and hierarchical skeleton. This defor-

mation proceeds in three steps, the first two of which are

illustrated in Fig. 2.

First, a vector β of shape coefficients produces a mesh

of a hand in a neutral pose, but with a specific hand shape.

Simultaneously, the shape also defines the position of the B

bones of the skeleton. To be precise, given β, the locations

of M vertices fill the columns of the 3 ×M matrix V (β),
and the set of bone locations fill the columns of the 3× B

matrix L(β):

V (β) =

K
∑

k=1

βkVk and L(β) =

K
∑

k=1

βkLk . (1)

The matrices {Vk, Lk}Kk=1 thus form a linear basis for

the shape of the model. These are the same bases as

[17] for all values of K ∈ {1, 2, 3, 4, 5} for which they

trained. Note that the regularization used during the train-

ing process encouraged the first dimension (V1, L1) to rep-

resent something akin to a mean hand and skeleton with

the other dimensions serving as offsets. We therefore call

βmean = [1, 0, . . . , 0]⊤ ∈ R
K the ‘mean’ hand shape (see

Fig. 1).

Second, the model applies a linear blend skinning (LBS)

operator P (θ;V, L) ∈ R
3×M to a mesh V and skeleton L

using a set of pose parameters θ ∈ R
28 that include global

rotation, translation, wrist and finger joint rotations. LBS is

a standard tool in computer animation; we refer the reader

to [17] for details.

Third, and as a new addition to [17], we implement a

final step Γ : R3×M → R
3×M ′

that applies a single step of

Loop subdivision [20] to the mesh to produce a denser mesh

with M ′ vertices. This brings the resulting mesh into closer

alignment with the true ‘limit surface’ that was fitted to the

data in [17], while maintaining efficiency for what follows.

For notational clarity, we combine the steps together as

Υ(θ, β) = Γ(P (θ;V (β), L(β)) ∈ R
3×M ′

(2)

to denote the full deformation model that produces a subdi-

vided mesh with shape β in pose θ.

Shape Space � � , �ሺ�ሻ
Sሺ�ሺ�ሻሻ�ሺ⋅ሻ, �ሺ⋅ሻ
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Figure 2: The model of hand shape deformation [17].

4. The Golden Energy

One way to evaluate whether a specific combination of

shape β and pose θ give rise to an image is to simply render

the deformed mesh Υ(θ, β) and compare it to the image.

If this evaluation can be formulated as an energy function

that assigns a low value when the rendered and observed

images are close, the problem is then reduced to function

minimization.

To this end, we adapt the ‘golden energy’ from [28] in two

ways: (i) we use an L2 penalty (instead of L1) to allow the

use of standard least-squares optimization techniques; and,

(ii) at least conceptually, we operate on a continuous pixel

domain I ⊆ R
2 to model the idealized imaging process [10].

We thus define an idealized energy by simply integrating the

difference between the observations and the rendering across

the domain of the image I

Êgold(θ, β) =

∫

(u,v)∈I

ρ(Ĩ(u, v)− R̃(u, v; Υ(θ, β)))2 du dv (3)

where ρ(e) = min(
√
τ , |e|) with a constant truncation

threshold τ . Here, Ĩ(u, v) and R̃(u, v; Υ(θ, β)) give the

observed and the rendered depth at the location (u, v), re-

spectively. Note that we generally observe a discretized

image and thus Ĩ(u, v) will be piecewise constant.

In practice, the integral in (3) is difficult and expensive to

evaluate so practical systems instead create a discretization

by rendering an image of size W × H . The (discretized)

golden energy is thus given by

Egold(θ, β) =
1

WH

W
∑

i=1

H
∑

j=1

rij(θ, β)
2 (4)

with the residual rij(θ, β) for pixel (i, j) defined as

rij(θ, β) = ρ(Iij −Rij(Υ(θ, β)) (5)

where I ∈ R
W×H is appropriately resampled from Ĩ(·, ·)

and Rij(Υ(θ, β)) yields the value of pixel (i, j) in the ren-

dered depth image.
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Figure 3: (a) Visualization of the Jacobian with respect to pose parameters θ. Each image is reshaped to form a column of J .

(b) Rows in Jsub represent subterms in the energy; columns represent the pose parameters for one frame. (c) Jacobian of the

full lifted energy E′, including the shape parameters β. (d) Sparsity structure of J⊤J .

5. Shape Fitting Energy

We now have the tools that we need to attack the problem

of inferring a user’s hand shape β from a sequence of depth

images {If}Ff=1. To achieve this goal, we want to minimize

E(β) =

F
∑

f=1

min
θ

(Egold(θ, β; If ) + λpriorEprior(θ)) . (6)

To make the resulting value small, a pose θ must be found

for each frame that yields both a low golden energy Egold(θ)
and a low pose prior energy Eprior(θ). The pose prior pro-

vides constraints on the pose in the form of the negative

log-likelihood

Eprior(θ) = (θ − µ)⊤Σ−1(θ − µ) (7)

of a multivariate normal N (µ,Σ). The mean µ ∈ R
28 and

covariance matrix Σ ∈ R
28×28 were fitted to a selected set

of valid hand poses {P train
q }Qq=1 ⊆ R

22 captured using the

hand tracker of [28], with the variance on the global pose set

to∞.

6. Optimization

Using the standard ‘lifting’ technique (see e.g. [17]), we

define a new lifted energy

E′(Θ, β) =

F
∑

f=1

Egold(θf , β) + λpriorEprior(θf ) (8)

where Θ = {θf}Ff=1. As E(β) ≤ E′(Θ, β) for any value

of Θ, we seek to implicitly minimize the former by ex-

plicitly minimizing the latter. For simplicity, we assign

x =
[

vec(Θ) β⊤
]⊤ ∈ R

28F+K as the parameter vector.

Note that E′ has 28F +K parameters, and thus would

be very difficult to optimize using a stochastic optimizer

like PSO [28]. Instead, we use Levenberg-Marquardt, a

gradient-based optimizer that can yield second-order-like

convergence properties when close to the minimum.

The optimizer requires the full Jacobian matrix J of

the residuals with respect to the 28F +K parameters (see

Fig. 3(a-c)). Given the independence of the pose parameters

across the F depth images (we do not assume any order-

ing or temporal continuity in the depth images, only that

they come from the same individual), it follows that 28F
columns of J are sparsely filled by the results of the pixel-

wise derivative of the golden energy from a single image If
with respect to a pose parameter in θf (see Sec. 7). This is

combined with the Jacobian matrix of the pose prior energy.

The shape coefficients, however, are the same for all images,

so the column that corresponds to a shape coefficient in J is

the concatenation of the pixel-wise derivative of the golden

energy from all images.

To find the Jacobian matrix associated to Eprior, we first

use Cholesky decomposition on Σ−1 = LL⊤ and rewrite

the energy as

Eprior(θ) = ‖L(θ − µ)‖2 . (9)

Since we are computing the derivative of the residuals, the

Jacobian matrix of Eprior(θ) with respect to the parameters is

simply L. In addition to the pose prior, we also impose box

constraints on the parameters θ to restrict the hand pose from

unnatural or impossible deformations. These constraints

take the form of limiting values [Pmin, Pmax] ∈ R
28 × R

28,

which we impose using the projection Π such that Π(x)i =
min(max(Pmin

i , xi), P
max
i )).

Then, using the Levenberg-Marquardt method with a

projected step [15], we propose the following update of the

parameters

xprop = Π(x− (J⊤J + γ diag(J⊤J))−1J⊤r) (10)
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Figure 4: Golden energy as a function of x-axis translation,

for different rendered tile sizes W ×H . Note the globally

smooth nature but local discontinuities, which occur at an

increasingly small scale with larger tile sizes.

where J⊤J is a sparse matrix as illustrated in Fig. 3(d). If

E(xprop) < E(x), then the update is accepted x ← xprop

and the damping is decreased γ ← 0.1γ. Otherwise, the

damping is increased γ ← 10γ and the proposal is recalcu-

lated. Eventually, progress will be made as this is effectively

performing a back-tracking line search while interpolating

from Gauss-Newton to gradient descent.

The importance of the pose prior in our energy becomes

more evident in self-occluded poses where the fingers or

forearm are not visible in the rendered image. When per-

forming a finite difference with respect to transformation

parameters, zero pixel residuals can occur. Thus, without the

pose prior, J and J⊤J become rank-deficient. By including

the pose prior, the angles of the occluded joints approach

the conditional mean of the occluded joints given the visible

joints as they remain unobserved by the image.

7. Differentiating the Golden Energy

Note that (4) is only piecewise continuous (see Fig. 4),

as moving occlusion boundaries cause jumps in the value

of rendered pixels. Our desired optimization procedure re-

quires gradients (see Sec. 6), but it is evident that the exact

derivative of Egold at any specific point of our approximation

will generally not be helpful. One option would be to return

to the idealized continuous energy [11]. However, the edge

overdraw antialiasing used is considerably more expensive

than a simple render on the GPU. Another approximation [5]

is engineered to look behind the occlusion boundary to try

to anticipate what will come into view. Nevertheless, we

take a different approach that lets us exploit standard GPU-

accelerated rendering techniques.

To this end, we note that the curves in Fig. 4 appear to

be the combination of a well-behaved smooth function at

a global scale and a low-amplitude non-smooth function

at a local scale. If we could somehow recover the former,

20 40 60 80

0.06

0.08

0.1

0.12

0.14

Iteration

E
′
(β

,
Θ
)

Figure 5: Convergence of E′ for the five subjects in the

FingerPaint dataset. Dots represent successful Levenberg-

Marquardt iterations.

its gradient would provide a good candidate direction for

minimizing (4). One option would be to try to smooth out

the discontinuities in the approximation using a Gaussian

kernel, but this would require the function’s evaluation at

positions across the entire basin of support of the kernel. For

efficiency, we therefore attempt to approximate the function

locally by fitting a line to two points that are sufficiently far

from each other as to capture the dominant smooth behav-

ior of the energy. Hence, we assign φ =
[

θ⊤ β⊤
]

with

the parameters associated to an image and approximate the

gradient using central differences

∂Egold(φ)

∂φk

≈ Egold(φ+ ∆k

2 )− Egold(φ− ∆k

2 )

ǫk
(11)

where the constant step size ǫk is set empirically (see Table 1)

and the value of the kth element of the vector ∆k ∈ R
28+K

is set to ǫk while zero elsewhere.

As with (4), the residual at pixel (i, j) is only piecewise

continuous, although with a sparser set of more dramatic

jumps. Similarly then, we find that a central difference with

a large step size allows us to approximate the derivative of

the residual

∂rij(φ)

∂φk

≈ rij(φ+ ∆k

2 )− rij(φ− ∆k

2 )

ǫk
. (12)

Although one might be concerned about the various ap-

proximations above, our use of Levenberg-Marquardt pro-

vides a safeguard against catastrophic failure. When steps

fail, the algorithm implicitly performs a back-tracking line

search as it interpolates from Gauss-Newton to gradient de-

scent. This means that in the worst case, the approximate

gradient need only point uphill for progress to be made. In

practice, however, we find the approximate derivatives to

work quite robustly resulting in few rejected steps, indicated

by the many dots (acceptances) in the convergence plots in

both Fig. 5 and Fig. 6.
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Parameter (each row maps to several ks) Step size

X, Y and Z translations 10mm

X rotation 5◦

Y and Z rotations 2.5◦

Metacarpal-phalangeal joint flexions 5◦

Metacarpal-phalangeal joint abductions 5◦

Proximal interphalangeal joint flexions 10◦

Distal interphalangeal joint flexions 15◦

Table 1: Step sizes ǫk used in central differences (12).

8. Experimental Results

We use both synthetic and real data to elucidate our ef-

fectiveness at rapidly minimizing our shape-fitting energy.

We show that this shape calibration gives us an accuracy

improvement on three separate datasets and that our results

are competitive with the state of the art. We refer the reader

to the supplementary material for more experiments and a

video of the live system in action.

For all experiments, we use the step sizes in Table 1 to cal-

culate finite differences, a tile size of 256×256 pixels, which

gave a good balance of global smoothness and performance

(see Fig. 4), and a truncation threshold
√
τ = 10cm. While

one could minimize our energy using LM for tracking (as

opposed to shape calibration), it performs only a fairly local

optimization. Instead we use an implementation of [28]1,

augmented with our own pose prior.

Synthetic Ground Truth. We begin with an experiment

on synthetic data to evaluate our optimization strategy and its

ability to find a good hand shape. To this end, we randomly

choose a ground truth shape βgt ∈ R
K . We then sample a set

of F = 40 poses Θgt = {θgtf }Ff=1 from our pose prior, and

render a set of depth images {If}Ff=1. We then initialize our

energy minimization at the mean with β = βmean. In Fig. 6,

we show the convergence when we optimize E(Θ, β). One

can see in Fig. 6 (left) that we rapidly descend the energy

landscape in the first 20 iterations. This is clearly correlated

with a rapid reduction of |β1−βgt
1 | to near zero, which shows

that we quickly obtain the correct scale. Due to the way the

shape basis was trained in [17], β1 is in a unit that roughly

corresponds to the scale of the mean hand whereas the units

of the other components are less interpretable. Nonetheless,

one can see in the right of Fig. 6 that once scale (i.e. β1) is

taken care of, the error in these components is lowered to

refine detail. Fig. 7 shows that minimizing the energy also

gives strong agreement between the vertex positions V (β)
and the corresponding ground truth positions V (βgt).

Marker Localization. We now begin exploring the use-

fulness of our shape calibration procedure in improving

1Despite statements to the contrary [22], [28] optimizes over pose only.

E′(β,Θ) |β1 − β
gt
1
|
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Figure 6: Left: Optimizing E′ improves the estimate of

β1 which roughly corresponds to scale. Right: The same

for the remaining coefficients of β. Dots show successful

Levenberg-Marquardt steps.

(a) Initial (b) Optimized

2cm

1cm

0cm

Figure 7: Heat maps showing the distance of each vertex to

the corresponding ground truth position, for the (a) initial

and (b) final iteration of the synthetic experiment (Fig. 6).

tracking accuracy, for which the most common metric is

prediction error for a set of marker positions that localize se-

mantic points on the hand. As these locations differ between

datasets, we need to create a mapping from the combined

shape-and-pose parameters φ to a marker position. To do

so, for each marker t = 1, . . . , T we identify four vertices

on the correct region of the model using a fixed picking

matrix2 Yt ∈ R
4×M , and define an affine combination of

these vertices using the barycentric coordinates wt ∈ R
4

with
∑

wt = 1. We then solve

wt = argmin
w

∑

f∈H

‖P (θf ;V (β), L(β))Y ⊤
t w −Gft‖2

where Gft ∈ R
3 is the ground truth location of marker t

in frame f , and H ⊆ {1, ..., N} is an equally spaced 5%

sampling of the N frames in the dataset.

NYU Dataset. We test our method on the popular NYU

Hand Pose dataset [36], which comprises N = 8,252 test

frames with captures of two different subjects (i.e. only two

different shapes). Each frame is provided with ground truth

locations Gft for 36 positions of the hand. To compute 3D

error for Tompson et al. [36] on this dataset, we follow recent

papers [23, 24, 27] that augment the inferred 2D positions

2A picking matrix contains zeros except for a single unity entry per row.
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S3: Template (tracking) S4: Personalized (tracking)
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Taylor et al. [34] with unpersonalized template model

10 20 30 40

20

40

60

80

100

Marker error threshold ǫ (mm)

%
o

f
d

at
as

et
w

it
h

av
er

ag
e

m
ar

k
er

er
ro

r
<

ǫ

10 20 30 40

20

40

60

80

100

Marker error threshold ǫ (mm)

%
o

f
d

at
as

et
w

it
h

m
ax

.
m

ar
k
er

er
ro

r
<

ǫ

Figure 8: Marker localization error on NYU dataset.

with the captured depth at each location where valid, and

the ground truth depth otherwise. We also obtained inferred

positions from Tang et al. [33], Oberweger et al. [24] and

Taylor et al. [34], selecting a common subset of T = 10
positions (2 per digit) for comparison between all methods.

We give quantitative results for four different settings

(S1-4) in Fig. 8. (S1) Since Tompson et al. use no temporal

information to estimate hand pose, we also configure the

tracker [28] to rely only on its discriminative initializer to

seed each frame independently. (S2) We used F = 20 evenly

distributed poses output by (S1) to initialize our calibration

and create a K = 5 personalized model for each of the

two subjects. We then re-ran (S1) using the appropriate

personalized model. (S3) We re-enable temporal coherency

in the hand tracker (a more realistic setting for tracking),

and report the result using the template. (S4) We follow

the same procedure as in (S2) but using poses from (S3) to

create personalized models. Again, we report the result when

tracking is run using the appropriate personalized model.

Notice first that our personalized tracker provides a re-

sult comparable to Tang et al. [33]. This machine learning

approach was trained directly on the NYU training set, and

thus benefits from the reduced search space induced by this

largely front-facing, limited pose variation dataset. Second,

the personalized tracker provides a much better result than

the template tracker. We hypothesize that the superior fit of

the personalized model (see Fig. 10) creates a much deeper

‘correct’ local minimum closer to the true pose, making it

easier to find the deep ‘correct’ local minimum in the next

frame. In contrast, personalization does not assist as much

when temporal coherence is turned off. Nonetheless, our

calibration tool lets us simply upgrade the performance of

a compatible tracker with a personalized model. The recent

result from Taylor et al. [34], using the same personalized

models as our result, shows the the accuracy of a gradient-

based hand tracker when combined with our personalization.

Personalized Template Sridhar et al. [29]

Tagliasacchi et al. [32] Taylor et al. [34]

Taylor et al. [34] with unpersonalized template model
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Figure 9: Marker localization error on Dexter dataset. The

results for this dataset have been normalized so that each of

the 7 sequences has equal weight.

NYU Dataset Dexter Dataset

FingerPaint Subject 2FingerPaint Subject 1

Figure 10: Qualitative example of fit difference between

template (left and top-middle of each set) and personalized

model (bottom-middle and right of each set) for one subject

of the NYU (top left), the only subject of the Dexter (top

right) and two subjects of the FingerPaint (bottom) datasets.

Dexter Dataset. We use the Dexter dataset [29] to further

evaluate our personalized tracking against state-of-the-art

results. We follow the recommendation of the authors and

use T = 5 fingertip markers, excluding a small number of

frames from the beginning of each sequence for the purpose

of calculating error. The result is a total of N = 2,931

frames, of which we use an equally-spaced subset of F = 20
frames to personalize the model. Fig. 9 compares our tracker

with Sridhar et al. [29] (see supplementary material for more

detail on this comparison), as well as Tagliasacchi et al. [32]

and Taylor et al. [34]. This time, personalization gives a

lesser improvement in tracking accuracy as the template fits

the single subject’s hand quite well (see Fig. 10).

FingerPaint Dataset. To test our ability to perform de-

tailed surface registration, we turn to the hand part segmen-

tation task required for the FingerPaint dataset [28]. The

dataset includes sequences from five different subjects, with

pixels labelled as one of 7 parts (5 fingers, the palm, and the
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Figure 11: Classification error on FingerPaint dataset.

forearm). To personalize to each subject, we first run the

template-based hand tracker across each sequence. Then, for

each subject, we sample F = 30 frames, evenly distributed

throughout the dataset, and use the poses to run our shape

optimization. For this dataset, we try personalizing using

K = {1, . . . , 5} for the 5 different shape models from [17].

We then run the tracker on the dataset using the appropriate

personalized models, and compare the pixel classification

accuracies (see supplementary material and Fig. 10 for ex-

amples of these personalized models). Fig. 11 shows, as

expected, the average classification accuracy increases as we

increase K as the deformation model can more accurately

register itself to the data. Interestingly, the K = 1 curve

which roughly corresponds to a scaled mean hand does not

always perform better than the template. We hypothesize

that in these areas of the curve, any benefits to personaliza-

tion are not able to compensate for the bias caused by fitting

to a different dataset; in contrast the template is implicitly

not biased to any dataset as it was created by hand. Note that

the pose prior explains the improvement in accuracy seen

between template tracking and Sharp et al. [28] in Fig. 11.

Qualitative System. Finally, we show that our shape cali-

bration procedure can be used in an online tracker to provide

rapid and reliable detailed personalized tracking for any user

(see Fig. 12). We augmented the live tracker of [28] to in-

clude the capability to perform an online personalization of

the model (see Fig. 13). The system starts by using the tem-

plate model to track the user’s hand. The user moves their

hand into F different poses, and when the user is comfort-

able that the tracker has a reasonable pose estimate, a button

is pressed to capture both the depth frame and the pose es-

timate. When satisfied with these poses, the user presses a

button to initiate shape calibration. Typically, this procedure

takes less than a second, at which point the new personalized

model is used for further tracking. This immediately allows

applications to benefit from both improved surface-to-data
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Child Child

Figure 12: Calibration frames at initialization and after con-

vergence of our personalization procedure. The template is

the wrong shape for the female subject, too small for the

male and wildly too large for the two children. After per-

sonalization, each model fits each user ‘like a glove’. The

truncated golden energy makes the system robust to errors

in segmenting the background.
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Figure 13: Our online calibration tool showing (top) that the

alignment of the mean shape to calibration frames shows

gross errors and (bottom) that the personalized model tightly

aligns with the data after optimization.

registration (see ‘FingerPaint Dataset’) and tracking accu-

racy (see ‘NYU Dataset’). See the supplementary material

for videos of this system in live use.

9. Conclusion

We have presented the first online method for creating a

detailed ‘personalized’ hand model for hand tracking. An

easy-to-use calibration step allows a new user to rapidly tran-

sition from template to personalized tracking, yielding more

robust tracking and better surface alignment that can be ex-

ploited by higher-level applications. We have experimentally

verified both of these benefits on several standard datasets,

showing the increase in both marker localization and dense

pixel classification accuracy one obtains when a personalized

model is used in place of a poorly-fit template model. Users

found our calibration system easy to use and compelling to

see a detailed hand avatar. We leave it as future work to

address the question of how to remove the calibration step

entirely and make personalization fully automatic.
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