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Abstract

This paper presents a method for recovering shape and

normal of a transparent object from a single viewpoint using

a Time-of-Flight (ToF) camera. Our method is built upon

the fact that the speed of light varies with the refractive in-

dex of the medium and therefore the depth measurement of

a transparent object with a ToF camera may be distorted.

We show that, from this ToF distortion, the refractive light

path can be uniquely determined by estimating a single pa-

rameter. We estimate this parameter by introducing a sur-

face normal consistency between the one determined by a

light path candidate and the other computed from the corre-

sponding shape. The proposed method is evaluated by both

simulation and real-world experiments and shows faithful

transparent shape recovery.

1. Introduction

Transparent shape reconstruction is important for scien-

tific imaging and applications in industrial manufacturing.

It has been a difficult problem in computer vision because

the appearance of a transparent object can only be indirectly

observed by the distortion of background textures as illus-

trated in Fig. 1a. Several methods that uses the observations

of the geometric distortion have been proposed, yet it is still

an active research subject.

Recently, a Time-of-Flight (ToF) camera, which mea-

sures distance by correlation of its modulated light, is

becoming a commodity device. When a scene contain-

ing a transparent object is recorded by a ToF camera, the

ToF measurement also becomes distorted because the light

slows down inside the transparent object due to its refrac-

tive index as illustrated in Fig. 1b. The distortion is different

than the geometric distortion on the image coordinates, but

still conveying rich information about the shape of trans-

parent object. We call this distortion a Time-of-Flight dis-

tortion1 in this paper and use it for recovering the shape of

1This is not ordinary depth distortions that are due to calibration or

multi-path effects but the distortion of “time-of-flight.”
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Figure 1: Two distortions caused by transparent objects. (a)

Background texture is geometrically distorted by refraction.

(b) Measured depth is distorted by slower light speed in the

medium.

transparent object.

Our method records two ToF measurements of a trans-

parent object from a single viewpoint but by moving the

background reference surface which is calibrated. Assum-

ing that the refractive index of the target object is known

and the ToF camera is calibrated, the shape estimation prob-

lem can be viewed as the problem of searching the light

path, which correspond to estimating front and back refrac-

tion points and its surface normal. We show that, using the

ToF distortion, the light path has a simple expression that

is governed by a single parameter. We develop a method

for estimating this parameter using a surface normal con-

sistency, that represents a consistency between the surface

normal computed from the light path candidate and that ob-

tained from the corresponding shape.

The proposed method estimates both front and back sur-

faces in a single viewpoint approach. Unlike previous sin-

gle viewpoint approaches that are restricted to a scene with

a single refraction, or requiring a number of light sources

to illuminate the scene, the proposed method is able to re-

cover a scene with two refraction surfaces from a single

view point, with two observations obtained by moving the
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background reference surface. This new setting is enabled

by the use of ToF distortion, which explicitly encodes the

altered light speed in the transparent medium and its vol-

ume. Furthermore, we show a simple multi-path mitigation

technique using a retroreflective sheet for this setting, which

does not require any computational illumination devices,

for recovering curved or multi-planar surfaces of transpar-

ent objects.

2. Related work

Early works of recovering the shape of transparent ob-

jects include [17], which recovers a single refraction water

surface by observing the image placed under water. The

setting of single refraction scenes has been further studied

by several researchers. Morris and Kutulakos [16] recon-

struct the shape of a dynamic wavy surface by observing

a reference pattern placed under water from stereo cam-

eras. Alterman et al. [1] estimate the position of the tar-

get object in the air from a camera placed in water using a

stereo image sequence. Tian and Narasimhan [20] simul-

taneously estimate the shape of water surface and planar

underwater scene from an image sequence by water sur-

face tracking based on the distortion model using the wave

equation. Tian and Narasimhan [21] also remove distortion

of wavy surface in a data-driven approach and reconstruct

wavy surface by spatially integrating the water distortion.

Wetzstein et al. [22] reconstruct thin transparent objects by

assuming thin transparent objects as a single refraction sur-

face using light-field probe, which converts the position and

angle of the light source into color codes. In contrast to

these approaches that assume a single refraction path, our

method focuses on scenes with two refraction paths to esti-

mate whole shape.

There are also methods that analyze solid transparent

shapes that exhibit two or more refractions. Kutulakos and

Steger [12] show a general theory of tractability of shape re-

covery based on refractive paths characterized by the num-

ber of viewpoints, reference points, and refraction points.

They also show reconstruction of a transparent shape from

three viewpoints, two reference points, and two refraction

points. Their problem setting is similar to ours but our

method reconstructs from two observations from a single

viewpoint using a ToF camera, with moving the background

reference surface. There are also some single viewpoint

approaches for transparent shape reconstruction. Morris

and Kutulakos [15] reconstruct inhomogeneous transpar-

ent objects by illuminating an object from various posi-

tions and analyzing the specular reflections. Similarly, Ye-

ung et al. [23] also propose a reconstruction method based

on specular reflection analysis. While effective, these meth-

ods require a number of light positions for accurate recov-

ery.

Some other methods take an approach of using special-

# view # ref. specialized device

[12] 3 2 –

[15, 23] 1 many –

[22] 1 1 (+angle) light-field probe

[6] 1 4 liquids

Ours 1 2 (retroreflective screen)

Table 1: Relation to the prior work. Our method recovers

transparent shape from single viewpoint and two reference

points without specialized devices.

ized devices for recovering transparent shape. Han et al. [6]

reconstruct a single side of transparent surface object by the

crossing of two reference rays, one of which is measured

in the air and the other is measured in liquid. There are

also other unique methods for recovering transparent sur-

faces. Ihrke et al. [9] reconstruct the shape of flowing water

by dyeing water with a fluorescent chemical and observ-

ing from multiple video cameras. Ma et al. [13] acquire

the refractive index field based on the transport of intensity

equations, which is a theory of phase imaging with coherent

illumination, using collimated illumination, and reconstruct

3-d refractive volume based on tomography. Miyazaki and

Ikeuchi [14] propose an inverse polarization ray-tracing for

estimating the front surface of a transparent object using po-

larized reflections. Eren et al. [4] use thermal imaging for

determining transparent shape by illuminating the target by

laser beam.

Table 1 summarizes the settings of transparent shape es-

timation methods, mainly single viewpoint approaches. Our

method determines the shape of transparent objects from a

single viewpoint with two reference points. We consider

that a ToF camera is now a commodity device because it is

available at a similar cost with ordinary RGB cameras.

Similar to our setting, there are works that use a ToF

camera with scenes including transparent objects. Heide et

al. [7] recover light propagation sequences of a scene by

sweeping the modulation frequency of their custom ToF

camera. O’Toole et al. [18] separate light-in-flight im-

ages into direct reflection, specular inter-reflection, and

global components such as caustics based on spatial prob-

ing. Kadambi et al. [11] reconstruct time sequential im-

ages of a scene including transparent objects by altering

ToF measurement using coded light pulses. Gkioulekas et

al. [5] visualize propagation of light by an optical coher-

ence tomography scheme using a Michelson interferome-

ter. Because their method has pico-second time resolution,

spectral dispersion in a glass slab can be visualized. While

these works visualize light transport of the scene, our goal

is reconstruct the shape of transparent objects. Similar to

our work, Shim and Lee [19] reconstruct the shape of thin

translucent objects using a single ToF camera. They model
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Figure 2: Transparent shape recovery problem. The front

surface point f is on the camera ray at distance t, and the

back surface point b is on the ray of 2 reference points at

distance s.

the distortion of the depth by two layer (2-sparse) multi-

path model, and determined object and background layer’s

depth from multiple observations of different illumination

phase delay. Unlike their method, our method is developed

for recovering shape of transparent objects, which have two

refraction points and considerable thickness, using the vari-

ation of speed of light inside the object and refractive paths.

3. Proposed method

In our setting, we measure a transparent object using a

known reference board placed behind the object as illus-

trated in Fig. 2. The target scene is recorded by a ToF cam-

era twice by moving the reference board at two distinct lo-

cations behind the object. A single ToF observation con-

tains both intensity and depth measurements, and from the

intensity measurement, we determine two reference points

r1, r2 ∈ R
3. From these two reference point observations,

the reference ray direction v3 can be determined. With an

assumption that the refractive index ν of the transparent ob-

ject is known and that the camera is calibrated therefore the

camera ray direction v1 is known, our goal is to estimate

the front surface point f and back surface point b at every

camera pixel using the ToF depth measurement lToF . This

problem is equivalent to estimating two variable t and s,

where t is the distance from the camera to the front surface

point, and s is the distance from the back surface point to

the reference point. Our method estimates these unknowns

t and s from v1, v3, r1, and lToF for determining the shape

of transparent object. We begin with describing the ToF

distortion model and develop the estimation method.

3.1. Time-of-Flight distortion model

A ToF sensor acquires the scene depth by observing the

delay of returned light. When a transparent object is placed

in the scene, a ToF sensor measures the optical length to the

background object instead of the transparent object because

light refracts and passes through the transparent object and

reflects back from the background. In addition, the light

speed slows down inside the transparent object according to

its refractive index ν, hence the optical length measured by

the ToF camera becomes different than the geometric length

of the light path. The measured depth lToF can, therefore,

be expressed as

lToF =t+ ν |b− f |+ s, (1)

where |·| represents the geometric length of the vector. We

call this distortion the Time-of-Flight distortion in this pa-

per, and use it for estimating the shape of transparent objects

as it embeds the thickness of transparent object.

This model is built upon the following two assumptions.

• Reflection on the transparent object surface is ignored.

Specular reflection is only observed when the surface

confronts with the ToF camera, which rarely happens

in practice.

• We assume only a single path of ToF light rays and ig-

nore multi-path interference. In practice, we avoid the

multi-path effect using a retroreflective sheet, which is

explained in an experiment section. Prior methods for

multi-path separation in ToF sensing such as [18, 11]

can be alternatively used.

3.2. Baseline method

By examining the equation of the ToF distortion (Eq. (1))

analytically, s can be expressed as a function of t as2

s(t) =
−h(t)−

√

h2(t)− gi(t)

g
, (2)

where g, h, and i are auxiliary variables defined as










g = ν2 − 1

h(t) = lToF − t− ν2(r1 − tv1)
T
v3

i(t) = ν2 |r1 − tv1|
2
− (lToF − t)2.

(3)

While this expression eliminates unknown vectors b and f ,

there still remains one degree of freedom to determine the

unique shape s and t. For resolving the ambiguity, we use a

surface normal consistency described in the following.

When a hypothesized depth t is assumed, we can obtain

a hypothesized front surface point f and back surface point

b as functions of t:
{

f(t) = tv1,

b(t) = r1 − s(t)v3.
(4)

Based on this, the refractive ray direction v2 can be ob-

tained from the hypothesized front surface point f to back

surface point b as

v2(t) =
b(t)− f(t)

|b(t)− f(t)|
. (5)

2Please refer to Appendix A in the supplementary material for the

derivation.
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Since the refractive index ν is known, the surface normal

np(t) of the front surface point can be obtained from the

refractive path using Snell’s law as3

np(t) =
νv2(t)− v1

|νv2(t)− v1|

=
1

N2(t)

(

ν

N1(t)
(r1 − s(t)v3 − tv1)− v1

)

,

(6)

where N1(t) = |b(t)− f(t)| and N2(t) = |νv2(t)− v1|
are normalization coefficients.

At the same time, we can obtain another surface normal

nd(t) from the hypothesized shape as

nd(t) =

∂(tv1)
∂x

× ∂(tv1)
∂y

∣

∣

∣

∂(tv1)
∂x

× ∂(tv1)
∂y

∣

∣

∣

, (7)

where × and ∂ are cross product and partial differentia-

tion operators, respectively. We assume that the neighbors

around tv1 correspond to those viewed in the camera pixel

coordinates.

If the assumed front depth t is correct, two normals np(t)
and nd(t) should coincide; therefore, the estimation prob-

lem can be casted as an optimization problem as

argmin
t

∑

c∈C

‖np,c(tc)− nd,c(tc)‖
2
2 , (8)

where t is a vector listing tc for all pixels, C is a set of all

pixels, tc is the hypothesized front depth of pixel c, np,c

and nd,c are the surface normal computed from the refrac-

tive path and that from hypothesized shape at pixel c, re-

spectively. We call this method a baseline method, and in

the next subsection, we introduce additional objectives for

a more stable solution.

3.3. Robust estimation method

The objective function (Eq. (8)) directly uses the optical

length measured by the ToF sensor (Eq. (1)) without con-

sidering uncertainty (or noise) in the measurement. To take

into account observation noise, we introduce a new variable

lc for each pixel c, which represents the noise-free ToF op-

tical length. There are two objective terms; one of which

is the normal consistency used for the baseline method de-

scribed above, and the other is that the denoised signal lc
should remain close enough to the measured signal lToF .

We additionally regularize the denoising part assuming the

smoothness of both front and back surfaces. Hence, the

3Please refer to Appendix B in the supplementary material.

discontinuity

transparent object

light paths

backpoint

Figure 3: Discontinuity of back surface points. Red and

blue points are well ordered in each group, but generates

discontinuity due to the edge on the front surface as em-

phasized by a black arrow. To take into account of this dis-

continuity, we use a Huber cost function for back surface

smoothness.

overall objective function becomes

t̂, l̂ = argmin
t,l

∑

c∈C

‖np,c(tc, lc)− nd,c(tc)‖
2
2 +

λ1

∑

c∈C

‖lc − lToF (c)‖
2
2 +

λ2

∑

j,k∈N

‖tjv1,j − tkv1,k‖
2
2 +

λ3

∑

c∈C

∥

∥

∥

∥

∂

∂z
bj(tc, lc)

∥

∥

∥

∥

H

, (9)

where l is a vector listing lc for all pixels, j and k are pixel

indices chosen from a set of all neighborhood N , ‖·‖H is

the Huber penalty function [8]4, v1,c is a unit camera ray

vector corresponding to pixel c, and lToF (c) is the mea-

sured ToF depth at pixel c. The first term ensures the nor-

mal consistency, the second term represents denoising of

measured signal lToF , and the third and fourth terms reg-

ularize the denoising process by enforcing smoothness of

front and back surfaces. If the front surface consists of mul-

tiple planes or is curved, continuity of back surface points

could break as illustrated in Fig. 3. We therefore use a Hu-

ber cost function for the back surface smoothness because

it allows occasional discontinuity (outliers) while retaining

overall smoothness.

3.4. Solution method

The optimization problem of Eq. (9) is unfortunately

non-convex and difficult to directly solve. We therefore take

an alternating minimization approach by splitting the orig-

inal problem into two subproblems; one for estimating t

with keeping l fixed (t-subproblem), and the other for de-

termining l with given t (l-subproblem). This can be in-

terpreted as alternating estimation of shape (t-subproblem)

4 The Huber penalty function is an l1/l2 hybrid norm hence it can be

used as smoothness with discontinuity, and defined as

‖x‖
H

=
∑

i

hǫ(xi) , where hǫ(x) =

{

|x| − ǫ/2 (|x| > ǫ)

x2/(2ǫ) otherwise
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and denoising of measurement (l-subproblem). Our method

iteratively updates t and l with initialization of t =
constant, which is chosen manually by setting the approx-

imate distance to the object, and l = lToF , which is a vec-

torized lToF (c) for all pixels. We now discuss these two

subproblems in detail.

t-subproblem By fixing l, Eq. (9) can be reduced to an

optimization problem of t as

t̂ = argmin
t

∑

c∈C

∥

∥

∥
np,c(tc, l̂c)− nd,c(tc)

∥

∥

∥

2

2
+

λ2

∑

j,k∈N

‖tjv1,j − tkv1,k‖
2
2 , (10)

where l̂c represents the estimate of lc obtained from the pre-

vious iteration. This problem can be interpreted as esti-

mation of the front surface shape because tc corresponds

to the depth of front surface. Neglecting the back sur-

face smoothness term is justified because of the fact that

the length between f(t) and b(t) is almost fixed when l̂c
is unchanged. Due to the nested normalization terms as

shown in Eq. (6), it is difficult to analytically derive its first

and second-order derivatives of the objective function. To

avoid high computational complexity of calculating second

derivatives, we use the L-BFGS method [24] which only

uses approximate Hessians rather than explicitly computing

them. The t-subproblem is again non-convex; therefore,

there is a chance of being trapped by a local minima. As

we will see in Sec. 4.1, in practice, it yields good estimates

with appropriate initialization.

l-subproblem By fixing t and neglecting the front surface

normal consistency, we obtain an l optimization problem

written as

l̂ = argmin
l

∑

c∈C

‖lc − lToF (c)‖
2
2 +

λ′

3

∑

c∈C

∥

∥

∥

∥

∂

∂z
bj(t̂c, lc)

∥

∥

∥

∥

H

, (11)

where λ′

3 = λ3/λ1. It can be viewed as a problem of de-

noising l regularized by the back surface smoothness (the

second term) with a fixed front surface t̂. Although this

problem is not strictly convex, we observed that this prob-

lem is approximately convex5; hence the optimal solution

can be obtained. We again use the L-BFGS method as a

minimizer for l-subproblem.

The solution method for the baseline method described

in Sec. 3.2 corresponds to the t-subproblem. On the other

5Please refer to Appendix C in the supplementary material for the con-

vexity of l-subproblem.

3-d view
front

Height map Normal map
back front back

0 mm 50 mm

(a) Diamond object

3-d view
front

Height map Normal map
back front back

0 mm 50 mm

(b) Torus-like object

Figure 4: Simulation examples: Diamond and torus-like

objects. The top row shows the ground truth of 3-d view,

pseudo-colored height map, and normal map of both front

and back surfaces. The bottom row shows the reconstruc-

tion result. The reconstruction error is 0.17% and 0.26%,

respectively..

hand, for the robust estimation method in Sec. 3.3, t- and l-

subproblems are repeatedly solved in an alternating manner.

In the implementation, we begin with the t-subproblem and

iterate until convergence. We stop the iteration when the

gap between estimates and former estimates for both t̂ and

l̂ are small enough.

4. Experiments

In this section, we first assess the accuracy, robustness,

and convergence of the proposed method using simulation

data, and apply the method to real-world transparent objects

to evaluate its effectiveness.

4.1. Simulation test

We generate simulation data of a scene with a transparent

object that consist of the optical length and two reference

points by ray tracing using Eq. (1) and Snell’s law. To the

data, we apply the proposed method to estimate front and

back surface points and assess its accuracy by comparing

with the ground-truth model. We use 0.005 for λ2 and 20
for λ′

3 for all target objects in the simulation tests.
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Figure 5: Assessment result about local minimum depend-

ing on the initial value. (a) Terminated cost value. (b) Error

of estimated shape compared to the ground-truth. All ini-

tial values between 186mm and 209mm result in accurate

shapes.
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Figure 6: Convergence of our alternating minimization. (a)

Cost of t-subproblem. (b) Cost of l-subproblem. They de-

crease over iterations and converge after 3 iterations in this

example.

Accuracy We first assess the effectiveness of the nor-

mal consistency objective (t-subproblem) using 48 types

of transparent shapes generated by simulation. The data

is noise-free in this experiment, and the solution is derived

by solving the t-subproblem (baseline method with smooth-

ness). The initial value of t is set to constant using an

approximate depth to the object, which essentially corre-

sponds to a planar surface located nearby the object. Fig-

ure 4a shows the result of a diamond shape scene. The result

is close to the ground truth, whose root mean squared error

(RMSE) is 0.524mm (0.17 % of the optical length). As an-

other example, Fig. 4b shows the result of a round torus-like

object. The reconstruction accuracy is high in this case as

well with RMSE 0.801mm (0.26 % error), while there is

visible artifacts at a few boundary regions. The average er-

ror of all 48 target objects is 0.45 %, and the result indicates

the effectiveness of the normal consistency.

Effect of initialization We assess the influence of differ-

ent initializations to the solution of t-subproblem because

the t-subproblem is non-convex as described in Sec. 3.4.

The transparent shape that we use for this test is placed

at 200mm from the camera, and its thickness is 50mm;

thus, the object spans in the range of 200mm and 250mm.

We vary the initialization constant for t from 150mm to

0 1 2 3 4 5
Noise level [%]

0

1

2

3

4

5

Er
ro

r [
%

]

1. No noise consideration
2. Pre-denoise only
3. Alternating only
4. Pre-denoise and alternating

Figure 7: Reconstruction error of four approaches with re-

spect to varying noise level. The reconstruction error gen-

erally becomes higher with a greater noise level. Errors are

suppressed by proper noise handling. The combination of

denoising and alternating optimization yields stable and the

lowest error among these four approaches.

250mm and assess the convergence and accuracy by solv-

ing the t-subproblem. Figure 5a shows the cost value at con-

vergence, and Fig. 5b shows the reconstruction error. The

reconstruction error is less than 1% in a wide range of ini-

tial values between 186mm and 209mm, which shows the

tolerance of the method against inaccurate initial values.

Convergence of alternating optimization We also as-

sess the convergence of the alternating optimization de-

scribed in 3.4. In this simulation, we add Gaussian noise

with its standard deviation of 0.5% of optical length to all

the pixels of the depth data. Figure 6 shows an example of

the cost variations of two subproblems over iterations. The

cost of both subproblems rapidly decreases at the beginning

of iterations and remains stable after 3 iterations. With our

test, most transparent shapes showed a similar convergence

behavior and we consider that it is safe to say it reaches a

local optimum.

Robustness against noise We further assess the effect of

observation noise by adding noise to simulated ToF mea-

surements. For comparison, we assess four approaches: (1)

baseline method with smoothness (t-subproblem only), (2)

t-subproblem with denoising, (3) alternating optimization

(Sec. 3.4), and (4) alternating optimization with denoising.

We use the Non-local Means Denoising [3] for denoising

ToF measurements. Figure 7 summarizes the reconstruction

errors of these four strategies with respect to the noise level.

Without a proper noise handling (approach 1), results are

significantly affected by observation noise hence the error

increases together with the observation noise level. When

denoising is applied prior to the optimization (approach 2),

the error becomes stable regardless of the noise level. With

the alternating optimization method (approach 3), the er-

ror is also suppressed while it shows degradation at higher

noise levels. The highest accuracy is obtained by alternat-
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Figure 8: Experimental setup. IR lens of Kinect v2 is

changed to obtain narrower field of view. Reference points

are obtained using the LCD panel on a linear stage.

ing optimization with denoising (approach 4). The result

indicates that denoising is effective, that alternating opti-

mization is also effective in suppressing noise, and that the

combination of these two is effective. For the real-world

experiments in the next subsection, we use the alternating

optimization with denoising approach.

4.2. Real-world experiment

For the real-world experiment, we use an off-the-shelf

ToF camera (Kinect v2) and an LCD panel placed on a

linear stage. Three distinct transparent objects are used

for conducting the experiment. The parameters are set to

λ2 = 0.05 and λ′

3 = 10 for all target objects in this experi-

ment.

Setup Figure 8 shows our experimental setup. We use Mi-

crosoft Kinect v2 for a ToF camera, whose lens is changed

to Edmund 35mm IR lens to narrower the field of view

(FOV). To obtain reference points, we use an LCD panel,

which is mounted on a motorized linear stage (OptoSigma

SGSP26-150) that allows replication of positions in high

precision. The LCD panel reflects the lights from Kinect

with displayed patterns hence the back illumination of the

display is turned off.

Calibration and measurements The LCD-camera sys-

tem is calibrated at two LCD locations before measurement.

The 3-d position of every LCD’s pixels at two depth loca-

tions are measured in the form of IR and depth images of

calibrated Kinect. The pixel location of the LCD panel is

determined by Gray code pattern projection method [10].

For measurement, we place the target transparent object in

between the camera and LCD panel. The target object is

measured twice with distinct LCD panel locations. To ob-

tain reference points in the measurement, we again use the

Gray code pattern projection.

Result We conduct experiments using three transparent

objects, which do not produce multi-path interferences.

Figure 9 shows target objects and the reconstruction results.

Cube Wedge prism Schmidt prism

Target objects

Estimated point clouds and fit model

front back

Pseudo colored height and normal maps

front back front back
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Figure 9: Experimental result of simple objects that con-

sist of two planer surfaces. Top: Target objects. Front and

back surfaces are single plane, hence no multi-path inter-

ferences are occurred. Middle: Estimated front points (yel-

low) and back points (cyan) with fit model by ICP (semi-

transparent). Bottom: Estimated height map (upper) and

normal map (lower) of front surface (left) and back surface

(right).

Object Mean Std. dev.

Cube (parallel surfaces) 0.188mm 0.458mm
Wedge prism (18.8◦) 0.226mm 1.137mm
Schmidt prism (45◦) 0.381mm 1.398mm

Table 2: Quantitative evaluation of reconstruction errors.

We evaluate the mean and standard deviation of the Eu-

clidean distance between recovered points and the ground

truth CAD model. The estimated points are registered to

the model by ICP algorithm prior to the evaluation.

We can see that estimated point clouds well fit the ground-

truth 3-d CAD model. To align the ground truth with the

reconstruction, we use the Iterative Closest Point (ICP) [2]

algorithm. The quantitative reconstruction errors are sum-

marized in Table 2. The mean error in the Euclidean dis-

tance is small, and it shows the effectiveness of our method.

Multi-path avoidance If the target object is curved or has

multiple planes, caustics appear on the background surface.

In such a case, there are multiple light paths sharing the

same reflection point on the background; therefore the ob-

served depth by a ToF camera does not satisfy the model

of Eq. (1). To avoid this multi-path interference, we use a
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Retro-reflection

Light rays

Figure 10: Multi-path avoidance using a retroreflective

sheet. Using a retroreflective sheet, two rays (colored yel-

low and red) can be observed separately even when their

reflection point is overlapped.

Without retroreflective sheet

With retroreflective sheet

Slice of the model

(a) Target object (b) Slice view

Figure 11: Reconstruction result of a right angle prism. (a)

The target object. (b) a slice view of the estimated surface

points and the ground truth. Blue and red points are the

result with and without retroreflective sheet, respectively.

The retroreflective sheet mitigates multi-path interference

for more faithful recovery.

Object Mean Std. dev.

without retroreflection 0.745mm 1.115mm
with retroreflection 0.448mm 0.828mm

Table 3: Numerical evaluation of right angle prism. The

result with retroreflective sheet is more accurate than that

without it.

retroreflective sheet placed on the background. The retrore-

flective sheet reflects the incident light ray to the incident

direction; hence, multi-path interference can be avoided

even when the reference points are overlapped as shown

in Fig. 10.

To verify the effectiveness of the multi-path avoidance,

we use a right angle prism shown in Fig. 11a measure it with

and without a retroreflective sheet. Figure 11b shows a slice

of the estimated points and the ground truth model. The re-

sult without a retroreflective sheet is distorted by multi-path

interference while the result with the retroreflective sheet

shows faithful recovery of the object. It is also verified

quantitatively by the reconstruction errors of the experiment

summarized in Table 3.

front back

Height maps Normal maps

front back

Target object

Figure 12: Reconstruction of a transparent curved object

(convex lens)

Finally, we recover the shape of a convex lens, which

has curved surfaces. We again use a retroreflective sheet

for avoiding the multi-path effect. Figure 12 shows the esti-

mated results. While it became somewhat noisy, the curved

surface that exhibits multi-path refraction rays is recovered.

5. Discussions

We developed a method for transparent shape recovery

using the time-of-flight distortion. One of the issues of our

method for a practical use is that it is currently limited to

low-resolution, because it is bounded by the resolution of

the ToF image sensor. Another issue is that our method

breaks down when the light path refracts more than twice,

e.g., due to total reflections inside the transparent object,

which could occur at the edge of the object. To avoid this

problem, the region near such edges should be treated dif-

ferently by developing a suitable technique.

The normal consistency objective appeared in (8) and (9)

is defined as the Euclidean distance of unit normal vectors.

Theoretically, it should be better written by

argmin
t

∑

c∈C

(

np,c(tc)
T
nd,c(tc)− 1

)2
,

because of its directional nature. We have tested the above

expression; however, the result did not change much while

the computational cost increased significantly. Therefore,

we decided to keep using the Euclidean distance of normals.

While we assume the neighbors of front surface points

correspond to those viewed in the camera pixel coordinate,

we cannot use the same assumption for the back surface be-

cause of refractions (depicted in Fig. 3), and a less restric-

tive smoothness term is defined for the back surface using a

Huber cost function. We consider this design tends to make

the front surface smoother than the back surface. This be-

havior can be balanced by adjusting weight parameters λs.

Also, our solution is somehow heuristic approach for solv-

ing non-convex problem hence it is not guaranteed to reach

a good estimate for any shapes.

In the future work, we are interested in exploring the

direction of combining a computational illumination ap-

proach, such as [11], for not only mitigating the multi-path

interference but also explicitly handling the multi-path ef-

fect for transparent shape recovery.
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