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01:04:08 --> 01:04:09 

 ... you know what I realize? 
 

01:04:17 --> 01:04:18 

Ignorance is bliss. 

  00:40:42 --> 00:40:47 

  It exists now only as part of a   

  neural-interactive simulation 
 

  00:40:47 --> 00:40:48 

  that we call the Matrix. 

… The Matrix is revealed to 
be a shared simulation of  the 

world as it was in 1999 … 

... secretly betrayed 
Morpheus to Agent 

Smith in exchange for 

a comfortable … 

… Morpheus and Trinity exit 
the Matrix, but Smith ambushes 

and kills Neo before he can …  

… He ends the 
call and flies into 

the sky. 

… Neo meets 
Morpheus, … 

… Trinity contacts 
him confirming that 

Morpheus can … 

… …… … …

About to disconnect when an 

anonymous message slices onto 

the screen. 

 

SCREEN 

Do you want to know what the 

Matrix is, Neo? 

Neo is seen exiting the 

phone booth and observing 

the surrounding people. 

 

He looks up and flies to the 

skies. 

A: A shared simulation of  the world 

A: A group of  robots 
 

A: A human body 
 

A: A set of  numbers stored as a table 

What is the Matrix? Who kills Neo in the Matrix? Why does Cypher betray Morpheus? How does the movie end? 

A: Smith kills Neo A: With Neo flying into the sky A: In exchange for a comfortable life 

A: With the Machines chasing after Neo 
 

A: We see Mr. Smith torture Morpheus 

 

A: Trinity kills Neo 
 

A: Morpheus kills Neo after he realizes 
     that Neo is not the one 

A: In exchange for money 
 

A: Because he is threatened by Agent Smith 
Quiz 

Figure 1: Our MovieQA dataset contains 14,944 questions about 408 movies. It contains multiple sources of information: plots, subtitles,

video clips, scripts, and DVS transcriptions. In this figure we show example QAs from The Matrix and localize them in the timeline.

Abstract

We introduce the MovieQA dataset which aims to eval-

uate automatic story comprehension from both video and

text. The dataset consists of 14,944 questions about 408

movies with high semantic diversity. The questions range

from simpler “Who” did “What” to “Whom”, to “Why”

and “How” certain events occurred. Each question comes

with a set of five possible answers; a correct one and four

deceiving answers provided by human annotators. Our

dataset is unique in that it contains multiple sources of

information – video clips, plots, subtitles, scripts, and

DVS [32]. We analyze our data through various statistics

and methods. We further extend existing QA techniques

to show that question-answering with such open-ended se-

mantics is hard. We make this data set public along with an

evaluation benchmark to encourage inspiring work in this

challenging domain.

1. Introduction

Fast progress in Deep Learning as well as a large amount

of available labeled data has significantly pushed forward

the performance in many visual tasks such as image tag-

ging, object detection and segmentation, action recognition,

and image/video captioning. We are steps closer to applica-

tions such as assistive solutions for the visually impaired,

or cognitive robotics, which require a holistic understand-

ing of the visual world by reasoning about all these tasks

in a common framework. However, a truly intelligent ma-

chine would ideally also infer high-level semantics underly-

ing human actions such as motivation, intent and emotion,

in order to react and, possibly, communicate appropriately.

These topics have only begun to be explored in the litera-

ture [27, 49].

A great way of showing one’s understanding about the

scene is to be able to answer any question about it [23].

This idea gave rise to several question-answering datasets

which provide a set of questions for each image along with

multi-choice answers. These datasets are either based on

RGB-D images [23] or a large collection of static photos

such as Microsoft COCO [1, 47]. The types of questions

typically asked are “What” is there and “Where” is it, what

attributes an object has, what is its relation to other objects

in the scene, and “How many” objects of certain type are

present. While these questions verify the holistic nature of
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Q: How does E.T. show his happiness

that he is finally returning home?

Q: Why do Joy and Jack get married that first

night they meet in Las Vegas?

Q: Why does Forrest undertake a three-

year marathon?
Q: How does Patrick start winning Kat over?

A: His heart lights up A: They are both vulnerable and totally drunk A: Because he is upset that Jenny left him
A: By getting personal information about

her likes and dislikes

Figure 2: Examples from the MovieQA dataset. For illustration we show a single frame, however, all these questions/answers are time-

stamped to a much longer clip in the movie. Notice that while some questions can be answered using vision or dialogs alone, most require

both. Vision can be used to locate the scene set by the question, and semantics extracted from dialogs can be used to answer it.

our vision algorithms, there is an inherent limitation in what

can be asked about a static image. High-level semantics

about actions and their intent is mostly lost and can typi-

cally only be inferred from temporal, possibly life-long vi-

sual observations.

Movies provide us with snapshots from people’s lives

that link into stories, allowing an experienced human viewer

to get a high-level understanding of the characters, their ac-

tions, and the motivations behind them. Our goal is to create

a question-answering dataset to evaluate machine compre-

hension of both, complex videos such as movies and their

accompanying text. We believe that this data will help push

automatic semantic understanding to the next level, required

to truly understand stories of such complexity.

This paper introduces MovieQA, a large-scale question-

answering dataset about movies. Our dataset consists of

14,944 multiple-choice questions with five deceiving op-

tions, of which only one is correct, sourced from 408

movies with high semantic diversity. For 140 of these

movies (6,462 QAs), we have timestamp annotations indi-

cating the location of the question and answer in the video.

The questions range from simpler “Who” did “What” to

“Whom” that can be solved by vision alone, to “Why”

and “How” something happened, that can only be solved

by exploiting both the visual information and dialogs (see

Fig. 2 for a few example “Why” and “How” questions). Our

dataset is unique in that it contains multiple sources of infor-

mation: video clips, subtitles, scripts, plots, and DVS [32]

as illustrated in Fig. 1. We analyze the data through vari-

ous statistics and intelligent baselines that mimic how dif-

ferent “students” would approach the quiz. We further ex-

tend existing QA techniques to work with our data and

show that question-answering with such open-ended se-

mantics is hard. We have created an online benchmark

(http://movieqa.cs.toronto.edu), encouraging

inspiring work in this challenging domain.

2. Related work

Integration of language and vision is a natural step to-

wards improved understanding and is receiving increas-

ing attention from the research community. This is in

large part due to efforts in large-scale data collection such

as Microsoft’s COCO [22], Flickr30K [46] and Abstract

Scenes [50] providing tens to hundreds of thousand im-

ages with natural language captions. Having access to such

data enabled the community to shift from hand-crafted lan-

guage templates typically used for image description [19] or

retrieval-based approaches [11, 26, 45] to deep neural mod-

els [6, 13, 15, 42] that achieve impressive captioning results.

Another way of conveying semantic understanding of both

vision and text is by retrieving semantically meaningful im-

ages given a natural language query [13]. An interesting

direction, particularly for the goals of our paper, is also the

task of learning common sense knowledge from captioned

images [40]. This has so far been demonstrated only on syn-

thetic clip-art scenes which enable perfect visual parsing.

Video understanding via language. In the video do-

main, there are fewer works on integrating vision and lan-

guage, likely due to less available labeled data. In [10, 41],

the authors caption video clips using LSTMs, [33] for-

mulates description as a machine translation model, while

older work uses templates [3, 8, 18]. In [21], the authors

retrieve relevant video clips for natural language queries,

while [29] exploits captioned clips to learn action and

role models. For TV series in particular, the majority of

work aims at recognizing and tracking characters in the

videos [2, 4, 28, 35]. In [7, 34], the authors aligned videos

with movie scripts in order to improve scene prediction.

[39] aligns movies with their plot synopses with the aim

to allow semantic browsing of large video content via tex-

tual queries. Just recently, [38, 49] aligned movies to books

with the aim to ground temporal visual data with verbose

and detailed descriptions available in books.

Question-answering. QA is a popular task in NLP with

significant advances made recently with neural models such

as memory networks [36], deep LSTMs [12], and struc-

tured prediction [43]. In computer vision, [23] proposed a

Bayesian approach on top of a logic-based QA system [20],

while [24, 30] encoded both an image and the question us-

ing an LSTM and decoded an answer. We are not aware of

QA methods addressing the temporal domain.
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TRAIN VAL TEST TOTAL

Movies with Plots and Subtitles

#Movies 269 56 83 408

#QA 9848 1958 3138 14944

Q #words 9.3 9.3 9.5 9.3 ± 3.5

CA. #words 5.7 5.4 5.4 5.6 ± 4.1

WA. #words 5.2 5.0 5.1 5.1 ± 3.9

Movies with Video Clips

#Movies 93 21 26 140

#QA 4318 886 1258 6462

#Video clips 4385 1098 1288 6771

Mean clip dur. (s) 201.0 198.5 211.4 202.7 ± 216.2

Mean QA #shots 45.6 49.0 46.6 46.3 ± 57.1

Table 1: MovieQA dataset stats. Our dataset supports two modes

of answering: text and video. We present the split into train, val,

and test splits for the number of movies and questions. We also

present mean counts with standard deviations in the total column.

QA Datasets. Most available datasets focus on im-

age [17, 22, 46, 50] or video description [5, 32, 9]. Par-

ticularly relevant to our work is the MovieDescription

dataset [32] which transcribed text from the Described

Video Service (DVS), a narration service for the visually

impaired, for a collection of over 100 movies. For QA, [23]

provides questions and answers (mainly lists of objects, col-

ors, etc.) for the NYUv2 RGB-D dataset, while [1, 47] do

so for MS-COCO with a dataset of a million QAs. While

these datasets are unique in testing the vision algorithms in

performing various tasks such as recognition, attribute in-

duction and counting, they are inherently limited to static

images. In our work, we collect a large QA dataset sourced

from over 400 movies with challenging questions that re-

quire semantic reasoning over a long temporal domain.

Our dataset is also related to purely text QA datasets

such as MCTest [31] which contains 660 short stories with

4 multi-choice QAs each, and [12] which converted 300K

news summaries into Cloze-style questions. We go beyond

these datasets by having significantly longer text, as well as

multiple sources of available information (plots, subtitles,

scripts and DVS). This makes our data one of a kind.

3. MovieQA dataset

The goal of our paper is to create a challenging bench-

mark that evaluates semantic understanding over long tem-

poral data. We collect a dataset with very diverse sources

of information that can be exploited in this challenging do-

main. Our data consists of quizzes about movies that the

automatic systems will have to answer. For each movie, a

quiz comprises of a set of questions, each with 5 multiple-

choice answers, only one of which is correct. The system

has access to various sources of textual and visual informa-

tion, which we describe in detail below.

We collected 408 subtitled movies, and obtained their

extended summaries in the form of plot synopses from

Wikipedia. We crawled imsdb for scripts, which were avail-
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Figure 3: Average number of words in MovieQA dataset based on

the first word in the question. Area of a bubble indicates #QA.

able for 49% (199) of our movies. A fraction of our movies

(60) come with DVS transcriptions provided by [32].

Plot synopses are movie summaries that fans write af-

ter watching the movie. Synopses widely vary in detail and

range from one to 20 paragraphs, but focus on describing

content that is directly relevant to the story. They rarely con-

tain detailed visual information (e.g. character appearance),

and focus more on describing the movie events and charac-

ter interactions. We exploit plots to gather our quizzes.

Videos and subtitles. An average movie is about 2

hours in length and has over 198K frames and almost 2000

shots. Note that video alone contains information about

e.g., “Who” did “What” to “Whom”, but may be lacking in

information to explain why something happened. Dialogs

play an important role, and only both modalities together

allow us to fully understand the story. Note that subtitles do

not contain speaker information. In our dataset, we provide

video clips rather than full movies.

DVS is a service that narrates movie scenes to the visu-

ally impaired by inserting relevant descriptions in between

dialogs. These descriptions contain sufficient “visual” in-

formation about the scene that they allow visually impaired

audience to follow the movie. DVS thus acts as a proxy for

a perfect vision system, and is another source for answering.

Scripts. The scripts that we collected are written by

screenwriters and serve as a guideline for movie making.

They typically contain detailed descriptions of scenes, and,

unlike subtitles, contain both dialogs and speaker informa-

tion. Scripts are thus similar, if not richer in content to

DVS+Subtitles, however are not always entirely faithful to

the movie as the director may aspire to artistic freedom.

3.1. QA Collection method

Since videos are difficult and expensive to provide to an-

notators, we used plot synopses as a proxy for the movie.

While creating quizzes, our annotators only referred to the

story plot and were thus automatically coerced into asking

story-like questions. We split our annotation efforts into two

primary parts to ensure high quality of the collected data.
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Txt Img Vid Goal Data source AType #Q AW

MCTest [31] ✓ - - reading comprehension Children stories MC (4) 2,640 3.40

bAbI [44] ✓ - - reasoning for toy tasks Synthetic Word 20×2,000 1.0

CNN+DailyMail [12] ✓ - - information abstraction News articles Word 1,000,000* 1*

DAQUAR [23] - ✓ - visual: counts, colors, objects NYU-RGBD Word/List 12,468 1.15

Visual Madlibs [47] - ✓ - visual: scene, objects, person, ... COCO+Prompts FITB/MC (4) 2×75,208* 2.59

VQA (v1) [1] - ✓ - visual understanding COCO+Abstract Open/MC (18) 764,163 1.24

MovieQA ✓ ✓ ✓ text+visual story comprehension Movie stories MC (5) 14,944 5.29

Table 2: A comparison of various QA datasets. First three columns depict the modality in which the story is presented. AType: answer

type; AW: average # of words in answer(s); MC (N): multiple choice with N answers; FITB: fill in the blanks; *estimated information.

Q and correct A. Our annotators were first asked to se-

lect a movie from a large list, and were shown its plot syn-

opsis one paragraph at a time. For each paragraph, the an-

notator had the freedom of forming any number and type of

questions. Each annotator was asked to provide the correct

answer, and was additionally required to mark a minimal

set of sentences within the plot synopsis paragraph that can

be used to both frame the question and answer it. This was

treated as ground-truth for localizing the QA in the plot.

In our instructions, we asked the annotators to provide

context to each question, such that a human taking the quiz

should be able to answer it by watching the movie alone

(without having access to the synopsis). The purpose of

this was to ensure questions that are localizable in the video

and story as opposed to generic questions such as “What are

they talking?”. We trained our annotators for about one to

two hours and gave them the option to re-visit and correct

their data. The annotators were paid by the hour, a strat-

egy that allowed us to collect more thoughtful and complex

QAs, rather than short questions and single-word answers.

Multiple answer choices. In the second step of data

collection, we collected multiple-choice answers for each

question. Our annotators were shown a paragraph and a

question at a time, but not the correct answer. They were

then asked to answer the question correctly as well as pro-

vide 4 wrong answers. These answers were either deceiving

facts from the same paragraph or common-sense answers.

The annotator was also allowed to re-formulate or correct

the question. We used this to sanity check all the questions

received in the first step. All QAs from the “val” and “test”

set underwent another round of clean up.

Time-stamp to video. We further asked in-house anno-

tators to align each sentence in the plot synopsis to the video

by marking the beginning and end (in seconds) of the video

that the sentence describes. Long and complicated plot

sentences were often aligned to multiple, non-consecutive

video clips. Annotation took roughly 2 hours per movie.

Since we have each QA aligned to a sentence(s) in the plot

synopsis, the video to plot alignment links QAs with video

clips. We provide these clips as part of our benchmark.

Person name (who)

18.0%

Reasoning (why)

12.4%

Abstract (what)

9.7%
Reason:action (how)

8.5%

Person type (what) 7.0%

Location (where)

6.6%

Action (what)

6.1%

Object/Thing (what)

5.6%

Yes/No (is, does)

5.4%

Causality (what happens)
Objective (what)

Event/Time (when)
Count (how many)Emotion (how feel)

Other
9.9%

Figure 4: Stats about MovieQA questions based on answer types.

Note how questions beginning with the same word may cover a

variety of answer types: Causality: What happens ... ?; Action:

What did X do? Person name: What is the killer’s name?; etc.

3.2. Dataset Statistics

In the following, we present some statistics of our

MovieQA dataset. Table 2 presents an overview of pop-

ular and recent Question-Answering datasets in the field.

Most datasets (except MCTest) use very short answers and

are thus limited to covering simpler visual/textual forms of

understanding. To the best of our knowledge, our dataset

not only has long sentence-like answers, but is also the first

to use videos in the form of movies.

Multi-choice QA. We collected a total of 14,944 QAs

from 408 movies. Each question comes with one correct

and four deceiving answers. Table 1 presents an overview

of the dataset along with information about the train/val/test

splits, which will be used to evaluate automatically trained

QA models. On average, our questions and answers are

fairly long with about 9 and 5 words respectively unlike

most other QA datasets. The video-based answering split

for our dataset, supports 140 movies for which we aligned

plot synopses with videos. Note that the QA methods needs

to look at a long video clip (∼200s) to answer the question.

Fig. 3 presents the number of questions (bubble area)

split based on the first word of the question along with infor-

mation about number of words in the question and answer.

Of particular interest are “Why” questions that require ver-

bose answers, justified by having the largest average num-

ber of words in the correct answer, and in contrast, “Who”

questions with answers being short people names.
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Text type # Movies # Sent. / Mov. # Words in Sent.

Plot 408 35.2 20.3

Subtitle 408 1558.3 6.2

Script 199 2876.8 8.3

DVS 60 636.3 9.3

Table 3: Statistics for the various text sources used for answering.

Instead of the first word in the question, a peculiar way

to categorize QAs is based on the answer type. We present

such an analysis in Fig. 4. Note how reasoning based ques-

tions (Why, How, Abstract) are a large part of our data. In

the bottom left quadrant we see typical question types that

can likely be answered using vision alone. Note however,

that even the reasoning questions typically require vision, as

the question context provides a visual description of a scene

(e.g., “Why does John run after Mary?”).

Text sources for answering. In Table 3, we summarize

and present some statistics about different text sources used

for answering. Note how plot synopses have a large num-

ber of words per sentence, hinting towards the richness and

complexity of the source.

4. Multi-choice Question-Answering

We now investigate a number of intelligent baselines for

QA. We also study inherent biases in the data and try to

answer the quizzes based simply on answer characteristics

such as word length or within answer diversity.

Formally, let S denote the story, which can take the form

of any of the available sources of information – e.g. plots,

subtitles, or video shots. Each story S has a set of questions,

and we assume that the (automatic) student reads one ques-

tion qS at a time. Let {aSj }
M
j=1 be the set of multiple choice

answers (only one of which is correct) corresponding to qS ,

with M = 5 in our dataset.

The general problem of multi-choice question answer-

ing can be formulated by a three-way scoring function

f(S, qS , aS). This function evaluates the “quality” of the

answer given the story and the question. Our goal is thus to

pick the best answer aS for question qS that maximizes f :

j∗ = arg max
j=1...M

f(S, qS , aSj ) (1)

Answering schemes are thus different functions f . We drop

the superscript (·)S for simplicity of notation.

4.1. The Hasty Student

We first consider f which ignores the story and attempts

to answer the question directly based on latent biases and

similarities. We call such a baseline as the “Hasty Student”

since he/she is not concerned to read/watch the actual story.

The extreme case of a hasty student is to try and an-

swer the question by only looking at the answers. Here,

f(S, q, aj) = gH1(aj |a), where gH1(·) captures some

properties of the answers.

Answer length. We explore using the number of words

in the multiple choices to find the correct answer and ex-

plore biases in the dataset. As shown in Table 1, correct an-

swers are slightly longer as it is often difficult to frame long

deceiving answers. We choose an answer by: (i) selecting

the longest answer; (ii) selecting the shortest answer; or (iii)

selecting the answer with the most different length.

Within answer similarity/difference. While still look-

ing only at the answers, we compute a distance between

all answers based on their representations (discussed in

Sec. 4.4). We then select our answer as either the most sim-

ilar or most distinct among all answers.

Q and A similarity. We now consider a hasty student

that looks at both the question and answer, f(S, q, aj) =
gH2(q, aj). We compute similarity between the question

and each answer and pick the highest scoring answer.

4.2. The Searching Student

While the hasty student ignores the story, we consider a

student that tries to answer the question by trying to locate

a subset of the story S which is most similar to both the

question and the answer. The scoring function f is

f(S, q, aj) = gI(S, q) + gI(S, aj) . (2)

a factorization of the question and answer similarity. We

propose two similarity functions: a simple windowed co-

sine similarity, and another using a neural architecture.

Cosine similarity with a sliding window. We aim to

find the best window of H sentences (or shots) in the story

S that maximize similarity between the story and question,

and story and answer. We define our similarity function:

f(S, q, aj) = max
l

l+H∑

k=l

gss(sk, q) + gss(sk, aj) , (3)

where sk denotes a sentence (or shot) from the story S. We

use gss(s, q) = x(s)Tx(q) as a dot product between the

(normalized) representations of the two sentences (shots).

We discuss these representations in detail in Sec. 4.4.

Searching student with a convolutional brain (SSCB).

Instead of factoring f(S, q, aj) as a fixed (unweighted) sum

of two similarity functions gI(S, q) and gI(S, aj), we build

a neural network that learns such a function. Assuming the

story S is of length n, e.g. n plot sentences or n video shots,

gI(S, q) and gI(S, aj) can be seen as two vectors of length

n whose k-th entry is gss(sk, q). We further combine all

[gI(S, aj)]j for the 5 answers into a n×5 matrix. The vector

gI(S, q) is replicated 5-times, and we stack the question and

answer matrix together to obtain a tensor of size n× 5× 2.

Our neural similarity model is a convnet (CNN), shown

in Fig. 5, that takes the above tensor, and applies couple lay-

ers of h = 10, 1 × 1 convolutions to approximate a family
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Figure 5: Our neural similarity architecture (see text for details).

of functions φ(gI(S, q), gI(S, aj)). Additionally, we incor-

porate a max pooling layer with kernel size 3 to allow for

scoring the similarity within a window in the story. The

last convolutional output is a tensor with shape (n
3
, 5), and

we apply both mean and max pooling across the storyline,

add them, and make predictions using softmax. We train

our network using cross-entropy loss and the Adam opti-

mizer [14].

4.3. Memory Network for Complex QA

Memory Networks were originally proposed for text QA

and model complex three-way relationships between the

story, question and answer. We briefly describe MemN2N

proposed by [36] and suggest simple extensions to make it

suitable for our data and task.

The input of the original MemN2N is a story and ques-

tion. The answering is restricted to single words and is

done by picking the most likely word from the vocabulary

V of 20-40 words. Note that this is not directly applica-

ble to MovieQA, as our data set does not have perform

vocabulary-based answering.

A question q is encoded as a vector u ∈ R
d using a word

embedding B ∈ R
d×|V|. Here, d is the embedding dimen-

sion, and u is obtained by mean-pooling the representations

of words in the question. Simultaneously, the sentences of

the story sl are encoded using word embeddings A and C to

provide two different sentence representations ml and cl, re-

spectively. ml, the representation of sentence l in the story,

is used in conjunction with u to produce an attention-like

mechanism which selects sentences in the story most simi-

lar to the question via a softmax function:

pl = softmax(uTml) . (4)

The probability pl is used to weight the second sentence em-

bedding cl, and the output o =
∑

l plcl is obtained by pool-

ing the weighted sentence representations across the story.

Finally, a linear projection W ∈ R
|V|×d decodes the ques-

tion u and the story representation o to provide a soft score

for each vocabulary word

a = softmax(W (o+ u)) . (5)

The top scoring word â is picked from a as the answer. The

free parameters to train are the embeddings B, A, C, W for

different words which can be shared across different layers.

Due to its fixed set of output answers, the MemN2N in

the current form is not designed for multi-choice answering

with open, natural language answers. We propose two key

modifications to make the network suitable for our task.

MemN2N for natural language answers. To allow the

MemN2N to rank multiple answers written in natural lan-

guage, we add an additional embedding layer F which maps

each multi-choice answer aj to a vector gj . Note that F is

similar to embeddings B, A and C, but operates on answers

instead of the question or story. To predict the correct an-

swer, we compute the similarity between the answers g, the

question embedding u and the story representation o:

a = softmax((o+ u)T g) (6)

and pick the most probable answer as correct. In our general

QA formulation, this is equivalent to

f(S, q, aj) = gM1(S, q, aj) + gM2(q, aj), (7)

where gM1 attends to parts of the story using the question,

and a second function gM2 directly considers similarities

between the question and the answer.

Weight sharing and fixed word embeddings. The orig-

inal MemN2N learns embeddings for each word based di-

rectly on the task of question-answering. However, to scale

this to large vocabulary data sets like ours, this requires un-

reasonable amounts of training data. For example, training

a model with a vocabulary size 14,000 (obtained just from

plot synopses) and d = 100 would entail learning 1.4M pa-

rameters for each embedding. To prevent overfitting, we

first share all word embeddings B,A,C, F of the memory

network. Nevertheless, even one embedding is still a large

number of parameters.

We make the following crucial modification that allows

us to use the Memory Network for our dataset. We drop B,

A, C, F and replace them by a fixed (pre-trained) word em-

bedding Z ∈ R
d1×|V| obtained from the Word2Vec model

and learn a shared linear projection layer T ∈ R
d2×d1 to

map all sentences (stories, questions and answers) into a

common space. Here, d1 is the dimension of the Word2Vec

embedding, and d2 is the projection dimension. Thus, the

new encodings are

u = T · Zq; ml, cl = T · Zsl; and gj = T · Zaj . (8)

Answer prediction is performed as before in Eq. 6.

We initialize T either using an identity matrix d1 × d1
or using PCA to lower the dimension from d1 = 300 to

d2 = 100. Training is performed using stochastic gradient

descent with a batch size of 32.

4.4. Representations for Text and Video

TF-IDF is a popular and successful feature in informa-

tion retrieval. In our case, we treat plots (or other forms

4636



of text) from different movies as documents and compute a

weight for each word. We set all words to lower case, use

stemming, and compute the vocabulary V which consists

of words w that appear more than θ times in the documents.

We represent each sentence (or question or answer) in a bag-

of-words style with an TF-IDF score for each word.

Word2Vec. A disadvantage of TF-IDF is that it is un-

able to capture the similarities between words. We use the

skip-gram model proposed by [25] and train it on roughly

1200 movie plots to obtain domain-specific, 300 dimen-

sional word embeddings. A sentence is then represented

by mean-pooling its word embeddings. We normalize the

resulting vector to have unit norm.

SkipThoughts. While the sentence representation

using mean pooled Word2Vec discards word order,

SkipThoughts [16] use a Recurrent Neural Network to cap-

ture the underlying sentence semantics. We use the pre-

trained model by [16] to compute a 4800 dimensional sen-

tence representation.

Video. To answer questions from the video, we learn an

embedding between a shot and a sentence, which maps the

two modalities in a common space. In this joint space, one

can score the similarity between the two modalities via a

simple dot product. This allows us to apply all of our pro-

posed question-answering techniques in their original form.

To learn the joint embedding we follow [49] which ex-

tends [15] to video. Specifically, we use the GoogLeNet ar-

chitecture [37] as well as hybrid-CNN [48] to extract frame-

wise features, and mean-pool the representations over all

frames in a shot. The embedding is a linear mapping of

the shot representation and an LSTM on word embeddings

on the sentence side, trained using the ranking loss on the

MovieDescription Dataset [32] as in [49].

5. QA Evaluation

We present results for question-answering with the pro-

posed methods on our MovieQA dataset. We study how

various sources of information influence the performance,

and how different levels of complexity encoded in f affects

the quality of automatic QA.

Protocol. Note that we have two primary tasks for eval-

uation. (i) Text-based: the story takes the form of various

texts – plots, subtitles, scripts, DVS; and (ii) Video-based:

story is the video, and with/without subtitles.

Dataset structure. The dataset is divided into three dis-

joint splits: train, val, and test, based on unique movie titles

in each split. The splits are optimized to preserve the ratios

between #movies, #QAs, and all the story sources at 10:2:3

(e.g. about 10k, 2k, and 3k QAs). Stats for each split are

presented in Table 1. The train set is to be used for training

automatic models and tuning any hyperparameters. The val

set should not be touched during training, and may be used

to report results for several models. The test set is a held-

Answer length
longest shortest different

25.33 14.56 20.38

Within answers

TF-IDF SkipT w2v

similar 21.71 28.14 25.43

distinct 19.92 14.91 15.12

Question-answer
TF-IDF SkipT w2v

similar 12.97 19.25 24.97

Table 4: The question-answering accuracy for the “Hasty Student”

who tries to answer questions without looking at the story.

out set, and is evaluated on our MovieQA server. For this

paper, all results are presented on the val set.

Metrics. Multiple choice QA leads to a simple and ob-

jective evaluation. We measure accuracy, the number of

correctly answered QAs over the total count.

5.1. The Hasty Student

The first part of Table 4 shows the performance of three

models when trying to answer questions based on the an-

swer length. Notably, always choosing the longest answer

performs better (25.3%) than random (20%). The second

part of Table 4 presents results when using within-answer

feature-based similarity. We see that the answer most simi-

lar to others is likely to be correct when the representations

are generic and try to capture the semantics of the sentence

(Word2Vec, SkipThoughts). The most distinct answers per-

forms worse than random on all features. In the last section

of Table 4 we see that computing feature-based similarity

between questions and answers is insufficient for answer-

ing. Especially, TF-IDF performs worse than random since

words in the question rarely appear in the answer.

Hasty Turker. To analyze the deceiving nature of our

multi-choice QAs, we tested humans (via AMT) on a sub-

set of 200 QAs. The turkers were not shown the story in any

form and were asked to pick the best possible answer given

the question and a set of options. We asked each question to

10 turkers, and rewarded each with a bonus if their answer

agreed with the majority. We observe that without access

to the story, humans obtain an accuracy of 27.6%. We sus-

pect that the bias is due to the fact that some of the QAs

reveal the movie (e.g., “Darth Vader”) and the turker may

have seen this movie. Removing such questions, and re-

evaluating on a subset of 135 QAs, lowers the performance

to 24.7%. This shows the genuine difficulty of our QAs.

5.2. Searching Student

Cosine similarity with window. The first section of

Table 5 presents results for the proposed cosine similarity

using different representations and text stories. Using the

plots to answer questions outperforms other sources (sub-

titles, scripts, and DVS) as the QAs were collected using

plots and annotators often reproduce words from the plot.

We show the results of using Word2Vec or SkipThought

representations in the following rows of Table 5.
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Method Plot DVS Subtitle Script

Cosine TFIDF 47.6 24.5 24.5 24.6

Cosine SkipThought 31.0 19.9 21.3 21.2

Cosine Word2Vec 46.4 26.6 24.5 23.4

SSCB TFIDF 48.5 24.5 27.6 26.1

SSCB SkipThought 28.3 24.5 20.8 21.0

SSCB Word2Vec 45.1 24.8 24.8 25.0

SSCB Fusion 56.7 24.8 27.7 28.7

MemN2N (w2v, linproj) 40.6 33.0 38.0 42.3

Table 5: Accuracy for Text-based QA. Top: results for the Search-

ing student with cosine similarity; Middle: Convnet SSCB; and

Bottom: the modified Memory Network.

SkipThoughts perform much worse than both TF-IDF

and Word2Vec which are closer. We suspect that while

SkipThoughts are good at capturing the overall semantics

of a sentence, proper nouns – names, places – are often

hard to distinguish. Fig. 6 presents a accuracy breakup

based on the first word of the questions. TF-IDF and

Word2Vec perform considerably well, however, we see a

larger difference between the two for “Who” and “Why”

questions. “Who” questions require distinguishing between

names, and “Why” answers are typically long, and mean

pooling destroys semantics. In fact Word2Vec performs

best on “Where” questions that may use synonyms to in-

dicate places. SkipThoughts perform best on “Why” ques-

tions where sentence semantics help improve answering.

SSCB. The middle rows of Table 5 show the result of

our neural similarity model. Here, we present additional re-

sults combining all text representations (SSCB fusion) via

our CNN. We split the train set into 90% train / 10% dev,

such that all questions and answers of the same movie are in

the same split, train our model on train and monitor perfor-

mance on dev. Both val and test sets are held out. During

training, we also create several model replicas and pick the

ones with the best validation performance.

Table 5 shows that the neural model outperforms the sim-

ple cosine similarity on most tasks, while the fusion method

achieves the highest performance when using plot synopses

as the story. Ignoring the case of plots, the accuracy is

capped at about 30% for most modalities showing the diffi-

culty of our dataset.

5.3. Memory Network

The original MemN2N which trains the word embed-

dings along with the answering modules overfits heavily

on our dataset leading to near random performance on val

(∼20%). However, our modifications help in restraining

the learning process. Table 5 (bottom) presents results for

MemN2N with Word2Vec initialization and a linear projec-

tion layer. Using plot synopses, we see a performance closer

to SSCB with Word2Vec features. However, in the case of

longer stories, the attention mechanism in the network is

Method Video Subtitle Video+Subtitle

SSCB all clips 21.6 22.3 21.9

MemN2N all clips 23.1 38.0 34.2

Table 6: Accuracy for Video-based QA and late fusion of Subtitle

and Video scores.

What Who Why How Where
20

30

40

50

60

70

Ac
cu
ra
cy

TF-IDF
Word2Vec
SkipThought

Figure 6: Accuracy for different feature representations of plot

sentences with respect to the first word of the question.

able to sift through thousands of story sentences and per-

forms well on DVS, subtitles and scripts. This shows that

complex three-way scoring functions are needed to tackle

such QA sources. In terms of story sources, the MemN2N

performs best with scripts which contain the most informa-

tion (descriptions, dialogs and speaker information).

5.4. Video baselines

We evaluate SSCB and MemN2N in a setting where the

automatic models answer questions by “watching” all the

video clips that are provided for that movie. Here, the story

descriptors are shot embeddings.

The results are presented in Table 6. We see that learning

to answer questions using video is still a hard problem with

performance close to random. As visual information alone

is insufficient, we also perform and experiment combining

video and dialog (subtitles) through late fusion. We train the

SSCB model with the visual-text embedding for subtitles

and see that it yields poor performance (22.3%) compared

to the fusion of all text features (27.7%). For the memory

network, we answer subtitles as before using Word2Vec.

6. Conclusion

We introduced the MovieQA data set which aims to

evaluate automatic story comprehension from both video

and text. Our dataset is unique in that it contains several

sources of information – video clips, subtitles, scripts, plots

and DVS. We provided several intelligent baselines and ex-

tended existing QA techniques to analyze the difficulty of

our task. Our benchmark with an evaluation server is online

at http://movieqa.cs.toronto.edu.
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