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Figure 1: Real-time simultaneous 3D head modeling and facial motion capture using an RGB-D camera. The 3D model of

the head of a moving person refines over time (left to right) while the facial motion is being captured.

Abstract

We propose a method to build in real-time animated 3D

head models using a consumer-grade RGB-D camera. Our

framework is the first one to provide simultaneously com-

prehensive facial motion tracking and a detailed 3D model

of the user’s head. Anyone’s head can be instantly recon-

structed and his facial motion captured without requiring

any training or pre-scanning. The user starts facing the

camera with a neutral expression in the first frame, but is

free to move, talk and change his face expression as he wills

otherwise. The facial motion is tracked using a blendshape

representation while the fine geometric details are captured

using a Bump image mapped over the template mesh. We

propose an efficient algorithm to grow and refine the 3D

model of the head on-the-fly and in real-time. We demon-

strate robust and high-fidelity simultaneous facial motion

tracking and 3D head modeling results on a wide range

of subjects with various head poses and facial expressions.

Our proposed method offers interesting possibilities for an-

imation production and 3D video telecommunications.

1. Introduction

High-fidelity 3D reconstruction of the human head us-

ing RGB-D cameras is a key component for realistic human

avatar creation. For efficient and realistic animation produc-

tion, the facial animation sequence of the built 3D model of

the head also needs to be captured. In the film and game

industry, for example, facial performances are captured and

then retargeted to a CAD 3D model of the head.

Marker-less facial motion capture, on one hand, is well

established in the computer graphics community. Several

methods using template 3D models [3, 14, 25] achieve real-

time accurate facial motion capture from videos of RGB-

D images. On the other hand, dense 3D reconstruction of

the head has made significant progress in the computer vi-

sion community since the development of consumer depth

cameras. Applications of dense 3D modeling techniques to

build 3D head models from static scenes [2, 13, 32] showed

compelling results in terms of details in the produced 3D

models. Recently, an extension of the popular KinectFu-

sion algorithm [17] called DynamicFusion [18] was pro-

posed that can handle even dynamic scenes.

While recent advances have shown compelling results in

either facial motion capture or dense 3D modeling, they do

not allow to produce both results at the same time. Though

DynamicFusion [18] allows to capture deformations of the

face, the results are limited compared to those obtained

with facial motion capture systems (e.g., eyelids movements

can not be captured). Moreover, the obtained deformations

are not intuitive for animation purpose (animations such as

”mouth open” or ”mouth closed” are more intuitive to an-

imate the face). This is because the head is animated us-

ing unstructured deformation nodes, without any seman-

tic meaning. Note that DynamicFusion was designed for a

more general purpose: dynamic scene reconstruction, while

in this work we focus on 3D modeling of the animated head.
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Simultaneous dense 3D modeling of the head and facial mo-

tion capture is particularly interesting for communication

systems, where the user’s expressions can be retargeted on-

line to its own 3D model, built on-the-fly with RGB-D cam-

eras. Only a few coefficients (for the head pose and facial

animation) need to be communicated at run time (the up-

dated 3D model do not need to be sent at video frame-rate),

which would allow smooth communications even with low

internet bandwidth, or massive multiparty communications

for example.

We propose a method to simultaneously build a high-

fidelity 3D model of the head and capture its facial motion

using an RGB-D camera (Fig. 1). To do so, (1) we introduce

a new 3D representation of the head based on blendshapes

[25] and Bump images [24], and (2) we propose an effi-

cient method to fuse in real-time input RGB-D data into our

proposed 3D representation. While blendshape coefficients

encode facial expressions, the Bump image augments the

blendshape meshes to encode the geometric details of the

user’s head. The head position and its facial motion are

tracked in real-time using a facial motion capture approach,

while the 3D model of the head grows and refines on-the-fly

with input RGB-D images using a running average strategy.

Our proposed method do not require any training, fine fit-

ting or pre-scanning to produce accurate animation results

and highly detailed 3D models. Our main contribution is to

propose the first system that is able to build, in real-time,

detailed (with Bump and color images) and comprehensive

(with blendshape representation) animated 3D models of

the user’s head.

2. Related works

There are two categories of closely related work: 1) real-

time facial motion capture and 2) real-time dense 3D re-

construction. While facial motion capture systems strive

to capture high fidelity facial expressions, dense 3D recon-

struction methods focus on constructing detailed 3D models

of a target scene (the user’s head in our case).

Real-time facial motion capture Research on real-time

marker-free facial motion capture using RGB-D sensors

have raised much interest in computer graphics in the last

few years [3, 4, 7, 14, 16, 25, 26]. The use of blend-

shapes introduced by Weise et al. in [25] for tracking fa-

cial motions has become popular and motivated many re-

searchers to build more portable [4] or user-friendly sys-

tems [3, 14, 16]. In these works, facial expressions are ex-

pressed using a weighted sum of blendshapes. The tracking

process then consists of (1) estimating the head pose and

(2) optimizing the weights of each blendshape to fit the in-

put RGB-D image. In [4, 25] the blendshapes were first fit

to the user’s face in a pre-processing training stage where

the user was asked to perform several pre-defined expres-

sions. Calibration-free systems were proposed in [3, 14, 16]

where the neutral blendshape was adjusted on-the-fly to fit

the input RGB-D images. Sparse facial features were com-

bined with depth data in [5, 6, 14, 16] to improve track-

ing. Though compelling results were reported, much efforts

were made on capturing high fidelity facial motions (for re-

targeting purpose for example), but the geometric details of

the built 3D models were not as good as those obtained with

state-of-the-art dense 3D modeling methods [17].

Chen et al. [7] demonstrated that a template 3D model

with geometric details close to the shape of the user’s face

can improve the facial motion tracking quality. In this work,

the template mesh was built offline by scanning the user’s

face in a neutral expression. The template mesh was then in-

crementally deformed using embedded deformation [23] to

fit the input depth images. High fidelity facial motions were

obtained but at the cost of a pre-processing scanning stage

required to build the user-specific template mesh. More-

over, parts of the user’s head that do not animate (e.g. the

ears or the hair) were simply ignored and not modelled.

Real-time dense 3D reconstruction On the other hand,

low-cost depth cameras have spurred a flurry of research

on real-time dense 3D reconstruction of indoor scenes. In

KinectFusion, introduced by Newcombe et al. [17] and all

follow-up research [12, 19, 20, 27, 28, 29], the 3D model

is represented as a volumetric Truncated Signed Distance

Function (TSDF) [8], and depth measurements of a static

scene are fused into the TSDF to grow the 3D model. Ap-

plications of 3D reconstruction using RGB-D cameras to

build a human avatar were proposed using either a single

camera [2, 13, 32] or multiple cameras [15]. The user was

then assumed to hold still during the whole scanning period.

Recently, much interest has been given to reconstruct 3D

models of dynamic scenes. Dou et al. [11] introduced a di-

rectional distance function to build dynamic 3D models of

the human body offline. In [10], static parts of the scene

were pre-scanned offline, and movements of the body were

tracked online. Zhang et al. [30] proposed to merge dif-

ferent partial 3D scans obtained offline with KinectFusion

in different poses into a single canonical 3D model. More

recently, Newcombe et al. [18] extended KinectFusion to

DynamicFusion, which allows capturing dynamic changes

in the volumetric TSDF in real-time by using embedded de-

formation [23]. Compelling results were reported for real-

time dynamic 3D face modeling in terms of geometric accu-

racy. However, in terms of facial motion capture, the results

were not as good as those reported in [4, 14]. This is be-

cause color information was ignored. As a consequence,

visual features such as facial landmarks were not used and

movements of the eyelids, for example, could not be cap-

tured. Note that the method fails to achieve dynamic re-

construction of scenes that move quickly from a close to
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open topology. Therefore, the user must keep the mouth

open for a few seconds at the beginning of the scanning

process, which is not practical. Moreover, the volumetric

TSDF requires a large amount of memory, precluding on-

line streaming of the reconstructed dynamic 3D model for

communication purposes.

We use a Bump image [24] mapped over blendshapes be-

cause it is light in memory yet produces accurate 3D mod-

els. Moreover, by using blendshapes we can achieve state-

of-the-art facial motion tracking performances [14].

3. Proposed 3D representation of the head

We introduce a new 3D representation of the head that

allows us to capture facial motions as well as fine geo-

metric details of the user’s head. We propose to augment

the popular blendshape meshes [25] with a Bump image

[24]. While blendshape coefficients encode facial expres-

sions, the Bump image encodes the geometric deviations of

the user’s head to the template mesh. We also build a color

image for better visual impression.

3.1. Blendshape representation

We briefly recall the blendshape representation, com-

monly used in facial motion capture systems [3, 4, 14, 16,

25]. Facial expressions are represented using a set of blend-

shape meshes {Bi}i∈[0:n] (we used n+ 1 = 28 blendshape

mehes in our experiments), where B0 is the mesh with neu-

tral expression and Bi, i > 0 are the meshes in various base

expressions. All blendshape meshes have the same number

of vertices and share the same triangulation. A 3D point at

the surface of the head is expressed as a linear combination

of the blendshape meshes: M(x) = B0 +
n∑

i=1

xiB̂i, where

x = [x1, x2, ..., xn] are the blendshape coefficients (rang-

ing from 0 to 1) and B̂i = Bi −B0 for i ∈ [1 : n]. We call

M(x) the blended mesh.

The blendshape representation is an efficient way to ac-

curately and quickly capture facial motions. However, be-

cause it is a template-based representation, it is not possible

to capture the fine geometric details of the user’s head (the

hair for example can not be modeled). This is because real-

time, accurate fitting of the template 3D meshes to input

RGB-D images is a difficult task. Moreover, the resolution

of the blendshape meshes is insufficient to capture fine geo-

metric details. We overcome this limitation by augmenting

the set of blendshape meshes with a single pair of Bump

and color images (as illustrated in Fig. 2).

We slightly simplify the original blendshape meshes [25]

around the ears and around the nose. This is because these

areas are too much detailed for our proposed 3D represen-

tation. We instead record geometric details of the head in

the Bump image. The original and modified templates with

highlighted modified areas are shown in Fig. 3.

3.2. Augmented blendshapes

Each vertex in the blendshape meshes has texture coor-

dinates (the same vertex in different base expression has the

same texture coordinates). This allows [14] to map color

images onto the blended mesh (i.e., weighted sum of blend-

shape meshes) for example. We propose to build an addi-

tional texture image, called Bump image that encodes the

deviations of the user’s head to the blendshape meshes in

the direction of the normal vectors. Our proposed 3D rep-

resentation is illustrated in Fig. 2 (a) and detailed below.

In addition to the 3D positions of the vertices

{{Bi(j)}j∈[0:l]}i∈[0:n] in all blendshape meshes (where

l + 1 is the number of vertices), we also have the values

of the normal vectors {{Nmlei(j)}j∈[0:l]}i∈[0:n] and the

list of triangular faces {F(j) = [sj0, s
j
1, s

j
2]}j∈[0:f ], where

f+1 is the number of faces and [sj0, s
j
1, s

j
2] are the indices in

{Bi}i∈[0:n] of the three vertices that are the summits of the

jth face. Note that F is the same for all blendshape meshes.

Before building the Bump image, we need to define a few

intermediate images that are useful for computations.

We define an index image Indx such that for each pixel

(u, v) in the texture coordinate space, Indx(u, v) is the in-

dex in F of the triangle the pixel belongs to. We build the

index image by drawing each triangle in F in the texture

coordinate space with its own index as color. We also de-

fine a three channel weight image W such that W(u, v) is

the barycentric coordinates of pixel (u, v) for the triangle

F(Indx(u, v)). Note that the two images Indx and W de-

pend only on the triangulation F and the texture coordinates

of the vertices of the blendshape meshes. They are totally

independent from the user and can thus be computed once

and for all and saved in the hard drive.

For each blendshape mesh, we define a vertex image Vi

and a normal image Ni, i ∈ [0 : n]:

Vi(u, v) =
2∑

k=0

W(u, v)[k]Bi(F(Indx(u, v))[k]),

Ni(u, v) =
2∑

k=0

W(u, v)[k]Nmlei(F(Indx(u, v))[k]).

We also define the difference images V̂i = Vi − V0 and

N̂i = Ni −N0 for i ∈ [1 : n].
We now define our proposed Bump image Bump that

represents the fine geometric details of the user’s head.

Given a facial expression x (i.e. n blendshape coefficients),

we define a vertex image Vx and a normal image Nx for

the blended mesh1:

Vx(u, v) = V0(u, v) +
n∑

i=1

xiV̂i(u, v),

Nx(u, v) = N0(u, v) +
n∑

i=1

xiN̂i(u, v).

1Note that Nx is not normalised. It is not a standard normal image.
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(b) Initial frame at t=0s (c) Input frames at t=1s, 6s, 10s

(a) Augmented blendshape meshes (d) Augmented blended mesh retargeted to input frames (with the final Bump image)

A single pair of Bump and color images 

Generic template mesh

A single pair of Bump and color images 

Blendshape meshes

Figure 2: The main idea of our proposed method is that a single pair of Bump and color images is sufficient to augment all

template blendshape meshes and build a space of high fidelity user-specific facial expressions. While the blendshape meshes

represent the general shape of the head and facial expressions, the Bump image represents the fine details of the user’s head.

Figure 3: Original and modified blendshape mesh with neu-

tral expression (B0). For each pose, the original mesh is

on the left side and our modified mesh is on the right side.

Modified areas are highlighted by the red circles.

Each pixel (u, v) in the Bump image corresponds to the 3D

point

Px(u, v) = Vx(u, v) +Bump(u, v)Nx(u, v). (1)

All values in the Bump image are initialised to 02.

Each pixel in the Bump image represents one 3D point at

the surface of the head. This drastically increases the reso-

lution of the 3D model compared to the blendshape meshes,

which is the first advantage of our proposed 3D representa-

tion. The second advantage is that fine details can be cap-

tured (even far from the blendshape meshes, like the hair

for example). The third advantage is that a single Bump

image is sufficient to obtain detailed 3D models in all base

expressions. This is because the Bump image represents

the geometric deviations to the template mesh. Moreover,

as we will see in Sec. 4.3, updating the Bump image is fast

and easy.

4. Proposed 3D modeling method

We propose a method to build a high-fidelity 3D model

of the head with facial animations from a live stream of

2Note that Px(u, v) is a linear combination of x.

RGB-D images using our introduced 3D representation of

the head. The 3D model of the head is initialised with the

first input RGB-D image: the blendshape mesh with neutral

expression is roughly fit and aligned to the input depth im-

age using sparse facial features and the depth image. In the

initialisation step, the user is assumed to be facing the cam-

era (so that all facial features are visible) and with a neutral

expression. Note that this is the only constraint of our pro-

posed method. At runtime, the pose of the head is estimated

by solving a rigid alignment problem between the current

RGB-D image and our proposed 3D model in its current

state (i.e. augmented blended mesh). The blendshape coef-

ficients are then estimated following a facial motion capture

technique [14] and the pair of Bump and color images is up-

dated with the current RGB-D image. The pipeline of our

proposed method is illustrated in Fig. 4.

Our proposed method allows us to capture fine geometric

and color details of the head, recorded in the pair of Bump

and color images, as well as the facial motion, recorded in

the sequence of blendshape coefficients. Our proposed 3D

model is accurate yet requires low memory consumption

(only 2 texture images). Moreover, it is possible to animate

the 3D model with only the head pose and a few blendshape

coefficients. It is thus particularly well suited for 3D video

communication purposes.

4.1. Initialisation

We assume that the user starts facing the camera with a

neutral expression (this is the only assumption done in this

paper), and we initialise our 3D model with the first RGB-

D image. This procedure is illustrated in the upper part of

Fig. 4 and detailed below.

First, we detect facial features using the system called In-

traFace [9]. These sparse features are matched to manually
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Initialisation

First input RGB-D image with facial  

landmarks and neutral expression

Elastic registration

Fitted blendshape meshes

Aligned with first frame

Initial 3D model (blendshape mesh in 

neutral expression augmented with 

the initial Bump image)

Runtime

Blendshape meshes with facial landmarks

New input RGB-D image with facial  

landmarks

Current state of the 3D model

Rigid registration

Blendshape 

coefficients estimation

Update Bump  
image

New state of the 3D 

model
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Blend shape coefficient

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Facial expression

Tracking Data fusion

Figure 4: The pipeline of our proposed method. The 3D model is initialised with the first input RGB-D image that is assumed

to be in neutral expression. The template blendshape meshes are non-rigidly aligned to the input depth image to roughly fit

the shape of the user’s head. The initial Bump (and color) image is created to record details of the user’s face geometry. At

runtime, the current 3D model is used to rigidly track the global motion of the head and estimate blendshape coefficients

(which identify the current facial expression). Once this non-rigid alignment is done, new measurements are fused into the

Bump and color images to improve the quality of the 3D model.

defined features in the blendshape mesh B0 with neutral ex-

pression. B0 is then scaled so that the euclidean distances

between the facial features in B0 match the ones computed

from the RGB-D image. IntraFace also gives us a rotation

matrix that is used to roughly align B0 to the first input

RGB-D image. The translation vector is computed as the

difference vector between the facial features in B0 and in

the depth image corresponding to the tip of the nose.

Second, we perform elastic registration with the facial

features as proposed in [31] to quickly and roughly fit B0

to the user’s head. All deformations are then transferred

to all other blendshape meshes Bi, i > 0 [22]. The pose

of the head is refined using ICP with the depth image, and

we create the Bump and color images with the first RGB-D

image (see Sec. 4.3).

4.2. Tracking

At runtime, we successively track the rigid motion of the

head and the blendshape coefficients using the current state

of our proposed 3D model of the head and the input RGB-

D image. Sparse facial features are also used to improve

tracking performances. This procedure is illustrated in the

lower part of Fig. 4.

Rigid head motion estimation We estimate the pose

(R, t) (where R is the rotation matrix and t is the trans-

lation vector) of the head by computing the rigid transfor-

mation between the input RGB-D image and the (global)

3D model of the head (that is being built) in its current ex-

pression state. We solve for this rigid alignment problem

using the iterative closest point (ICP) algorithm [21], which

is based on point-to-plane constraints on the depth image

and point-to-point constraints on the 3D facial features. By

contrast with [3, 14, 16, 25] we use all points available from

the Bump image (including points in the hair) instead of us-

ing only a subset of vertices in the blendshape meshes. As a

consequence, we have many more correspondences for ac-

curate dense 3D pose estimation. We eliminate correspon-

dences that are farther than 1 cm and those that normal vec-

tors have difference in angle greater than 30 degrees.

Blendshape coefficients estimation For each input RGB-

D image we estimate the blendshape coefficients using the

same approach as in [14]. Note that differently from [14] we

did not model the occlusions, which is left as future work,

and we used the point-to-point constraints on the 3D facial

features (instead of on the 2D facial features). Moreover,

we use all points available from the Bump image for dense

point correspondences. Our point-to-plane fitting term on

the depth image is

cS(u,v)(x) = (n(u,v)(RPx(u, v) + t− v(u,v)))
2,
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normal vector 

Input RGB-D image

Bump image

Blended mesh

3D point augmented 

by the Bump value

Confidence range

Perspective projection of the 

confidence segment into the 

RGB-D image

(a) Select a set of candidate pixels. A 3D segment (red segment in the red

box) is defined as the segment centered around the 3D point augmented

with the Bump image, in the direction of the normal vector of the tem-

plate surface and with length proportional to the current confidence. The

candidate pixels are identified as those that belong to the 2D projected

segment (red segment) in the input RGB-D image.

Input RGB-D image

Fuse

Points corresponding 

to the selected pixels

Closest point to the normal

Projected point

Bump image

(b) Identify the best match for data fusion. All candidate pixels are pro-

jected into the 3D space (in magenta in the red box), and the one closest

to the normal vector is identified as the best match. The best match is pro-

jected onto the normal vector and the distance to the template surface in

the normal direction of the original augmented 3D point and the projected

best match are fused using a running average.

Figure 5: Data fusion into the Bump image. For each pixel in the Bump image, (a) a few candidate points are selected in the

input RGB-D image and (b) the best match among these candidates is identified and used to update the pixel value.

where (u, v) is a pixel in the Bump image, v(u,v) is the

closest point to RPx(u, v)+t in the depth image and n(u,v)

is the normal vector of v(u,v).

Our point-to-point fitting term on 3D facial features is

cFj (x) = ‖RPx(lmkj) + t− vj‖
2
2,

where lmkj is the location of the jth landmark in the Bump

image and vj is the jth 3D facial landmark in the RGB-D

image.

The blendshape coefficients are computed by solving the

minimisation problem for the total fitting term

x = argmin
x

∑

(u,v)

cS(u,v)(x) + w1

∑

j

cFj (x) + w2

n∑

k=1

x2
k,

where w1 and w2 are weighting factors set to 30 and 0.3
(respectively) in our experiments.

4.3. Data fusion

Our proposed 3D model of the head grows and refines

on-the-fly with input RGB-D images. We use a running av-

erage strategy to integrate new RGB-D data into the Bump

and color images. To do so, we define an additional Mask

image Mask with the same size as the Bump image, which

records confidence of data at each pixel. The main problem

now is how to select, for each pixel in the Bump (and color)

image, the corresponding pixel in the RGB-D image.

For a given x (blendshape coefficients), each pixel (u, v)
in the Bump image corresponds to a 3D point Px(u, v) that

lies in the line Lx(u, v) directed by the vector Nx(u, v) and

passing by the 3D point Vx(u, v) (see Eq. (1)). For each

input RGB-D image, with estimated pose (R, t) and blend-

shape coefficients x, we update the Bump (and color) val-

ues in all pixels using the 3D point in the RGB-D image

that is closest to the line L̂x(u, v), directed by the vector

RNx(u, v) and passing by the 3D point RVx(u, v) + t.

This procedure is illustrated in Fig. 5 and detailed below3.

For each pixel (u, v), we search for the 3D point in

the RGB-D image that is closest to the line L̂x(u, v) by

walking through a projected segment in the depth image.

We define the segment S(u, v) = [RPx(u, v) + t −
λRNx(u, v);RPx(u, v)+ t+λRNx(u, v)], where λ = 5
cm if Mask(u, v) = 0 (in such a case Bump(u, v) = 0),

λ = max(1, 5
Mask(u,v) ) cm otherwise. We then walk

through the projected segment π(S(u, v)), where π is the

perspective projection operator and identify the point pu,v

closest to the line L̂x(u, v). We compute the distance d(u,v)
from pu,v to the corresponding point RVx(u, v) + t on the

blended mesh in the direction RNx(u, v):

d(u,v) = (pu,v − (RVx(u, v) + t)) · (RNx(u, v)),

where · is the scalar product. We then apply the running

average between d(u,v) and Bump(u, v) as follows:

Bump(u, v) =
Mask(u,v)Bump(u,v)+d(u,v)

Mask(u,v)+1 ,

Mask(u, v) = Mask(u, v) + 1.

The color image is updated in the same way.

We do not update the value of the Bump image at pixel

(u,v) when the corresponding point pu,v is either farther

than 1 cm to the line L̂x(u, v), farther than τ cm to the

point Px(u, v) (with τ = 3 if Mask(u, v) = 0 and τ = 1
otherwise), or when the difference in angle between the

normal vector of pu,v and Nx(u, v) is greater than 45 de-

grees. Moreover, in cases where the 3D point RPx(u, v)+t

3Note that the Bump image records deviation in the normal direction.

This is why we must average data in the normal direction for consistency.

3304



Figure 6: The first frame and final retargeted 3D model from results obtained with our proposed method shown in our

accompanying video available at [1]. The four results on the left side of the figure were obtained using a Kinect for XBOX

360, while the four results on the right side of the figure were obtained with a Kinect V2. Source code is available at [1].

projects to a pixel in the depth image that has a depth value

greater than 10 cm than the depth value of RPx(u, v) + t

(i.e. visibility violation) the mask value at pixel (u, v) is

decreased by 1.

At each frame, we apply a median filter (with a window

size of 3× 3 pixels) to the Bump image to remove outliers.

5. Results

We demonstrate the ability of our proposed method to

generate high-fidelity 3D models of the head in dynamic

scenes along with the facial motions, with real experiments

using both the Kinect for XBOX 360 and Kinect V2 sen-

sors. The Kinect for XBOX 360 sensor (based on structured

light) provides RGB-D images at video frame-rate with a

resolution of 640 × 480 pixels in the color image and of

320 × 240 pixels in the depth image; the Kinect V2 sensor

(based on time of flight) provides RGB-D images at video

frame-rate with a resolution of 1920 × 1080 pixels in the

color image and of 512× 424 pixels in the depth image.

Figure 6 shows the first frame of RGB-D videos captured

with both sensors, as well as the final 3D model obtained

with our proposed method, in the pose of the first frame

and with neutral expression. These videos illustrate several

challenging situations with various facial expressions, ex-

treme head poses and different shapes of the head. Our pro-

posed Bump image that augments the blendshape meshes

allowed us to capture detailed and various geometric details

around the head, including the hair (which was not possible

with state-of-the-art blendshape methods [14]), with similar

accuracy for different users. In addition, the (underlying)

blendshape representation allowed us to capture fine facial

motions in real-time, which also helped to build accurate

3D models of the head even in dynamic scenes. Our pro-

posed method is robust to data noise, head pose and facial

expression changes, which allowed us to obtain similarly

satisfactory results with different sensors.

In Fig. 7, we can see that the Bump image grows and

refines over time to generate accurate 3D models with var-

ious facial expressions. In particular, by using facial fea-

tures in addition to the depth image, we could successfully

track the movement of the eyelids (Fig. 7 (b) at t = 17s,

t = 22s and t = 24s).This is not possible without using

facial features because the depth information alone can not

distinguish between ”eye closed” and ”eye opened” ([18]).

Furthermore, contrary to [18] we do not need to start the

sequence by scanning the head with mouth opened because

we know (with the blendshape meshes) the topology of the

head (i.e., mouth and eyes can open and close).

In all our experiments, we used a Bump, color and Mask

image with resolution of 240 × 240 pixels (i.e., with aver-

age distance between neighbouring points of about 1 mm).

The Mask and Depth images were a one-channel unsigned

short image, and the color image was a three-channels un-

signed char image. Therefore our 3D model required only

about 400 KB memory and 28 floating values per frame

(i.e., blendshape coefficients) to record the full 3D video.

Limitations While our proposed method can handle var-

ious head poses and facial expressions, occlusions (like the

hand occluding the head for example) are not explicitly han-

dled, which is left as future work. Furthermore, the gener-

ated color images were not always satisfactory because of

blurring artefacts. This is mainly due to the running aver-

age technique used to accumulate color data. The variation

of color values at the surface of the head is not continu-

ous, thus averaging data from neighbouring pixels creates

blurred color images4.

Performance The full pipeline of our proposed method

runs a 30 fps on a macbook pro with a 2.8 GHz Intel Core

i7 CPU with 16 GB RAM and an AMD Radeon R9 M370X

graphics processor. While our code is not fully optimised,

we measured the following average timings: head pose esti-

mation took about 2 ms, blendshape coefficients estimation

took about 20 ms and data fusion took about 7 ms.

4Note that the color texture is used only for visualisation purpose. It

does not impact on the performance of our proposed system.
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(a) Current augmented blended shape retargeted to the live frame for “Scene 1”

t = 0s t = 3.3s t = 6s t = 7.3s t = 10s t = 13.3s t = 16.3s

t = 0s t = 8s t = 14s t = 17s

Bump image for “Scene 1”

(b) Current augmented blended shape retargeted to the live frame for “Scene 2”

t = 0s t = 8s t = 14s t = 24s

Bump image for “Scene 2”

t = 0s t = 11s t = 13s t = 16s t = 17s t = 24s

Figure 7: Real-time reconstruction of animated 3D models of the head for two scenes. Upper rows of (a) and (b) show the

Bump images as they grow and refine over time. Lower rows show the augmented blended meshes at different time (with

the current Bump image). The sequence in (a) was captured with a Kinect for XBOX 360 sensor. Note that our method can

handle extreme pose of the head because it accurately models its 3D geometry (even for the hair). The sequence in (b) was

captured with a Kinect v2 sensor. Note that by using facial features we could successfully track the movements of the eyelid.

6. Conclusion

We proposed a method to build in real-time detailed an-

imated 3D models of the head in dynamic scenes captured

by an RGB-D camera.The contributions of this work are

two fold: (1) we introduced a new 3D representation for

the head by augmenting blenshape meshes with a single

Bump image, and (2) we proposed an efficient data integra-

tion technique to grow and refine our proposed 3D repre-

sentation on-the-fly with input RGB-D images. The Bump

image, which augments the blendshape meshes, allowed us

to capture detailed and various geometric details around the

head (including the hair), while the blendshape representa-

tion allowed us to capture fine facial motions in real-time.

Our proposed method do not require any training or fine fit-

ting of the blendshape meshes to the user, which makes it

easy to use and implement. We believe that our proposed

method offers interesting possibilities for applications in

telecommunications, where amount of data that can be up-

loaded is limited (e.g., low bandwidth communications or

massive multiparty communications).
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