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Abstract

While domain adaptation (DA) aims to associate the

learning tasks across data domains, heterogeneous domain

adaptation (HDA) particularly deals with learning from

cross-domain data which are of different types of features.

In other words, for HDA, data from source and target do-

mains are observed in separate feature spaces and thus

exhibit distinct distributions. In this paper, we propose a

novel learning algorithm of Cross-Domain Landmark Se-

lection (CDLS) for solving the above task. With the goal

of deriving a domain-invariant feature subspace for HDA,

our CDLS is able to identify representative cross-domain

data, including the unlabeled ones in the target domain, for

performing adaptation. In addition, the adaptation capa-

bilities of such cross-domain landmarks can be determined

accordingly. This is the reason why our CDLS is able to

achieve promising HDA performance when comparing to

state-of-the-art HDA methods. We conduct classification

experiments using data across different features, domains,

and modalities. The effectiveness of our proposed method

can be successfully verified.

1. Introduction

When solving standard machine learning and pattern

recognition tasks, one needs to collect a sufficient amount

of labeled data for learning purposes. However, it is not al-

ways computationally feasible to collect and label data for

each problem of interest. To alleviate this concern, domain

adaptation (DA) aims to utilize labeled data from a source

domain, while only few (or no) labeled data can be observed

in the target domain of interest [27]. In other words, the goal

of DA is to transfer the knowledge learned from an auxil-

iary domain, so that the learning task in the target domain

can be solved accordingly.

A variety of real-world applications have been benefited

from the recent advances of DA (e.g., sentiment analysis

[7, 33], Wi-Fi localization [25, 26], visual object classifi-

cation [43, 30, 34, 8], and cross-language text classifica-

tion [10, 29]). Generally, most existing DA approaches

like [26, 24, 31, 6] consider that source and target-domain

data are collected using the same type of features. Such

problems can be referred to homogeneous domain adapta-

tion, i.e., cross-domain data are observed in the same fea-

ture space but exhibit different distributions.

On the other hand, heterogeneous domain adaptation

(HDA) [32, 38, 21, 28] deals with a even more challenging

task, in which cross-domain data are described by different

types of features and thus exhibit distinct distributions (e.g.,

training and test image data with different resolutions or en-

coded by different codebooks). Most existing approaches

choose to solve HDA by learning feature transformation,

which either projects data from one domain to the other,

or to project cross-domain data to a common subspace for

adaptation purposes [32, 38, 21, 12, 18, 42, 19].

As noted in [39, 23, 40, 41], exploiting unlabeled target-

domain instances during adaptation would be beneficial for

HDA. Following their settings, we choose to address semi-

supervised HDA in this paper. To be more precise, a suf-

ficient amount and few labeled data will be observed in

the source and target domains, respectively. And, the re-

maining target-domain data (to be classified) will also be

presented during the learning process. In our work, we

propose a learning algorithm of Cross-Domain Landmark

Selection (CDLS) for solving HDA. Instead of viewing all

cross-domain data to be equally important during adapta-

tion, our CDLS derives a heterogeneous feature transfor-

mation which results in a domain-invariant subspace for as-

sociating cross-domain data. In addition, the representa-

tive source and target-domain data will be jointly exploited

for improving the adaptation capability of our CDLS. Once

the adaptation process is complete, one can simply project

cross-domain labeled and unlabeled target domain data into

the derived subspace for performing recognition. Illustra-

tion of our CDLS is shown in Figure 1.

The contributions of this paper are highlighted below:

• We are among the first to exploit heterogenous source

and target-domain data for learning cross-domain

landmarks, aiming at solving semi-supervised HDA

problems.
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Figure 1. Illustration of Cross-Domain Landmark Selection (CDLS) for heterogeneous domain adaptation (HDA). Note that instances

shown in different sizes indicate cross-domain landmarks with different adaptation abilities.

• By learning the adaptability of cross-domain data (in-

cluding the unlabeled target-domain ones), our CDLS

derives a domain-invariant feature space for improved

adaptation and classification performances.

• Experiments on classification tasks using data across

different features, datasets, and modalities data are

considered. Our CDLS is shown to perform favorably

against state-of-the-art HDA approaches.

2. Related Work

Most existing HDA methods consider a supervised set-

ting, in which only labeled source and target-domain data

are presented during adaptation. Generally, these HDA ap-

proaches can be divided into two categories. The first group

of them derive a pair of feature transformation (one for

each domain), so that source and target-domain data can be

projected into a common feature space for adaptation and

recognition [32, 38, 12, 39, 23, 41]. For example, Shi et al.

[32] proposed heterogeneous spectral mapping (HeMap),

which selects source-domain instances for relating cross-

domain data via spectral embedding. Wang and Mahadevan

[38] chose to solve domain adaptation by manifold align-

ment (DAMA), with the goal of preserving label informa-

tion during their alignment/adaptation process. Duan et al.

[12] proposed heterogeneous feature augmentation (HFA)

for learning a common feature subspace, in which SVM

classifiers can be jointly derived for performing recognition.

On the other hand, the second category of existing HDA

methods learn a mapping matrix which transforms the data

from one domain to another [21, 18, 19, 42, 40]. For ex-

ample, Kulis et al. [21] proposed asymmetric regularized

cross-domain transformation (ARC-t) for associating cross-

domain data with label information guarantees. Hoffman et

al. [18, 19] considered a max-margin domain transforma-

tion (MMDT) approach, which adapts the observed predic-

tion models (i.e., SVMs) across domains. Similarly, Zhou

et al. [42] presented an algorithm of sparse heterogeneous

feature representation (SHFR), which relate the predictive

structures produced by the prediction models across do-

mains for addressing cross-domain classification problems.

Nevertheless, the above HDA approaches only consid-

ered labeled source and target-domain data during adaption.

As noted in literature on homogeneous domain adaptation

[13, 26, 22], unlabeled target-domain data can be jointly ex-

ploited for adaptation. Such semi-supervised settings have

been shown to be effective for DA. Recent HDA approaches

like [39, 23, 40, 41] also benefit from this idea. For ex-

ample, inspired by canonical correlation analysis, Wu et

al. [39] presented an algorithm of heterogeneous transfer

discriminant-analysis of canonical correlations (HTDCC).

Their objective is to minimize canonical correlation be-

tween inter-class samples, while that between the intra-class

ones can be maximized. Li et al. [23] extended HFA

[12] to a semi-supervised version (i.e., SHFA), and fur-

ther exploited projected unlabeled target-domain data into

their learning process. Recently, Xiao and Guo [40] pro-

posed semi-supervised kernel matching for domain adapta-

tion (SSKMDA), which determines a feature space while

preserving cross-domain data locality information. They

also proposed a semi-supervised HDA approach of sub-

space co-projection (SCP) in [41], and chose to minimize

the divergence between cross-domain features and their pre-

diction models. However, both SSKMDA and SCP require

additional unlabeled source-domain data for HDA.

It is worth noting that, techniques of instance reweight-

ing or landmark selection have been applied for solving do-

main adaptation problems [20, 9, 15, 1]. Existing meth-

ods typically weight or select source-domain data, and only

homogeneous DA settings are considered. Moreover, no

label information from either domain is taken into consid-

eration during the adaptation process. Based on the above

observations, we address semi-supervised HDA by propos-

ing CDLS for learning representative landmarks from cross-

domain data. Our CDLS is able to identify the contribu-

tions of each landmark when matching cross-domain class-

conditional data distributions in the derived feature space.

This is why improved HDA performance can be expected

(see our experiments in Section 4).
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3. Our Proposed Method

3.1. Problem Settings and Notations

Let DS = {xi
s , y

i
s}

nS

i=1 = {XS ,yS} denote source-

domain data, where each instance xs ∈ R
dS is as-

signed with label ys ∈ L = {1, . . . , C} (i.e., a C-

cardinality label set). For HDA with a semi-supervised

setting, we let DL = {xi
l , y

i
l}

nL

i=1 = {XL,yL} and

DU = {xi
u , y

i
u}

nU

i=1 = {XU ,yU} as labeled and unla-

beled target-domain data, respectively. We have xl,xu ∈
R

dT and yl, yu ∈ L. Note that dS 6= dT , since source

and target-domain data are of different types of features.

In a nutshell, for solving semi-supervised HDA, we ob-

serve dS-dimensional source-domain data DS , few labeled

dT -dimensional target-domain data DL, and all unlabeled

target-domain data DU (to be recognized) during adapta-

tion. Our goal is to predict the labels yU for XU .

For semi-supervised HDA, only few labeled data are pre-

sented in the target domain, while the remaining unlabeled

target-domain instances are seen during the adaptation pro-

cess. Nevertheless, a sufficient number of labeled data will

be available in the source domain for performing adapta-

tion. Different from [40, 41], we do not require any addi-

tional unlabeled source-domain data for adaptation.

3.2. Cross­Domain Landmark Selection

3.2.1 Matching cross-domain data distributions

Inspired by the recent HDA approaches of [21, 18, 19, 42,

40], we learn a feature transformation A which projects

source-domain data to the subspace derived from the target-

domain data. In this derived subspace, our goal is to

associate cross-domain data with different feature dimen-

sionality and distinct distributions. Such association is

achieved by eliminating the domain bias via matching

cross-domain data distributions (i.e., marginal distribu-

tions PT (XT ) and PS(A
⊤XS), and the conditional ones

PT (yT |XT ) and PS(yS |A
⊤XS)). Unfortunately, direct

estimation of PT (yT |XT ) and PS(yS |A
⊤XS) is not possi-

ble. As an alternative solution suggested in [24], we choose

to match the estimated PT (XT |yT ) and PS(A
⊤XS |yS) by

Bayes’ Theorem [4].

As noted above, we first project all target-domain data

into a m-dimensional subspace via PCA (note that m ≤
min{dS , dT }). In the remaining of this paper, we use x̂l

and x̂u to denote reduced-dimensional labeled and unla-

beled target-domain data, respectively. As a result, the lin-

ear transformation to be learned is A ∈ R
m×dS . It is worth

noting that, this dimension reduction stage is to prevent pos-

sible overfitting caused by mapping low-dimensional data

in a high-dimensional space. Later in our experiments, we

will vary the dimension number m for the completeness of

our evaluation.

Recall that, as discussed in Section 2, most existing HDA

works consider a supervised setting. That is, only labeled

data in the target domain are utilized during training. In or-

der to match cross-domain data distributions for such stan-

dard supervised HDA settings, we formulate the problem

formulation as follows:

min
A

EM (A,DS ,DL) + EC(A,DS ,DL) + λ ‖A‖
2
, (1)

where EM and EC measure the differences between cross-

domain marginal and conditional data distributions, respec-

tively. The last term in (1) is penalized by λ to prevent

overfitting A.

To solve (1), we resort to statistics to measure the prob-

ability density for describing data distributions. As sug-

gested in [26, 24], we adopt empirical Maximum Mean Dis-

crepancy (MMD) [16] to measure the difference between

the above cross-domain data distributions. As a result,

EM (A,DS ,DL) can be calculated as

EM (A,DS ,DL) =

∥∥∥∥∥
1

nS

nS∑

i=1

A
⊤
x
i
s −

1

nL

nL∑

i=1

x̂
i
l

∥∥∥∥∥

2

. (2)

For matching cross-domain conditional data distributions,

we determine EC(A,DS ,DL) as:

EC(A,DS ,DL) =

C∑

c=1

∥∥∥∥∥∥
1

nc
S

nc
S∑

i=1

A
⊤
x
i,c
s −

1

nc
L

nc
L∑

i=1

x̂
i,c

l

∥∥∥∥∥∥

2

+
1

nc
Sn

c
L

nc
S∑

i=1

nc
L∑

j=1

∥∥∥A⊤
x
i,c
s − x̂

j,c

l

∥∥∥
2

,

(3)

where x̂
i,c
l indicates the labeled target-domain instance of

class c, and nc
L denotes the number of labeled target-domain

instances in that class. Similarly, xi,c
s is the source-domain

data of class c, and nc
S represents the number of source-

domain data of class c.

In (3), the first term calculates the difference between

class-wise means for matching the approximated class-

conditional distributions (see [24] for detailed derivations),

while the second term enforces the embedding of trans-

formed within-class data [37]. We note that, since only

labeled cross-domain data are utilized in (1), its solution

for HDA can be considered as a supervised version of our

CDLS (denoted as CDLS sup in Section 4).

3.2.2 From supervised to semi-supervised HDA

To adopt the information of unlabeled target-domain data

for improved adaptation, we advocate the learning of the

landmarks from cross-domain data when deriving the afore-

mentioned domain-invariant feature subspace.
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Extended from (1), our proposed algorithm cross-

domain landmark selection (CDLS) exploits heterogenous

data across domains, with the ability to identify the adap-

tation ability of each instance with a properly assigned

weight. Instances in either domain with a nonzero weight

will be considered as a landmark.

With the above goal, the objective function of our CDLS

can be formulated as follows:

min
A,α,β

EM (A,DS ,DL,XU ,α,β)+

EC(A,DS ,DL,XU ,α,β) + λ ‖A‖
2
,

s.t. {αc
i , β

c
i } ∈ [0, 1] ,

αc⊤1

nc
S

=
βc⊤1

nc
U

= δ,

(4)

where α = [α1; · · · ;αc; · · · ;αC ] ∈ R
nS and β =

[β1; · · · ;βc; · · · ;βC ] ∈ R
nU are the weights observed

for all labeled and unlabeled data in source and target do-

mains, respectively. We have αc = [αc
1; · · · ;α

c
nc
S
] and

βc = [βc
1; · · · ;β

c
nc
U
], where nc

S and nc
U denote the total

numbers of the corresponding instances of or predicted as

class c in the associated domain.

In (4), δ ∈ [0, 1] controls the portion of cross-domain

data in each class to be utilized for adaptation. If δ = 0, our

CDLS would turn into its supervised version as described in

Section 3.2.1. While we fix δ = 0.5 in our work, additional

analysis on the selection and effect of δ will be provided

in our experiments. We also note that, since the number

of labeled target-domain instances XL is typically small in

semi-supervised HDA, all of such data will be viewed as the

most representative landmarks to be utilized during adapta-

tion (i.e., no additional weights required for XL).

The EM in (4) matches marginal cross-domain data dis-

tributions for HDA. With x̂l and x̂u indicating reduced-

dimensional labeled and unlabeled target-domain data, we

calculate EM by:

EM (A,DS ,DL,XU ,α,β) =
∥∥∥ 1
δnS

∑nS

i=1 αiA
⊤xi

s −
1

nL+δnU

(∑nL

i=1 x̂
i
l +

∑nU

i=1 βix̂
i
u

)∥∥∥
2

.
(5)

To match cross-domain conditional data distributions via

EC , we apply SVM trained from labeled cross-domain data

to predict the pseudo-labels ỹi
u for x̂i

u (as described later

in Section 3.3.3). With {ỹi
u}

nU

i=1 assigned for XU , the EC

term in (4) can be expressed as:

EC(A,DS ,DL,XU ,α,β) =
C∑

c=1

Ec
cond +

1

ec
Ec

embed,

(6)

where

E
c
cond =

∥∥∥∥∥∥
1

δnc
S

nc
S∑

i=1

αiA
⊤
x
i,c
s −

1

nc
L

+ δnc
U




nc
L∑

i=1

x̂
i,c

l
+

nc
U∑

i=1

βix̂
i,c
u





∥∥∥∥∥∥

2

,

E
c
embed =

nc
S∑

i=1

nc
L∑

j=1

∥∥∥αiA
⊤
x
i,c
s − x̂

j,c

l

∥∥∥
2

+

nc
L∑

i=1

nc
U∑

j=1

∥∥∥x̂i,c

l
− βj x̂

j,c
u

∥∥∥
2

+

nc
U∑

i=1

nc
S∑

j=1

∥∥∥βix̂
i,c
u − αjA

⊤
x
j,c
s

∥∥∥
2

,

It can be seen that, EC term in (6) is extended from (3) by

utilizing unlabeled target-domain data with pseudo-labels.

Similar to (3), we match cross-domain class-conditional

distributions and preserve local embedding of transformed

data of each class using via Ec
cond and Ec

embed, respec-

tively. The normalization term in (6) is calculated as ec =
δnc

Sn
c
L + δnc

Ln
c
U + δ2nc

Un
c
S .

With both EM and EC defined, we address semi-

supervised HDA by solving (4). This allows us to learn

the proper weights α and β for the representative instances

from both domains (i.e., cross-domain landmarks). As a re-

sult, our derived feature transformation A will result in a

feature subspace with improved adaptation capability. This

will be verified later by our experiments in Section 4.

3.3. Optimization

We now discuss how we solve the optimization problem

of (4). Similar optimization process can be applied to solve

the supervised version of (1), which is presented in the Sup-

plementary.

It can be seen that, the semi-supervised learning prob-

lem of (4) is a non-convex joint optimization problem with

respect to A, α, and β. By advancing the technique of it-

erative optimization, we alternate between the learning of

feature transformation A and landmark weights α and β.

The latter also involves the prediction of pseudo-labels for

unlabeled target-domain data. We now describe the opti-

mization process below.

3.3.1 Optimizing A

Given the weights of α and β fixed, we take the derivative

of (4) with respect to A and set it equal to zero. The closed

form solution of A can be derived as:

A =
(
λIdS

+XSHSXS
⊤
)−1 (

XS

(
HLX̂

⊤
L +HUX̂

⊤
U

))
, (7)

where IdS
is a dS-dimensional identity matrix, matrices

{XS ∈ R
dS×nS , X̂L ∈ R

m×nL , X̂U ∈ R
m×nU } rep-

resent source, transformed labeled and unlabeled target-

domain instances, respectively. Each entry (HS)i,j in

HS ∈ R
nS×nS denotes the derivative coefficient associated

with xi
s

⊤
xj
s. Similar remarks can be applied to the matrices

HL ∈ R
nS×nL and HU ∈ R

nS×nU . Detailed derivations

are available in the Supplementary.
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Algorithm 1 Cross-Domain Landmark Selection (CDLS)

Input: Labeled source and target-domain data DS =
{xi

s,y
i
s}

nS

i=1, DL = {xi
l,y

i
l}

nL

i=1; unlabeled target-

domain data {xi
u}

nU

i=1; feature dimension m; ratio δ;

parameter λ

1: Derive an m-dim. subspace via PCA from {xi
l}

nL

i=1 and

{xi
u}

nU

i=1

2: Initialize A by (1) and pseudo-labels {ỹi
u}

nU

i=1

3: while not converge do

4: Update transformation A by (7)

5: Update landmark weights {α,β} by (9)

6: Update pseudo-labels {ỹi
u}

nU

i=1 by Section 3.3.3

7: end while

Output: Predicted labels {yi
u}

nU

i=1 of {xi
u}

nU

i=1

3.3.2 Optimizing α and β

With transformation A observed, we reformulate (4) as:

min
α,β

1

2
α⊤KS,Sα+

1

2
β⊤KU,Uβ −α⊤KS,Uβ

− kS,L
⊤α+ kU,L

⊤β

s.t. {αc
i , β

c
i } ∈ [0, 1] ,

αc⊤1

nc
S

=
βc⊤1

nc
U

= δ.

(8)

In (8), each entry (KS,S)i,j in KS,S ∈ R
nS×nS is the co-

efficient associated with (A⊤xi
s)

⊤A⊤xj
s, and each entry

(kS,L)i in kS,L ∈ R
nS denotes the sum of the coefficients

of (A⊤xi
s)

⊤x̂
j
l over all x̂

j
l . Similar remarks can be applied

to KS,U ∈ R
nS×nU , KU,U ∈ R

nU×nU , and kU,L ∈ R
nU

(see the Supplementary for detailed derivations).

With the above formulation, one can apply existing

Quadratic Programming (QP) solvers and optimize the fol-

lowing problem instead:

min
zi∈[0,1],Z⊤V=W

1

2
Z⊤BZ+ b⊤Z, (9)

where

Z =

(
α

β

)
,B =

(
KS,S −KS,U

−K⊤
S,U KU,U

)
,b =

(
−kS,L

kU,L

)
,

V =

[
VS 0nS×C

0nU×C VU

]
∈ R

(nS+nU )×2C with

(VS)ij =

{
1 if xi

s ∈ class j

0 otherwise

(VU )ij =

{
1 if xi

u predicted as class j

0 otherwise
,

W ∈ R
1×2C with (W)c =

{
δnc

S if c ≤ C

δnc−C
U if c > C

.

Webcam
 DSLR


Figure 2. Example images of Caltech-256 and Office dataset.

3.3.3 Label prediction for XU

Given the feature transformation and the observed land-

marks, we train linear SVMs [5] using all transformed la-

beled cross-domain data with the associated weights. As a

result, the labels of unlabeled target-domain data {x̂i
u}

nU

i=1

can be predicted accordingly.

To start our optimization process, we apply the super-

vised version of CDLS (i.e., Section 3.2.1) to initialize

the transformation A and the pseudo-labels {ỹi
u}

nU

i=1. The

pseudo code of our CDLS is summarized in Algorithm 1.

4. Experiments

4.1. Datasets and Settings

We first address the task of cross-domain object recog-

nition, and consider the use of Office + Caltech-256 (C)

datasets [30, 17]. The Office dataset contains images col-

lected from threee sub-datasets : Amazon (A) (i.e., images

downloaded from the Internet), Webcam (W) (i.e., low-

resolution images captured by web cameras), and DSLR (D)

(i.e., high-resolution images captured by digital SLR cam-

eras). This dataset has objects images of 31 categories, and

Caltech-256 contains 256 object categories. Among these

objects, 10 overlapping categories are selected for our ex-

periments. Figure 2 shows example images of the category

of laptop computer. Following [14], two different types of

features are considered for cross-domain object recognition:

DeCAF6 [11] and SURF [3]. We note that, the latter is de-

scribed in terms of Bag-of-Words (BOW) features via k-

means clustering. The feature dimensions of DeCAF6 and

SURF are 4096 and 800, respectively.

We also solve the problem of cross-lingual text cate-

gorization, and apply the Multilingual Reuters Collec-

tion [35, 2] dataset for experiments. This dataset contains

about 11, 000 articles from 6 categories in 5 languages (i.e.,

English, French, German, Italian, and Spanish). To ex-

tract the features from these articles, we follow the set-

tings in [12, 42, 23] in which all the articles are represented

by BoW with TF-IDF, followed by PCA for dimension re-

duction (with 60% energy preserved). The reduced dimen-

sions with respect to different language categories English,

French, German, Italian, and Spanish are 1, 131, 1, 230,

1, 417, 1, 041, and 807, respectively.

For simplicity, we fix the ratio δ = 0.5 for all our ex-
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Table 1. Classification results (%) with standard deviations for

cross-feature object recognition.
S,T SVMt DAMA MMDT SHFA CDLS sup CDLS

SURF to DeCAF6

A,A 87.3±0.5 87.4±0.5 89.3±0.4 88.6±0.3 86.7±0.6 91.7±0.2

W,W 87.1±1.1 87.2±0.7 87.3±0.8 90.0±1.0 88.5±1.4 95.2±0.9

C,C 76.8±1.1 73.8±1.2 80.3±1.2 78.2±1.0 74.8±1.1 81.8±1.1

DeCAF6 to SURF

A,A 43.4±0.9 38.1±1.1 40.5±1.3 42.9±1.0 45.6±0.7 46.4±1.0

W,W 57.9±1.0 47.4±2.1 59.1±1.2 62.2±0.7 60.9±1.1 63.1±1.1

C,C 29.1±1.5 18.9±1.3 30.6±1.7 29.4±1.5 31.6±1.5 31.8±1.2

periments. We follow [21, 18, 19] and set λ = 1
2 for reg-

ularizing A. We also fix m = 100 as the reduced dimen-

sionality for the derived feature subspace. Later, we will

provide analyses on convergence and parameter sensitivity

in Section 4.4 for verifying the robustness of our CDLS.

4.2. Evaluations

For evaluation, we first consider the performance of

the baseline approach of SVMt, which indicates the use

of SVMs learned from only labeled target-domain data

X̂L. To compare our approach with state-of-the-art HDA

methods, we consider HeMap [32], DAMA [38], MMDT

[18, 19], and SHFA [23]. As noted earlier, since both

SSKMDA [40] and SCP [41] require additional unlabeled

data from the source domain for adaptation, we do not in-

clude their results for comparisons. Finally, we consider the

supervised version of our CDLS (denoted as CDLS sup,

see Section 3.2.1), which simply derives feature transfor-

mation without learning cross-domain landmarks.

4.2.1 Object recognition across feature spaces

To perform cross-feature object recognition on Office +
Caltech-256 (C), two different types of features are avail-

able: SURF vs. DeCAF6. If one of them is applied for de-

scribing the source-domain data, the other will be utilized

for representing those in the target domain. For source-

domain data with SURF features, we randomly choose 20
images per category as labeled data. As for the target do-

main with DeCAF6, we randomly choose 3 images per ob-

ject category as labeled data, and the rest images in each

category as the unlabeled ones to be recognized. The same

procedure is applied to the uses of DeCAF6 and SURF for

describing source and target-domain data, respectively.

Table 1 lists the average classification results with 10
random trials. Since the number of images in DSLR (D)

is much smaller than those in other domains (i.e., Amazon

(A), Webcam (W), and Caltech-256 (C)), we only report

the recognition performance on A, W, and C. Also, the

performance of HeMap was much poorer than all other ap-

proaches (e.g., 11.7% on C for DeCAF6 to SURF), so we

do not include its performance in the table.

Table 2. Classification results (%) with standard deviations for ob-

ject recognition across feature representations and datasets.
S,T SVMt DAMA MMDT SHFA CDLS sup CDLS

SURF to DeCAF6

A,D

90.9±1.1

91.5±1.2 92.1±1.0 93.4±1.1 92.0±1.2 96.1±0.7

W,D 91.2±0.9 91.5±0.8 92.4±0.9 91.0±1.1 95.1±0.8

C,D 91.0±1.3 93.1±1.2 93.8±1.0 91.9±1.3 94.9±1.5

DeCAF6 to SURF

A,D

54.4±1.0

53.2±1.5 53.5±1.3 56.1±1.0 54.3±1.3 58.4±0.8

W,D 51.6±2.2 54.0±1.3 57.6±1.1 57.8±1.0 60.5±1.0

C,D 51.9±2.1 56.7±1.0 57.3±1.1 54.8±1.0 59.4±1.2

From Table 1, it can be seen that the methods of DAMA

and CDLS sup did not always achieve comparable perfor-

mance as the baseline approach of SVMt did. A possible

explanation is that these two HDA approaches only related

cross-domain heterogeneous data by deriving feature trans-

formation for alignment purposes. For other HDA ones like

MMDT, and SHFA, they additionally adapted the prediction

models across-domain and thus produced improved results.

Nevertheless, our CDLS consistently achieved the best per-

formance across all categories. This supports the use of our

HDA approach for cross-feature object recognition.

4.2.2 Object recognition across features and datasets

In this part of the experiments, we have source and target-

domain data collected from distinct datasets and also de-

scribed by different types of features. We adopt the same

settings in Section 4.2.1 for data partition, while the only

difference is that we choose DSLR as the target domain with

others as source domains.

Table 2 lists the average classification results from 10
random trials. From this table, we see that existing HDA ap-

proaches generally produced slightly improved results than

the use of SVMt. Again, our proposed CDLS is observed to

perform favorably against all HDA methods. It is worth re-

peating that, our improvement over CDLS sup verifies the

idea of exploiting information from unlabeled samples to

select representative cross-domain landmarks for HDA.

4.2.3 Cross-lingual text categorization

To perform cross-lingual text categorization, we view ar-

ticles in different languages as data in different domains.

In our experiments, we have {English, French, German, or

Italian} as the source domain, and randomly selected 100

articles from each as labeled data. On the other hand, we

have Spanish as the target domain; for the target-domain

data, we vary the number of labeled articles (from {5, 10,

15, 20}) per category, and randomly choose 500 articles

from the remaining ones (per category) as the unlabeled

data to be categorized.

Figure 3 illustrates the results over different numbers of

labeled target-domain data. From this figure, it can be seen
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Figure 3. Classification results on cross-lingual text categorization using Multilingual Reuters Collection. Note that Spanish is viewed as

the target domain, while the source domains are selected from (a) English, (b) French, (c) German, and (d) Italian, respectively.

Table 3. Classification results with standard deviations for cross-lingual text categorization with Spanish as the target domain.
Source

Articles

# labeled target domain data / category = 10 # labeled target domain data / category = 20

SVMt DAMA MMDT SHFA CDLS sup CDLS SVMt DAMA MMDT SHFA CDLS sup CDLS

English

66.7±0.9

67.4±0.7 68.2±1.0 67.8±0.7 69.6±0.8 70.8±0.7

73.1±0.6

73.6±0.7 74.2±0.8 74.1±0.4 76.2±0.6 77.4±0.7

French 67.8±0.6 68.3±0.8 68.1±0.6 69.3±0.8 71.2±0.8 73.7±0.7 74.6±0.7 74.5±0.6 76.4±0.4 77.6±0.7

German 67.3±0.6 67.9±1.0 68.4±0.7 69.3±0.7 71.0±0.8 73.7±0.7 74.9±0.8 74.7±0.5 76.6±0.6 78.0±0.6

Italian 66.2±1.0 67.0±0.9 68.0±0.7 69.5±0.8 71.7±0.8 73.6±0.7 74.6±0.7 74.5±0.5 76.1±0.5 77.5±0.7

that the performances of all approaches were improved with

the increase of the number of labeled target-domain data,

while the difference between HDA approaches and SVMt

became smaller. We also list the categorization results in

Table 3 (with 10 and 20 labeled target-domain instances per

category). From the results presented in both Figure 3 and

Table 3, the effectiveness of our CDLS for cross-lingual text

categorization can be successfully verified.

4.3. Remarks on Cross­Domain Landmarks

Recall that the weights α and β observed for instances

from each domain indicates its adaptation capability. That

is, a labeled source-domain instance with a large αc
i and

an unlabeled target-domain instance with a large βc
i would

indicate that they are related to the labeled target-domain

data of the same class c.

In Figure 4, we visualize the embedding for the adapted

data and cross-domain landmarks using t-distributed

stochastic neighbor embedding (t-SNE) [36]. Moreover,

in Figure 5, we show example images and landmarks ob-

served with different weights from two categories lap-

top computer and bike on Caltech-256 → DSLR (with

SURF to DeCAF6). It can be seen that, the source-domain

images with larger weights were not only more representa-

tive in terms of the category information, they were also

visually more similar to the target-domain images of the

class of interest. The same remarks can also be applied to

the unlabeled target-domain data viewed as landmarks. It is

also worth noting that, unlabeled target-domain images with

smallers weights would be more likely to be mis-classified.

For example, the image bounded by the red rectangle in Fig-

ure 5 was recognized as a similar yet different object cate-

gory of monitor.

Figure 4. Landmarks (with different weights) observed from

source and target-domain data in the recovered subspace.

4.4. Convergence and Parameter Sensitivity

To further analyze the convergence property of our

CDLS and assess its parameter sensitivity, we conduct ad-

ditional experiments on cross-domain object recognition us-

ing C to D (with SURF to DeCAF6). As discussed in Sec-

tion 3.3, we alternate between the variables to be optimized

when solving our CDLS.

We report the recognition performance with respect to

the iteration number in Figure 6(a), in which we observe

that the performance converged within 10 iterations. This

observation is consistent to those of our other HDA exper-

iments in this paper. As for the parameters of interest, we

first discuss the selection of the dimension m of the reduced

feature space. We vary the dimension number m and per-

form cross-domain recognition on the above cross-domain

pairs. The results are presented in Figure 6(b). From

this figure, we see that the performance increased when m

was larger, while such performance improvements became

marginal for m beyond 100. Thus, m = 100 would be a

preferable choice for our experiments.
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Figure 5. Example images and landmarks (with the observed weights) for Caltech-256 → DSLR (with SURF to DeCAF6). The object

categories are (a) laptop computer and (b) bike. Note that the image bounded by the red rectangle was mis-classified as monitor.
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Figure 6. Analysis on convergence and parameter sensitivity using Caltech-256 with SURF to DSLR with DeCAF6. The parameters of

interests are (a) iteration number, (b) reduced dimensionality m, (c) ratio δ, and (d) regularization parameter λ.

Recall that the ratio δ in (4) controls the portion of cross-

domain landmarks to be exploited for adaptation. Figure

6(c) presents the performance of CDLS with different δ val-

ues. It is worth repeating that, CDLS would be simplified

as the supervised version CDLS sup if δ = 0, as illustrated

by the flat dotted line in Figure 6(c). As expected, using

all (δ = 1) or none (δ = 0) of the cross-domain data as

landmarks would not be able to achieve satisfactory HDA

performance. Therefore, the choice of δ = 0.5 would be

reasonable in our experiments.

Finally, Figure 6(d) presents the results of CDLS and

CDLS sup with varying λ values for regularizing A. From

this figure, it can be seen that fixing λ = 1
2 as suggested

by [21, 18, 19] would also be a reasonable choice.

5. Conclusion

We proposed Cross-Domain Landmark Selection

(CDLS) for performing heterogeneous domain adaptation

(HDA). In addition to the ability to associate heteroge-

neous data across domains in a semi-supervised setting,

our CDLS is able to learn representative cross-domain

landmarks for deriving a proper feature subspace for

adaptation and classification purposes. Since the derived

feature subspace matches cross-domain data distribution

while eliminating the domain differences, we can simply

project labeled cross-domain data to this domain-invariant

subspace for recognizing the unlabeled target-domain

instances. Finally, we conducted experiments on three

classification tasks across different features, datasets, and

modalities. Our CDLS was shown to perform favorably

against state-of-the-art HDA approaches.
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