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Abstract

Point set registration (PSR) is a fundamental problem in

computer vision and pattern recognition, and it has been

successfully applied to many applications. Although widely

used, existing PSR methods cannot align point sets robustly

under degradations, such as deformation, noise, occlusion,

outlier, rotation, and multi-view changes. This paper pro-

poses context-aware Gaussian fields (CA-LapGF) for non-

rigid PSR subject to global rigid and local non-rigid ge-

ometric constraints, where a laplacian regularized term is

added to preserve the intrinsic geometry of the transformed

set. CA-LapGF uses a robust objective function and the

quasi-Newton algorithm to estimate the likely correspon-

dences, and the non-rigid transformation parameters be-

tween two point sets iteratively. The CA-LapGF can esti-

mate non-rigid transformations, which are mapped to re-

producing kernel Hilbert spaces, accurately and robustly in

the presence of degradations. Experimental results on syn-

thetic and real images reveal that how CA-LapGF outper-

forms state-of-the-art algorithms for non-rigid PSR.

1. Introduction

Point set registration (PSR) has been widely applied

in computer vision and pattern recognition to solve many

problems such as robot navigation, motion tracking,

biomedical image registration [25], and face recognition.

The main purpose of the registration problem is to estimate

likely correspondences between two point sets and recover

the underlying transformation which can align the corre-

sponding point pairs perfectly.

Generally speaking, point set registration can be catego-

rized into rigid and non-rigid depending on the transforma-

tion pattern. The former one is relatively easy to estimate,

while the non-rigid transformation is hard to estimate due

to the underlying transformation model is usually unknown

and difficult to approximate. Moreover, as a key component

in point set registration, the non-rigid transformation exists

in numerous applications, including hand-written character

recognition, and facial-expression recognition.

However, point set registration becomes increasingly dif-

ficult, because of some challenges: (1) the sensitive regis-

tration accuracy in the presence of large degree of degra-

dations such as deformation, noise, occlusion, outlier, rota-

tion, and multi-view changes, which make the distribution

of point set more complex, where noisy data means the fea-

ture points cannot be matched precisely, and the data with

occlusion and outliers mean some points cannot find their

underlying correspondences in the corresponding point set;

(2) the numerical optimization often falls into local min-

ima; (3) the high computational complexity when handling

a large number of points.

In face of these challenges, numerous registration algo-

rithms have been proposed recently. The Iterative Closest

Point (ICP) algorithm [3] is with simplicity and low com-

putational complexity, which uses the nearest-neighbor dis-

tance criterion to assign binary correspondences, and the

least squares to estimate the rigid transformation iteratively.

However, ICP requires an initial position, such as an ade-

quately close distance between two point sets.

For non-rigid transformation, Chui and Rangarajan [6]

introduced a soft assignment technique and the determinis-

tic annealing to construct a general framework to estimate

the fuzzy correspondences and recover the non-rigid trans-

formation parameterized by Thin Plate Spline (TPS) itera-

tively. Then a robust point set registration algorithm (TPS-

RPM) has been presented. Although it is more robust than

ICP when confronting some degree of degradations, it is

with high computational complexity. Zheng et al. [30] pro-

posed a robust point matching by preserving local neigh-

borhood structures (RPM-PLNS) for non-rigid shape regis-

tration, where graph matching technique is used to preserve

local neighborhood structures, but it is still sensitive to out-

liers. Kernel correlation (KC) [22] considers the correlation

between two point set kernel densities, where the underly-

ing transformation parameters can be estimated by maxi-

mizing the correlation based on the M-estimator. Based on

the theory of the KC, a robust point set registration approach

using Gaussian mixture models (GMMReg) [10] has been
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presented, it leverages the closed-form expression for the

L2 distance between two Gaussian mixtures which are used

to represent the given point sets.

Based on the motion coherence theory (MCT) [28], My-

ronenko et al. [20] constructed a mixture model, and then

proposed an efficient registration algorithm, namely coher-

ence point drift (CPD), where one of the two point sets is

modeled as a GMM, the other is the data point set, and the

correspondence problem is formulated as a density estima-

tion problem. More precisely, Expectation-Maximization

(EM) algorithm is used to solve this mixture model, and

the Gaussian radial basis function (GRBF) is used to build

the transformation model instead of the TPS for non-rigid

transformations. Although, it can handle a large number

of points with fast Gaussian transformation (FGT) [9], the

CPD needs to estimate the underlying number of Gaussian

components, and it is sensitive to occlusion and outliers.

Moreover, Li et al. [11] proposed an asymmetric shape

representation and a new high-peak-fat-tail Gaussian mix-

tures kernel method to align two shapes, and the particle

swarm optimization (PSO) is applied to recover the optimal

transformation parameters instead of the gradient-based al-

gorithms. Ma et al. [18, 15] introduced a robust estima-

tor in statistics, namely L2-minimizing estimate (L2E), to

estimate the non-rigid transformation, then they proposed a

robust point matching algorithm based on L2E (RPM-L2E),

where it needs putative correspondences estimated by shape

context descriptor for non-rigid point set registration. A

non-rigid point set registration method based on asymmet-

ric Gaussian representation [27, 24] uses a mixture of asym-

metric Gaussians to represent point sets, and it updates cor-

respondences and transformations under the framework of

TPS-RPM. Another interesting fast point matching method

uses a quadratic programming based cluster correspondence

projection (QPCCP) [13], but it is sensitive to degradations.

In this paper, we focus on the non-rigid transformation

and introduce a robust non-rigid point set registration al-

gorithm: context-aware Gaussian fields (CA-GF). The pro-

posed CA-GF tries to address the registration problem accu-

rately and robustly under the aforementioned degradations,

and to overcome the limitations of the existing algorithms.

Briefly, the key idea of our method is to find meaningful

correspondences using the context information of points by

computing their inner distances, and to estimate the under-

lying non-rigid transformation using robust point matching

by Gaussian fields. More specially, inner distance based

context-aware strategy is used to represent point sets, and

to estimate the likely correspondences, where the inner dis-

tance represents the shortest path distance between points

within the point set outermost silhouette [14]. Due to the

estimated correspondence is designed as an attribute weight

of the Gaussian fields, then robust estimation of non-rigid

transformation can be obtained. Based on the properties of

reproducing kernel Hilbert spaces (RKHS) with the Repre-

senter theorem, non-rigid transformations can be mapped

into the RKHS, and the regularization framework is applied

to let them become smooth and well defined. Consider-

ing the intrinsic geometry of the transformed point sets,

the Laplacian regularization term is added into the objective

function, and then we call the context-aware Laplacian reg-

ularized Gaussian fields (CA-LapGF) method. Under the

determined annealing framework, the objective function can

be optimized by the quasi-Newton technique. Moreover,

low-rank kernel matrix approximation is applied to reduce

runtime when facing large number of points. Extensive

experiments on some synthesize and real image datasets

demonstrate that both CA-GF and CA-LapGF are more ro-

bust in the presence of a large degree of degradations (de-

formation, noise, occlusion, outlier, rotation and multi-view

changes). Further more, the proposed robust Gaussian fields

algorithm can be well applied to remove mismatches for

robust point matching. Comparing with existing Gaussian

fields based methods, Gaussian fields framework [4] is used

to register three-dimensional rigid surface, and then [16] ap-

plied it to register non-rigid visible and infrared face im-

ages with adding the Tikhonov regularization theory, while

the context-aware Gaussian fields algorithm mainly focuses

on the non-rigid transformation, and is applied to register

non-rigid point sets and remove mismatches from a puta-

tive matching with more accuracy and robustness.

Briefly, the main contributions of our work includes: 1)

we use the inner distance based context representation strat-

egy to estimate fuzzy correspondences instead of kernel

density estimation and soft-assignment, because of its in-

sensitivity when facing some variety of deformations; 2)

iterative updating strategy between correspondences and

transformations let us simplify the Gaussian mixture mod-

els to the Gaussian fields which can estimate the non-rigid

transformations robustly; 3) we apply the robust Gaussian

fields algorithm to non-rigid transformation and mismatch

removal, and the experiments demonstrate that the algo-

rithm outperforms other registration methods in state-of-

the-art.

2. Method

2.1. Problem Formulation

Given two point sets (see notation1), the model set

X = {xi|xi ∈ R
d, i = 1, · · · , N} and the scene set

Y = {yj |yj ∈ R
d, j = 1, · · · ,M}, where the scene

1Bold capital letters denote a matrix X , xi denotes the ith row of the

matrix X . xij denotes the scalar value in the ith row and jth column

of the matrix X . 1m×n denotes a matrix with all ones, as well as 0m×n

denotes a matrix with all zeros. In×n ∈ R
n×n denotes an identity matrix.

‖ · ‖ denotes a 2-norm. tr(X) denotes the trace of the matrix. diag(x) is a

diagonal matrix whose diagonal elements are x. X ◦ Y is the Hadamard

product of matrices, and X ⊗ Y is the Kronecker product of matrices.
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set Y is fixed as a target set, and the model set X is

moving onto the scene set by a series of transformations

T = {τk(·)}
Niter

k=1
where Niter is the number of iteration

process, τ(·) : Rd 7→ R
d denotes a spatial transformation

for displacement field and it is parameterized by T .

We simplify the Gaussian mixture model of Gaussian

fields with context information by assuming that the num-

ber of Gaussian components can be estimated. Thus the

context-aware Gaussian fields (CA-GF) can be formulated

for point set registration, and the CA-GF aims to estimate

the likely correspondences and the underlying spatial trans-

formation between points such that the sum of distances is

minimized:

argmin
C,T

G(C, T ) =

∑

i,j

exp

(
−
cij‖yj − xi − τ(xi)‖

2

σ2

)
+ φ(τ),

s.t. C ∈ Π, τ ∈ H

(1)

where C denotes the context-aware weight to assign cor-

respondences between points will be discussed in the next

subsection, the algorithm proceeds by optimizing between

C and T in an alternating fashion, Π denotes a permutation

matrix in each iteration, H is a reproducing kernel Hilbert

space (RKHS). Note that the non-rigid transformation is

mapped to a special feature space H, since the properties

of RKHS with the Representer theorem provide a theoreti-

cal basis for the CA-GF algorithm.

2.2. Context­Aware Strategy

In order to estimate the underlying Gaussian components

of the Gaussian fields, context-aware strategy is introduced

to find the correspondence between points. For registration

problem, the assignment matrix C is either a one-to-one or

many-to-one mapping, and is either a soft-assignment with

probability or a hard-assignment with {0, 1}. Here, let C

be a one-to-one hard-assignment:

C(xi, yj) = cij =

{
0, yj 6= xi + τ(xi), unmatch

1, yj = xi + τ(xi), match
(2)

where C can be estimated by the inner distance based con-

text descriptor [14].

Precisely, the shape context (SC) [2] is used to describe

the relative spatial distribution of positions around the cer-

tain feature points which need to be represented. For in-

stance, the context at point xi is described by a histogram

hi of the relative coordinates of the remaining n− 1 points

hi(k) = #{xj 6= xi : δ(xj , xi) ∈ bin(k)}, (3)

where δ(xj , xi) denotes the inner distance between two

points, and the bins are uniform in the log-polar space. As

suggested in [14], instead of the Euclidean distance, the

inner distance captures better shape structure, and offers

more discriminability for complex shape point sets. Then

the match cost between xi and yj can be measured by their

K−bin normalized context histograms, hi(k) and hj(k) re-

spectively, using the Chi-squared test statistic. The assign-

ment algorithm (standard dynamical programming (DP))

has O(N3) complexity, however, DP costs O(N2) in the

method under an ordering constraint on the contour points

[14]. DP is more efficient and accurate since it uses the or-

dering information provided by shape contours. In this pa-

per, dynamical programming is used to match point set X

and Y in O(N2) runtime instead of the Hungarian method

in O(N3), and then we can get the context-aware weight

C.

2.3. Laplacian Regularized Gaussian Fields

In this subsection, we introduce our Laplacian regular-

ized Gaussian fields (LapGF) algorithm, which preserves

the intrinsic geometry of the moving model point set.

Briefly, under the manifold regularization framework [1],

an additional penalty regularization term is added to penal-

ize the transformation τ along a low dimensional manifold.

Thus the Eq. 1 can be rewritten as

argmin
C,T

G(C, T ) =

∑

i,j

exp

(
−
cij‖yj − xi − τ(xi)‖

2

σ2

)
+ λ1‖τ‖

2

H + λ2‖τ‖
2

M,

s.t. C ∈ Π, τ ∈ H
(4)

where coefficient λ1 ≥ 0 controls the complexity of the

mapping function in the ambient space while λ2 ≥ 0 con-

trols the complexity of the mapping function in the intrinsic

geometry. If λ2 = 0, the LapGF becomes to the GF algo-

rithm.

Let K : X × X 7→ R
d×d be a standard Mercer kernel

with an associated RKHS family of functions HK with the

corresponding norm ‖ · ‖H. We use ‖τ‖2
M

to measure the

smoothness of τ . Then the optimal mapping function can be

solved by minimizing the Eq. 3 under local Tikhonov and

global manifold regularization.

More precisely, let W be a nearest neighbor graph which

serves as a discrete probe for the geometric structure of the

data, then the graph Laplacian [7] is defined as L = D−W
which provides a natural intrinsic measure for simplicity of

data-dependent smoothness,

‖τ‖2M = τTLτ =
1

2

∑

i,j

Wij‖τ(xi)− τ(xj)‖
2, (5)

where τ = (τ(x1), · · · , τ(xN )), and D is a diagonal ma-

trix with elements Dii =
∑

j Wij . A conditional distribu-

tion τ is sufficiently smooth on the data manifold, and it is
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need to ensure that if xi is close to xj , then τ(xi) is close

to τ(xj) as well when minimizing the Laplacian regulariza-

tion term,

2.4. Transformation Estimation

We choose a Gaussian kernel for K with elements kij =
exp(−β‖xi−xj‖

2), because it satisfies symmetric and pos-

itive define properties, and it makes the regularization terms

easy to rewrite under the Representer theorem [1], then the

estimated transformation τ by minimizing Eq. 4 takes the

form of the Gaussian redial basis function

τ(xp) =
N∑

i=1

αiK(xp, xi) = KA, (6)

where the matrix AN×d with elements (α1, · · · , αN )T de-

notes the Gaussian kernel weights. Substituting Eq. 6 back

into Eq. 4, and rewriting the objective function (Eq. 4) in

matrix form,

G(C,A) =E + λ1tr(AT
KA) + λ2tr(AT

K
TLKA),

(7)

where E = exp
(
‖CY −X −KA‖2/σ2

)
.

Then the non-rigid transformation can be obtained by the

estimated optimal weight A∗ = argminG(C,A). Taking

the derivative of Eq. 7 with respect to weight A, due to the

continuous differentiability of LapGF, we can obtain

∂G(C,A)

∂A
=

2

σ2
K

T (X +KA−CY ) ◦ (E ⊗ 1)

+ 2λ1KA+ 2λ2K
TLKA = 0 .

(8)

In this paper, the objective is not convex, and it is unlikely

that any algorithm can find its global minimum. However,

a stable local minimum is often enough for many practi-

cal applications, due to the Gaussian fields is differentiable

and preferably convex in the neighborhood of the optimal

registered position. Thus, the numerical optimization prob-

lem can be solved by employing the gradient-based quasi-

Newton method with deterministic annealing algorithm (see

Section 2.6). As the iterations continue, we can get a good

chance of reaching a stable local minimum.

2.5. Approximate Kernel Matrix

The kernel matrix plays an important role in the reg-

ularization theory, for instance, it provides an easy way

to choose an RKHS. However, in this paper, the time

complexity of Gaussian fields algorithm is approximately

O(N2M +N3), and the performance will become poor as

increasing the number of the points. Hopefully, low-rank

kernel matrix approximation can yield a large increase in

speed with little loss in accuracy. As discussed in [20], the

low-rank kernel matrix approximation constrains both the

nonrigid transformation and its space. Choosing small rank

of the matrix, the low-rank matrix approximation can be

sufficient and accurate when facing a large number and well

clustered points data. Precisely, low-rank kernel matrix ap-

proximation K̂ is the closest Nl-rank matrix approximation

to K, and satisfies the Frobenius norm ‖ · ‖F ,

argmin
K̂

‖K− K̂‖F , s.t. rank(K̂) ≤ Nl . (9)

Applying the eigenvalue decomposition of K, the ap-

proximated kernel matrix can be written as K̂ = VΛV
T ,

where Λ is a diagonal matrix of size Nl×Nl with Nl largest

eigenvalues and V is an N×Nl matrix with the correspond-

ing eigenvectors. Then the objective function (Eq. 7) and its

derivative (Eq. 8) can be rewritten by substituting the low-

rank kernel matrix K̂,

G = Ê + λ1tr(Â
T
P Â) + λ2tr(Â

T
QÂ),

(10)

∂G

∂Â
=

2

σ2
P T (X + P Â−CY ) ◦ (Ê ⊗ 1)

+ 2λ1P Â+ 2λ2QÂ = 0 ,
(11)

where the newly weight parameter matrix ÂNl×d with

elements (α1, · · · , αNl
)T , ΛNl×Nl

is a diagonal matrix,

Ê = exp
(
‖CY −X − P Â‖2/σ2

)
, PN×Nl

= VΛ, and

QNl×Nl
= P TLP .

By using the low-rank kernel matrix approximation, the

time complexity is reduced down to O(NM) with Nl ≪ N
approximately.

2.6. Implementation Details

In the optimization, we use a rigid to non-rigid strategy

by applying deterministic annealing technique on the scale

parameter σ2 and β to improve the algorithm convergence.

More specially, given a large initial value of σ2 and β for

global rigid transformation, and reducing them with a fixed

annealing rate γ towards for local non-rigid transformation

by equations σ2 = γσ2, and β = γβ iteratively. We em-

pirically set σ2 = 2, β = 10 and γ = 0.93 throughout this

paper. Due to the optimization needs a termination condi-

tion, we choose a lower bound of σ2 and set σ2

final = 0.01.

Note that we also set a lower bound βfinal = 0.2 to control

the degree of non-rigid transformation, and β will be fixed

when β ≤ βfinal. The experiments show that the method

will catch convergence after about 30 iterations, as showed

in Fig. 1. The parameters of regularization terms includes

λ1, λ2 which are used to trade-off the smoothness, and the
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Figure 1. Convergence experiment on synthesized dataset under

the largest degree of deformation, noise, occlusion, outlier, and

rotation.

analysis of model selection is shown in Fig. 2. The test

result shows that the proposed algorithm performs best for

λ1 ∈ [0.1, 1] and λ2 ∈ [2, 8]. In this paper, we fixed them

as λ1 = 0.1, λ2 = 5. Note the construction of graph Lapla-

cian, we choose heat kernel with band βs = 1 to define the

weight matrix W , and the number of the nearest neighbor

is set as Nn = 3. We use the Matlab implementation of the

Laplacian regularization2[1] in our method.

Figure 2. Model selection of the regularization parameters λ1 and

λ2 for point set registration.

Low-rank kernel matrix approximation is applied to the

method to reduce the computational complexity, the im-

portant parameter Nl denotes the number of the selected

eigenvalues, and as a trade-off, it controls the balance be-

tween runtime complexity and registration accuracy. The

proposed algorithm performs best for Nl = [15, 20], where

eigenvectors V and eigenvalues Λ are computed by the fast

Gauss transform (FGT) [9], and its experimental analysis is

shown in Fig. 3.

All tested point sets are normalized to zero mean and

unit variance by data normalization method (translation and

re-scaling) for point set registration at the beginning of the

experiments.

2manifold.cs.uchicago.edu/manifold_

regularization/manifold.html

(a) (b)

Figure 3. Registration results on IMM face landmarks under dif-

ferent values of Nl for low-rank kernel matrix approximation. (a)

Statistics of registration errors. (b) Statistics of registration run-

time.

3. Experiments

The proposed algorithm is implemented in Matlab, and

tested on an Intel Core i5 CPU 2.5GHz with 8GB RAM.

3.1. Experimental Setup

Datasets. We use a variety of public datasets which are

frequently used in the point set registration and robust point

matching research. 1) Synthesized Data. This dataset3 is

constructed by Chui and Rangarajan [6], and it consists of

two different point sets: Chinese character and fish shape.

105 points are sampled from a Chinese character, and 98

points are sampled from the outmost silhouette of a fish.

For each point set, five degradation categories, i.e., defor-

mation, noise, occlusion, outliers, and rotation are used to

evaluate the accuracy and robustness of PSR methods, and

this dataset contains 5000 pairs of point set. 2) IMM Face

Database. This database4 consists of the facial and multi-

view changes. 58 point landmarks are sampled from a face

with different facial expressions and poses. 3) WILLOW

Object Class Dataset. This dataset5 contains five sets of

real images with manually labeled ground-truth landmarks

(10 points). 4) Tools 2D Database. Two-dimensional ar-

ticulated shapes6 for non-rigid shape similarity experiments

[5]. This dataset consists of 7 different articulated shapes.

5) Oxford Affine Dataset. This dataset7 consists of six dif-

ferent changes in imaging conditions: rotation, viewpoint

changes, scale changes, image blur, illumination, and JPEG

compression.

Comparisons. Non-rigid point set registration methods:

TPS-RPM [6], SC [2], QPCCP [13] ,GMMReg [10], CPD

[20], and RPM-L2E [18]. Mismatch removal methods:

Random Sample Consensus (RANSAC) [8], Identify Corre-

spondence Function (ICF) [12] based on the support vector

regression, non-rigid RANSAC [21], and Vector Field Con-

3www.cise.ufl.edu/˜anand/students/chui
4www.imm.dtu.dk/˜aam/datasets/datasets.html
5www.di.ens.fr/willow/research/graphlearning
6tosca.cs.technion.ac.il/book/resources_data.

html
7www.robots.ox.ac.uk/˜vgg/data/data-aff.html
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Chinese Character Fish Shape

(a)

(b)

(c)

(d)

(e)

Figure 4. Registration results of the proposed CA-LapGF algorithm on the synthesized data: Chinese character and fish shape. (a) Defor-

mation. (b) Noise. (c) Occlusion. (d) Outliers. (e) Rotation. From left to right in each group, the gradation level becomes larger.

sensus (VFC) [29, 19, 17]. All methods are implemented in

Matlab, and tested on the same environment.

3.2. Results on Non­rigid PSR

3.2.1 Synthesized Data

Registration results of the proposed algorithm are shown in

Fig. 4 on both Chinese character and fish shape point sets.

In each degradation category, five degradation levels are de-

signed to test the robustness of the PSR methods, where

100 point set pairs are created for each gradation level. The

qualitative experimental results in the figure show that the

model point sets (blue ’+’) are all well aligned onto the

scene sets (red ’o’) except the scene sets are distorted by

some degrees of noise (Fig. 4b), where the positions of the

points in the scene set are disturbed by a certain degree of

white Gaussian noise. It is worth noting that almost perfect

registration results are shown under deformation, occlusion,

outliers, and rotation degradations.

Fig. 5 shows the average registration error of several

non-rigid PSR methods using the root-mean-square error

(RMSE) on the synthesize data. Quantitative experimen-

tal comparison results demonstrate that the proposed CA-

LapGF algorithm gets the lowest registration error on the

whole tested scenarios. This is due to the scale, translation,

and rotation invariant inner distance based context strat-

egy can efficiently establish likely correspondences, and the

CA-LapGF with global to local regularization refinement
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helps to estimate non-rigid transformations robustly. Fig. 6

shows the average runtime of the algorithm with about 80

iterations, we can see that the runtime becomes larger un-

der the noise and outlier degradations as the degree level

increases. Formally, the algorithm takes about 15 seconds

to align two point sets with N,M = 100 points.

(a)

(b)

Figure 5. Comparison between six methods and our CA-GF and

CA-LapGF to register point sets on Chinese character and fish

shape. (a) Registration errors plot on Chinese character data. (a)

Registration errors plot on fish shape.

Figure 6. The average runtime of the registration on synthesized

data. In each figure, the degree level becomes larger from 1 to 5.

3.2.2 IMM Face Database

In this experiment, we first choose a front face image, and

let it be the model set, the other five images are defined as

the scene set: from scene 1 to scene 5, as shown in Fig. 7a

and Fig. 7b. The non-rigid deformation of the scene set

becomes large as increasing the degree of viewpoint and fa-

cial expression. The qualitative registration results by align-

ing the model set onto the five scene sets respectively are

shown in Fig. 7c. We can see that the point sets are well

aligned by the CA-LapGF algorithm, however, the result on

scene 5 is slightly bad due to the sampled landmarks are

contaminated by noise when suffering from large posture

and expression change. As shown in the rightmost figure

of Fig. 7, the proposed CA-LapGF can get the better regis-

tration performance than the well-known SC [2], GMMReg

[10], and CPD [20] methods on five groups of faces, where

the shape context registration method uses the TPS trans-

formation model.

(a)

(b)

(c)

model scene 1 scene 2 scene 3 scene 4 scene 5

Figure 7. Registration results on face landmarks. (a) The IMM

face images. (b) The face point landmarks. (c) The registration

results of the CA-LapGF. The rightmost figure is the comparison

between three PSR methods and the CA-LapGF, and the error bars

indicate the registration error means and deviations over 5 samples

in each group of data.

3.2.3 WILLOW Object Class Dataset

This real natural image dataset consists of five different

object instances such as car, duck, face, motorbike, and

winebottle, and we use this data to evaluate the performance

for point matching. In order to match objects correctly, the

model sets which are sampled from the object images are

used to find their underlying correspondences by aligning

onto the fixed scene set. An example of the experimen-

tal results on the datasets is shown in Fig, 8, where car,

duck, and motorbike object images are selected in the ex-

periment. The left group of figures show the multi-point set

registration results on the given images which are shown in

the right group of figures in Fig. 8. Perfectly registration re-

sults and the point matching are obtained by the CA-LapGF

algorithm simultaneously, and it is easy to handle the view-

point, posture, appearance and shape change. This is due to

the proposed algorithm extracts the structure preserving in-

ner distance and the rigid-to-non-rigid coarse-to-fine strat-

egy.

Initialization PSR scene (O) model 1 (✲) model 2 (＋) model 3 (☆)

Figure 8. An example of point matching result on WILLOW object

class dataset. Left: the initialization and registration results of

multi-point sets, three model sets are aligned onto the fixed scene

set. Right: the matching results of multi-feature point sets.

5817



3.2.4 Tools 2D Database

This experiment tests the performance of the point set reg-

istration algorithms on articulated shapes. We compare

CA-LapGF with three PSR algorithms: SC [2], GMM-

Reg [10] and CPD [20] qualitatively. The initial point

set contains 150 points which are sampled from the con-

tour of each shape randomly, and the generated point sets

without ground-truth are mainly used to test the perfor-

mance of non-rigid transformation estimation. Fig. 9 shows

the registration results of SC, GMMReg, CPD, and CA-

LapGF algorithms. It can be observed that in the given

five cases, CA-LapGF consistently achieves the best perfor-

mance. The experimental results reveal that the advantages

of the context-aware robust point set registration algorithm

over other methods in solving general PSR problems.

SC

GMMReg

CPD

CA-LapGF

Figure 9. Examples of the registration results on articulated tools

database. Five groups of real images are tested, and in each group,

the left one is the model set, the right one is the scene set. Com-

parison between SC, GMMReg, CPD and CA-LapGF to align the

articulated shapes.

3.3. Results on Mismatch Removal

The Oxford image dataset is used to test the mismatch

removal performance of the proposed CA-LapGF algorithm

with the known correspondences parameter C. We use the

accuracy as the mismatch removal evaluation metric. We

compare CA-LapGF with five robust point matching algo-

rithms: RANSAC [8], ICF [12], CPD [20], Vector Field

Consensus (VFC) [29], and non-rigid RANSAC [21]. It is

worth noting that the correct matches are estimated by the

Gaussian fields, S = exp
(
−CY −X̂

σ2

)
≥ ξ, where X̂ is the

transformed X after several iterations, ξ ∈ [0, 1] is a thresh-

old which controls the precision and recall values, and we

set ξ = 0.1 throughout this paper.

We use the VLFeat [23] toolbox with default settings

to extract the feature points of each image, and the puta-

tive matches are generated by the nearest neighbour match-

ing method (its threshold is 1.5). Input initial matches C0

which contains some degrees of mismatches into the CA-

LapGF algorithm, and then output the index of the correct

matches S . We can evaluate the accuracy of the mismatch

removal by comparing S with the ground-truth data.

The quantitative comparison results are shown in Fig. 10.

From image pairs ’1v2’ to ’1v6’, the transformation be-

comes larger, and the mismatch removal confronts with the

challenge. The Comparison curves demonstrate that CA-

LapGF achieves the better performance than other methods

in most cases.

(a)

(b)

Figure 10. Comparison between mismatch removal methods and

our CA-LapGF to remove mismatches for robust point matching.

4. Conclusion

This paper proposes CA-LapGF for non-rigid PSR and

mismatch removal. The main idea for CA-LapGF is a novel

robust non-rigid transformation estimation with inner dis-

tance based context-aware Gaussian fields. The biggest dif-

ference with density estimation methods [20, 26] is that our

method uses an estimator based on Gaussian fields instead

of building a more complex model that includes inliers and

outliers.The benefits include: 1) inner distance based con-

text descriptor captures the invariant feature and preserves

the shape structure; 2) global and local regularization con-

strains the geometric transformation, and global rigid and

local non-rigid coarse-to-fine technique makes the transfor-

mation estimation smooth; 3) our experiments demonstrate

that much more accuracy can be achieved than the methods

in state-of-the-art.
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