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Abstract

Recognizing an action from a sequence of 3D skeletal

poses is a challenging task. First, different actors may per-

form the same action in various styles. Second, the estimat-

ed poses are sometimes inaccurate. These challenges can

cause large variations between instances of the same class.

Third, the datasets are usually small, with only a few actors

performing few repetitions of each action. Hence training

complex classifiers risks over-fitting the data. We address

this task by mining a set of key-pose-motifs for each ac-

tion class. A key-pose-motif contains a set of ordered poses,

which are required to be close but not necessarily adjacent

in the action sequences. The representation is robust to style

variations. The key-pose-motifs are represented in terms of

a dictionary using soft-quantization to deal with inaccura-

cies caused by quantization. We propose an efficient algo-

rithm to mine key-pose-motifs taking into account of these

probabilities. We classify a sequence by matching it to the

motifs of each class and selecting the class that maximizes

the matching score. This simple classifier obtains state-of-

the-art performance on two benchmark datasets.

1. Introduction

Action recognition from RGB videos [10, 28, 26, 7, 22,

16] is an important task with many applications, such as

intelligent surveillance, sports video analysis and human-

computer interactions. Although this task has attracted a lot

of attention, the recognition performance is unsatisfactory

because of the considerable variations in the appearance and

the scales of the people performing the same action. In ad-

dition, 2D images will be very dependent on viewpoint and

the same action can vary as the perspective changes.
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(a) a sequence of poses (b) pose quantization (c) mined key-pose-motifs
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(       ,      ,     )

(d) matching motifs

Figure 1: Overview: (a) a sequence of training poses. (b)

the poses quantized by a simplicial model. (c) mined key-

pose-motifs. (d) a sequence is classified by matching it to

the motifs of each class.

The introduction of RGB-D cameras and the correspond-

ing pose estimation algorithms [19] makes it possible to

obtain 3D human poses and hence study pose-based action

recognition. This leads to progress on the appearance and

viewpoint variations [11] [25] [27] [23] but there are other

challenges remaining unsolved. First, different actors often

perform the same action in differing styles. Second, the 3D

poses are sometimes inaccurate because they are usually es-

timated from noisy depth maps. The two challenges togeth-

er cause large intra-class variations making two instances

of the same class far apart. It is not plausible to compare t-

wo instances directly. Third, most benchmarks only provide

only a few sequences for each action which makes training

complex classifiers sensitive to over-fitting.

Psychological studies, however, show that humans can

effortlessly recognize actions from pose sequences despite

all these challenges [9]. Indeed some actions can be clas-

sified from a single key-pose [31]. This suggests that we

can perform action classification using a set of key poses

rather than using the whole pose sequence. The key pos-

es are close but not necessarily adjacent in the sequences

and hence allows short and variable gaps between the poses.

These gaps help deal with style variations. Also the repre-

sentation is robust to outlier poses as they have little effect

on the representation as long as the key poses are accurate.
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Inspired by the psychological studies, we propose to

mine a set of key-pose-motifs for each action class. We de-

fine a motif to be a short sequence of poses which are n-

earby but not necessarily adjacent in the original sequences.

A motif is called a key-pose-motif of a particular class if

it appears in a sufficient number of sequences of that class.

We mine several key-pose-motifs for each action class and

classify an input sequence by finding the action class whose

key-pose-motifs best match the sequence. Observe that this

approach also has the ability to detect the start and finish

of an action sequence by inspecting the matching results,

although that is not the focus of this paper.

To mine the key-pose-motifs, we need to quantize the

continuous pose sequences (by a dictionary) into discrete

sequences where each pose of the sequence is represented

by a symbol of the dictionary. We use clustering algorith-

m to learn the dictionary. We use the activated simplices

method proposed in [24] to learn the dictionary. Each sym-

bol in the dictionary is an activated simplex consisting of a

set of bases which represents data by their convex combina-

tions. Typically, each pose is quantized (represented) by the

closest simplex. However, in our work, to reduce the influ-

ence of quantization error (e.g., two similar poses are quan-

tized by different simplices), we use soft-quantization so

that a pose is represented by several symbols with a proba-

bility for each (based on the distance to the symbol). Hence

each pose is represented by a probability vector (its dimen-

sion is the same of as the number of symbols in the dictio-

nary) and a sequence of poses is represented by a probabil-

ity matrix where each column is the probability vector of

the corresponding pose. Standard sequential pattern mining

algorithms do not deal with this type of probabilistic data

so we propose a novel, and efficient, algorithm to mine the

key-pose-motifs which is one of our contributions.

We classify a test sequence by matching it to the key-

pose-motifs of each class and select the class by maximiz-

ing the matching score. The classifier is interpretable be-

cause we can visualize the mined key-pose-motifs and the

matched positions in the sequence. So when there are mis-

classifications, we can easily detect why and where the fail-

ures happen. In experiments we use action-units consisting

of short sequences of poses (e.g., neighboring three poses

compose an action-unit and the original pose sequence is

transformed to an action-unit sequence). But for ease of ex-

position, we will describe our method using poses only (and

introduce action-units in the experiment section).

The paper is organized as follows. Section 2 reviews re-

lated work. Sections 3, 4 and 5 describe the proposed action

representation (action-snippets), the key-pose-motif mining

algorithm and the action classification method respective-

ly. The remainder of the paper is devoted to experiments

followed by a conclusion of this work.

2. Related Work

In this section, we provide a brief overview of the related

work on human pose based action recognition. We also re-

view the existing sequential pattern mining algorithms and

discuss how they differ from our method.

2.1. Human pose based on action recognition

We classify the existing work into three categories ac-

cording to how temporal cues are modeled. The first class

of work [8] [3] [23] ignores the temporal information and

treat the poses in a sequence independently. They usually

adopt “bag of poses” [8] [23] or majority voting [3] schemes

for classification. At the other extreme, the second class of

work [30] classifies pose sequences by modeling all poses

in a sequence, for example by Hidden Markov Models [30]

or by dynamic time warping [18]. Another line of work

[25] [27] [12] encodes restricted temporal pose structures,

for example, using temporal pyramid matching [27] [12] or

by modeling neighboring pose changes [25].

Our proposed key-pose-motifs models the temporal

structures of a set of key poses. However, our approach d-

iffers from [25] [27] [12] as key-pose-motifs are more flex-

ible because they allow gaps between neighboring poses

which makes them robust to speed variations. Besides the

temporal structures are automatically learned from training

sequences rather than manually designed.

2.2. Sequential pattern mining

Sequential pattern mining is the task of discovering fre-

quent subsequences as patterns in a sequence database.

There a lot of work [1, 20, 32] when the sequence database

is certain (or deterministic) rather than probabilistic. The

main challenge of sequential pattern mining is that it is com-

putationally infeasible to examine all possible subsequences

to determine the frequent ones, most early sequential pat-

tern mining methods are based on A-prior algorithm[2]

where the main idea is that the sub-sequences of frequen-

t patterns are also frequent. So we can generate candidate

longer frequent patterns from the shorter ones which can

substantially reduce the search space to be examined. How-

ever, those methods can not deal with the situations where

the sequences are uncertain. Consider the amount of noise

in our data, it is important for us to use soft-quantization

which means that standard mining methods do not apply.

There are some work [33] [13] which address the task

when the database is uncertain. But the uncertainty in these

work [33] [13] occurs at different levels as ours. Muham-

mad et al. [13] propose a method to mine sequential patterns

when there is uncertainty about which sequence an item is

associated with (but this is not equivalent to our problem).

Zhao et al. [33] solve a similar problem as ours. However, it

is impossible to incorporate the gap constraints using their

framework.
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3. Action Representation

We represent an action by a sequence of 3D poses

{y(1), · · · , y(m)} where each pose y is a high dimensional

vector consisting of a set of body joint locations. This is a

natural and intrinsic representation as it conforms to studies

of how humans understand actions [4].

To mine key-pose-motifs, we first quantize the poses us-

ing a dictionary of discrete symbols. The classic quanti-

zation method is k-means which represents a pose by its

nearest symbol in the vocabulary. However, small perturba-

tions of poses, due to inaccuracies in poses, can cause the

poses to be assigned to different symbols which will hurt

classification performance.

We propose instead to use an alternative quantization

method, namely the activated simplices method [24]. The

simplicial model consists of a mixture of activated simplices

S = {s1, · · · , sK} where each simplex has several bases.

A simplex represents poses by convex combinations of the

bases which will form a convex hull. All the data which are

close to the convex hull will be regarded as similar. For each

action class, we learn a dictionary of activated simplices and

combine them to make our dictionary of symbols. There are

two reasons for choosing the simplicial model. First, it was

shown to be robust to the inaccuracies in poses [24]. Slight-

ly distorted poses will be projected to the same simplex.

Second, the simplicial model is more semantically mean-

ingful. In the simplicial model, semantically similar poses

are projected to different positions of the same simplex and

they all have small projection errors. This is because acti-

vated simplices are able to represent the local linearity of

poses, as described in [24]. We will compare the two quan-

tization methods in the experiment section.

To make the representation more robust to inaccurate

poses, we use soft-quantization to assign each pose to all

symbols. More precisely, We represent a pose using all of

the K symbols in the dictionary and associate each symbol

with a probability pi which measures its distance to the pose

pi = e−dist(si,y)

∑
K
j=1 e

−dist(sj,y) (dist(sj , y) measures the distance of

the point y to the convex hull formed by the activated sim-

plex sj . see [24] for the definition). Intuitively, small dis-

tances induce large probabilities and vice versa. Finally,

each pose y(i)in a sequence is represented by a probabili-

ty vector p(i) = [pi
1, · · · , pi

K ]T and a sequence of poses is

represented by a matrix P = (p(1), · · · , p(m)).

4. Mining Key-pose-motifs

We propose an efficient algorithm to mine key-pose-

motifs from the probability matrices, representing the soft-

assignment of poses to symbols, as described above. We

first give formal definitions of the terms which are going to

be used in this paper.

Table 1: An example probabilistic sequence of length five

which is defined on a vocabulary of five symbols (each col-

umn sums to one). The most probable sequence is (s1, s2,

s5, s1, s1) but there are 95 other possibilities.

❳
❳

❳
❳

❳
❳
❳
❳
❳
❳

symbols

time
1 2 3 4 5

s1 0.7 0 0.3 0.9 1

s2 0.1 0.8 0.0 0.1 0

s3 0.1 0.1 0.1 0 0

s4 0.1 0.0 0.2 0 0

s5 0.0 0.1 0.4 0 0

Definition 4.1 (Deterministic sequence). T =
(t(1), · · · , t(m)) is a deterministic sequence of length

m containing symbols chosen from the dictionary, i.e.,

t(i) ∈ S, at each of the m time-stamps.

Definition 4.2 (Probabilistic sequence). P =
(p(1), · · · , p(m)) is a probabilistic sequence of length

m where each item p(i) is a K dimensional vector spec-

ifying the soft-assignment of the input pose y(i) to the

K symbols in S. For example, p
(i)
j represents the proba-

bility that the pose y(i) is sj . Table 1 shows an example

probabilistic sequence of length 5.

Definition 4.3 (Probabilistic support). Given a determinis-

tic sequence T and a probabilistic sequence P, the proba-

bilistic support from P to T is a scalar value η between zero

and one which measures how well T can be matched to P.

The formal definition is given in section 4.1.

Definition 4.4 (Key-pose-motif). A key-pose-motif of an

action class is a deterministic sequence whose probabilis-

tic support averaged over all (probabilistic) sequences from

that class is larger than a threshold ǫ. A motif of length m

is called an m-motif.

Method Overview: The task of key-pose-motif mining

is to find out all the key-pose-motifs from a datasets of pose

sequences. Each pose sequence is soft-quantized and hence

is represented by a probability matrix. Algorithm 1 shows

the algorithm. Initially, each symbol in the dictionary S is

a candidate 1-motif. We compute the average probabilistic

supports for the candidates and remove the ones whose av-

erage supports are smaller than the threshold ǫ. Then we

expand the 1-motifs to get candidate 2-motifs and continue

recursively to get higher-order motifs. We repeat the pro-

cess until no larger motifs can be generated. There are two

main components in the algorithm. The first computes the

probabilistic supports for the candidate motifs which is dis-

cussed in section 4.1. The second expands the k-motifs to

get candidate k+1-motifs which is discussed in section 4.2.
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Algorithm 1 Key-pose-motif Mining Algorithm

1: T 1={1-motifs}
2: for (k = 2; T k−1 6= ∅; k++) do

3: T k = expand(T k−1)
4: for (i = 1; i ≤ |T k|; i++) do

5: support=0

6: for (j = 1; j ≤ |D|; j++) do

7: support=support+η(tki , Dj)
8: If

support

|D| ≤ ǫ

9: T k ← T k − {tki }
10: endif

11: end for

12: end for

13: end for

4.1. Probabilistic Support

Unlike the existing sequential mining algorithms such as

[20], the inputs are probabilistic sequences. It is non-trivial

to decide whether a key-pose-motif appears in a probabilis-

tic sequence. We propose to compute the probabilistic sup-

port of the motif in the sequence as follows.

Let a deterministic sequence (e.g., a candidate motif)

be T = (t(1), · · · , t(m)) and a probabilistic sequence be

P = (p(1), · · · , p(n)). The length m of the deterministic

sequence is usually much smaller than the length n of the

probabilistic. The probabilistic support of P for T measures

how well T can be matched to P. Formally, we search for

a mapping M(i) ∈ {1 · · ·n}, i ∈ {1 · · ·m} which maps

each item in T to an item (location) in P with the constraint

M(i) < M(i+1) and M(i+1)−M(i) ≤ g. Here g is the

maximum gap constraint which prevents neighboring poses

in a motif from matching to positions which are far away

from each other in the sequence.

We define the probabilistic support η(T,P) as follows:

η(T,P) =max
M

m∏

i=1

p
(M(i))

t(i)

s.t. M(i) < M(i+ 1), M(i+ 1)−M(i) ≤ g
(1)

We now show that this objective function can be optimized

efficiently by dynamic programming. Let T (1 : n1) =
(t(1), · · · , t(n1)) and P(1 : n2) = (p(1), · · · , p(n2)). Let

f(T (1 : n1),P(1 : n2)) denote the probabilistic support of

matching T (1 : n1) to P(1 : n2) with the condition that

t(n1) is matched to p(n2). Hence f(T (1 : n1),P(1 : n2))
can be computed by:

f(T (1 : n1),P(1 : n2)) =

p
(n2)

t(n1)× max
i∈{n2−g,··· ,n2−1}

f(T (1 : n1 − 1),P(1 : i))

(2)
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Figure 2: Left: matching the mined key-pose-motifs of

Classes 1, 2 and 3 to a sequence of Class 1 (length 54). Each

line segment defines the matching regions of each motif and

its y-axis value gives the matching score. Right: a long se-

quence is composed by sequences from classes 1, 2 and 3,

respectively (lengths 54, 34 and 40). We match the key-

pose-motifs of the three classes to the long sequence. This

shows that motifs can be used to roughly detect the starts

and ends of actions.

Using Eq.(2), we can efficiently compute a probabilistic

support matrix f(, ) of dimension m × n. We iterate over

the last row of the matrix and find out the maximum value

which is η(T,P).

4.2. The Expansion Algorithm

The expansion algorithm enables us to mine key-pose-

motifs by efficiently searching over the enormous space of

deterministic sequences. It exploits the fact that larger se-

quences are compositions of smaller sequences. Suppose

a sequence T = (t(1), · · · , t(k+1)) is a key-pose-motif,

then we can guarantee that its head and tail sub-sequences

Thead = (t(1), · · · , t(k)) and T tail = (t(2), · · · , t(k+1))
are also key-pose-motifs (note that, by equation (1), these

subsequences must have higher support than the sequence

and hence their supports will be above threshold). Un-

like existing methods which do not have the maximum

gap constraints [33], it is not guaranteed that all the oth-

er sub-sequences, e.g., (t(1), t(3), · · · , t(k)) are also key-

pose-motifs. For example, suppose there is a sequence

(1, 2, 3, 4, 5) and the maximum gap is set to be one, then

the sequence (1, 3, 5) is supported by the input sequence

but the sub-sequence (1, 5) is not.

We derive our expansion algorithm based on these ideas.

Let FT k = {T k
1 , T

k
2 , · · · , T

k
|FTk|} denote the set of k-

motifs mined in the last iteration. For each pair of motifs

in FT k, for example, T k
1 and T k

2 , we compare the last k−1
items of T k

1 with the first k − 1 items of T k
2 . If they are all

equal, then we generate a k + 1-motif candidate T k+1
1 by

concatenating the T k
1 with the last item of T k

2 .

Example 4.1 (Expansion). Suppose we have three 3-

motifs FT 3 = {(1, 2, 3), (2, 3, 4), (3, 4, 6)}. Then by join-

ing (1, 2, 3), (2, 3, 4) we obtain (1, 2, 3, 4) and by joining
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Table 2: The state-of-the-art action recognition accuracies

over all 252 splits on the MSR-Action3D Dataset.

Methods Acc (%) Year

HON4D [14] 82.15 2013

Tran [21] 84.54 2013

Wang [24] 88.10 2014

Du [6] 89.00 2015

Ours 94.40 2015

(2, 3, 4), (3, 4, 6) we obtain (2, 3, 4, 6). Hence we get two

4-motifs FT 4 = {(1, 2, 3, 4), (2, 3, 4, 6)}.

Proposition 4.1. The above expansion algorithm will not

leave out any key-pose-motifs.

Proof. If a sequence is a key-pose-motif, then its head

and tail subsequences must also be key-pose-motifs by e-

quation (1). It means that the two subsequences have al-

ready been mined. Then in the expansion stage, the two

subsequences will generate the larger candidate key-pose-

motif for sure.

5. Action Recognition: Inference Algorithm

We propose a simple classifier which works by matching

a test sequence to the key-pose-motifs of each class. During

the matching process each motif will get a probabilistic sup-

port, given by equation (1). We classify the sequence to be

the class that gets the largest average probabilistic support

over all motifs of that class. Ideally, a sequence of a particu-

lar class should have large supports for the key-pose-motifs

mined for that class and small supports for the key-pose-

motifs of other classes. Figure 2 shows an example.

The classifier is simple because it has no parameters. In

addition, it is also interpretable. We can visualize the mined

key-pose-motifs and the matched poses in a sequence. This

helps us spot why and where failures may happen. Figure 2

shows that we can even use this model for action localiza-

tion, i.e. to coarsely find the start and end of an action.

6. Experiments

We conduct experiments on four most popular action

recognition benchmarks, i.e. the MSR-Action3D dataset

[11], the UTKinect dataset [30], the MSR Daily Activity3D

dataset [27] and the Florence dataset [17]. We first compare

our method with the state-of-the-arts on the four dataset-

s respectively. Then we present diagnostic analysis of the

method on the MSR-Action3D dataset.

Action-units. In our experiment, we concatenate l

consecutive poses together to form an action-unit ŷ(i) =
[y(i) · · · y(i+l−1)] and represent an action by a sequence

of action-units: A = {ŷ(1), · · · , ŷ(m−l−1)}. Consecutive

Table 3: The state-of-the-art action recognition accuracies

using single split on the MSR-Action3D Dataset.

Methods Acc (%) Year

Vemulapalli [23] 89.48 2014

Wang [25] 90.22 2013

Wang [24] 91.30 2014

Luo [12] 96.70 2013

Ours 99.36 2015

Table 4: Action recognition accuracies on the UTKinect

Dataset using the “leave-one-sequence-out” criterion.

Methods Acc (%) Year

Maxime [5] 91.5 2014

Xia [30] 90.92 2012

Ours 93.47 2015

action-units have overlaps. The proposed mining and clas-

sification algorithms are readily applicable to the action-

unit sequences. The activated simplices are also learned

on action-units. The use of action-units is more robust to

outlier poses because a single inaccurate pose will not sig-

nificantly affect the action-unit. We evaluate the influence

of this pre-processing in experiments.

6.1. On The MSR­Action3D Dataset

The MSR-Action3D dataset provides 557 pose se-

quences of ten subjects performing 20 actions. There are

about 50 frames in each sequence. This is a challenging

dataset because first many actions in the dataset are similar

and second the pose sequences of the same action can have

large variations due to either 3D pose estimation inaccura-

cies and performing style variations.

While learning the simplicial model, we set the number

of bases to be 400 by cross-validation. We obtain about

200 activated simplices whose average dimension is about

five. While mining the key-pose-motifs, we decrease the

minimum support threshold ǫ from 1 to 0 with the step size

of 0.05 until we obtain about 50 key-pose-motifs for each

class. The number 50 is set by cross validation.

Most existing works choose five subjects for training and

the remaining five subjects for testing, e.g. in [11], and re-

port the result based on a single split. However, it is shown

in [15] that the way how the data are split (i.e. choosing

which five subjects for training) can have large influence

on the results. To make the results more comparable, in this

work, we experiment with all 252 possible subject splits and

report the average accuracy. Figure 4 shows the classifica-

tion confusion matrix of a certain split.

Comparison with the State-of-the-arts. Table 2 com-

pares our method with the state-of-the-art methods using
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Figure 3: The x-axis is the index of the 20 classes of key-pose-motif-models and the y-axis is the average matching scores

(standard deviations) which are computed when matching a set of test sequences of a particular class to those models. For

example, in the first sub-figure, we match a set of sequences of class 1 to the 20 classes of models and obtain the average

matching scores and standard deviations for each model. The motif model of class 1 gets the largest average score.

the protocol of “average over all splits”. We can see that

our method outperforms the state-of-the-art methods [14]

[21] [24] [6]. In addition, our method is also the simplest

in terms of both the features and the classifiers. Note that

the method proposed in [24] uses the activated simplices as

classifiers directly using a nearest-neighbor algorithm. We

can see that we improve the performance by mining key-

pose-motifs on activated simplices. Du et al. [6] use deep

learning techniques to learn an end-to-end classifier which

achieves the current best performance.

Since some methods only provide results for a single s-

plit, we also provide these numbers. However, note that

they are not directly comparable as the methods may choose

different five subjects for training. The accuracies of our

method using single split criterion: (1) the accuracy is

95.88% when we use subjects 1, 2, 3, 4, 5 for training; (2)

the accuracy is 97.44% when we use subjects 1, 3, 5, 7, 9 for

training; (3) the best accuracy of a single split is 99.36%.

Table 3 shows the state-of-the-art results using the single

split criterion.

Comparison with Baselines. The first baseline is the

Direct Matching Method. Given a test sequence of action-

units, we compute the dynamic time warping based match-

ing scores between the sequence and the training sequences

of all classes. The class that achieves the largest average

matching score is the predicted class. The method achieves

an accuracy of 88%. The result is not satisfactory which

is mainly because it cannot deal with large intra-class vari-

ations effectively. The second baseline uses the proposed

key-pose-motifs mining method. However, each action-unit

is quantized into only one symbol (It is not a probabilistic

representation). We name this method as the Deterministic

Mining Method. The deterministic mining method achieves

an accuracy of 91% which is lower than our method, but is

already higher than the state of the arts. We also compared

Figure 4: Confusion matrix on the MSR-Action3D dataset.

with a method which uses probabilistic key-pose-motif min-

ing but uses k-means to obtain the probabilistic data. The

method achieves an accuracy of 88.7% which is lower than

ours. This is mainly because k-means based quantization

is not meaningful in the sense that semantically close poses

will have similar probabilistic representations.

6.2. On The UTKinect Dataset

The UTKinect dataset [30] was captured using a single

stationary Kinect. There are ten action including walk, sit

down, stand up, pick up, carry, throw, push, pull, wave

hands, clap hands. There are ten subjects involved in the

experiment with each subject performing each action twice.

There are 199 sequences in total.

We learn 200 bases and end up with about 120 activat-

ed simplices. The number of bases in the simplices is five
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Table 5: Action recognition accuracies on the MSR Daily

Activity3D Dataset.

Methods Acc (%) Year Features

Ours 83.47 2015 Skeletons

Actionlet [27] 68.00 2012 Skeletons

HON4D [14] 80.00 2014 depth

Actionlet [27] 85.75 2012 Skeletons + depth

Xia [29] 88.20 2013 Skeletons + depth

on average. We use the “leave-one-sequence-out” evalua-

tion criterion where one sequence is used for testing and the

rest of the sequences are used for training. We repeat the

process for all sequences (199 in total) and report the aver-

age accuracy. Table 4 shows the results. We can see that

our approach outperforms the state-of-the-arts. The main

reason may be because our method suffers less from noisy

poses because it is only the key poses rather than all poses

are useful for classification. In other words, the model will

be accurate as long as the key poses are accurate.

6.3. On the MSR Daily Activity3D Dataset

The Daily Activity3D dataset is captured by a Kinect de-

vice and it provides both depth map and 3D skeleton se-

quences. It includes 16 activities: drink, eat, read book, call

cellphone, write on a paper, use laptop, use vacuum cleaner,

cheer up, sit still, toss paper, play game, lay down on sofa,

walk, play guitar, stand up and sit down. For some actions,

each subject performs them in both “sitting” and “standing”

poses. In total, there are 320 sequences.

This is a rather challenging dataset and very few work

have demonstrated good performance on it. In particular,

the 3D joint locations are very noisy when the performer

stands close to the sofa or sits on the sofa. Considering

the large amount of noises in 3D skeletons, most methods

[27, 29] combine both depth maps and 3D joint locations

for action recognition. Note that the depth map is relatively

more accurate in this dataset. Our method only uses 3D

skeletons which is a more challenging problem.

We use the cross-subject evaluation method to compare

our method with the state-of-the-arts. However, it is worth

noting that the dataset doesn’t specify which five subjects

to use for training. We report the result when training on

subjects 1-5. We also report the average recognition result

over all 252 possible splits.

Table 5 shows the results on this dataset using a single s-

plit evaluation criterion. Our method outperforms the state-

of-the-art methods [27, 29] which use only 3D skeletons or

depth maps. Some methods which use more information

(e.g., combine the 3D skeletons and depth maps) achieve

slightly better performance than ours. The average recog-

nition accuracy over all 252 splits for our method is 79%.

Table 6: Action recognition accuracy on the Florence

dataset using leave-one-actor-out setting.

Methods Accuracy (%) Year

Lorenzo et al. [17] 82.15 2013

Raviteja et al. [23] 90.88 2014

Tran et al. [5] 87.04 2014

Our Approach 92.25 2015

The result is promising given the amount of noises in the

dataset. To the best of our knowledge, no previous methods

have reported the average results.

6.3.1 The Florence Dataset

The dataset [17] was captured using a Kinect camera at the

University of Florence. It includes nine activities: wave,

drink from a bottle, answer phone, clap, tight lace, sit down,

stand up, read watch, and bow. During acquisition, ten sub-

jects were asked to perform the above actions for two or

three times. This resulted in a total of 215 activity samples.

Following the data suggestion, we adopt a leave-one-actor-

out protocol: we train the classifier using all the sequences

from nine out of ten actors and test on the remaining one.

We repeat this procedure for all actors and compute the av-

erage classification accuracy values of the ten actors.

We set the number of bases for each class to be 50 (450
in total) by cross-validation. Table 6 compares our method

with the state-of-art methods on this dataset. Our approach

achieves the highest recognition accuracy.

6.4. Diagnostic Analysis

Reasons behind the performance. We observe in ex-

periments that given a test sequence of a certain class, the

corresponding class of key-pose-motifs usually obtain very

large probabilistic supports while other key-pose-motifs ob-

tain small supports. See Figure 3. We can also tell from the

figure which actions are easy to differentiate and which are

not. For example, in the eighth sub-figure (row 2, column

3) of Figure 3, we can see that the classes of 7, 8 and 9 are

ambiguous because they all get large supports when the test

sequences are from class 8. The three classes are “draw x”,

“draw tick” and “draw circle” actions respectively which

are in fact very similar.

Influence of the Parameters. We evaluate the three

main parameters in the proposed method: the gap g in the

maximum gap constraints, the number of mined key-pose-

motifs for each class and the number of poses l in an action-

unit. To save time, we only use the first ten splits out of the

252 splits and report the average recognition accuracy.

Figure 5 shows the influence of the gap constraints. We

can see that there is large performance improvement by al-

lowing gaps between consecutive poses. One of the reasons
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Figure 5: Influence of the maximum gap constraint, the number of mined key-pose-motifs in each class and the number of

poses in an action-unit.

Figure 6: The influence of the number of occluded joints

and the number of affected frames in a test sequence on

action recognition accuracies on the MSR-action3D dataset.

See section 6.1 for more details.

might be that it can deal with the speed variations among

different sequences. In other words, the key poses might

appear at various positions of different sequences and al-

lowing gaps between consecutive poses helps reduce the in-

fluence of the variations. The best performance is achieved

when the maximum gap is 20. After that, increasing the

gap will degrade the performance a little bit. This may be

because too large a gap encourages the model to find key-

pose-motifs that are not meaningful.

We also evaluate the influence of the number of key-

pose-motifs. We adjust the minimum probabilistic support

threshold ǫ and obtain a desired number of key-pose-motifs.

Figure 5 shows the result. First, using more key-pose-motifs

will consistently improve the performance when the number

is smaller than 80. This is reasonable because the model

becomes more representative using more key-pose-motifs.

However, when the number is too large, then many motifs

which only appear in a few sequences are also mined which

makes the model over representative. In other words, the

motifs become less discriminative because they might be

able to represent sequences of other classes well which de-

grades the action recognition performance.

The use of action-units improves the performance. See

Figure 5. We can see that there is a large performance im-

provement by putting more poses in an action-unit. But the

change is not significant after the number exceeds 9.

Robust to Occlusion. We now evaluate the robustness

of the method to inaccurate poses which are mainly caused

by occlusions. We synthesize a set of data by randomly

perturbing the 3D poses in the MSR-Action3D dataset. In

particular, we set some joint locations of several poses in

a pose sequence as zero to simulate occlusion. We control

the number of perturbed joints and frames. See Figure 6 for

the results. In the worst case, when 9 joints (about 45%) of

11 frames (about 20%) are contaminated, the performance

only drops by about 2%. The results justify that our method

is robust to the occlusions.

7. Conclusion

We propose a simple and interpretable method for action

recognition. By mining the key-pose-motifs which are not

necessarily adjacent in the original sequence, we obtain a

compact representation which is robust to intra-class vari-

ations. We evaluate the model on two benchmark datasets

and show that it outperforms the state-of-the-arts. More-

over, the model is easy to interpret and we can spot where

and why failures happen. In our future work, we would like

to improve the discriminative power of the method by min-

ing discriminative key-pose-motifs which can match to the

sequences of its class very well but will not match to the

sequences of other classes.
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