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Abstract

Pointwise label and pairwise label are both widely used

in computer vision tasks. For example, supervised im-

age classification and annotation approaches use pointwise

label, while attribute-based image relative learning often

adopts pairwise labels. These two types of labels are of-

ten considered independently and most existing efforts uti-

lize them separately. However, pointwise labels in image

classification and tag annotation are inherently related to

the pairwise labels. For example, an image labeled with

“coast” and annotated with “beach, sea, sand, sky” is more

likely to have a higher ranking score in terms of the attribute

“open”; while “men shoes” ranked highly on the attribute

“formal” are likely to be annotated with “leather, lace up”

than “buckle, fabric”. The existence of potential relations

between pointwise labels and pairwise labels motivates us

to fuse them together for jointly addressing related vision

tasks. In particular, we provide a principled way to cap-

ture the relations between class labels, tags and attributes;

and propose a novel framework PPP(Pointwise and Pair-

wise image label Prediction), which is based on overlapped

group structure extracted from the pointwise-pairwise-label

bipartite graph. With experiments on benchmark datasets,

we demonstrate that the proposed framework achieves su-

perior performance on three vision tasks compared to the

state-of-the-art methods.

1. Introduction

The increasing popularity of social media generates mas-

sive data at an unprecedented rate. The ever-growing num-

ber of images has brought new challenges for efficient and

effective image analysis tasks, such as image classification,

annotation and image ranking. Based on the types of la-

bels, we can roughly divide the supervised vision tasks into

two categories – pointwise label based approaches and pair-

wise label based approaches. Pointwise approaches adopt

pointwise labels such as image categories or tags as train-

ing targets [10, 20, 6, 19, 8, 23, 24]. Class labels in classi-

Figure 1. An Illustrative Example of poinwise labels and pairwise

labels. Pointwise label “4 door” is better than the pairwise label to

describe presence of 4 door in a car, while “sporty” is better to use

pairwise label to describe the car style, as the right is more sporty

than the left. For example it is hard to label the middle (we ask

10 human viewer – 40% agree with the non sporty and 60% agree

with sporty, but 100% agree with middle one is more sporty than

the left one and less sporty than right one).

fication often capture high-level image content, while tags

in tag annotation are likely to describe a piece of informa-

tion in the image, such as “high heel, buckle, leather” in a

shoe image. In [21], these two tasks are considered together

because the labels and tags may have some relations in an

image. Recently, due to the semantic gap between low-

level image features and high-level image concepts, human

nameable visual attributes are proposed to solve the vision

tasks[7, 14, 1, 13]. However, for a large variety of attributes,

the pointwise binary setting is restrictive and unnatural. For

example, it is very difficult to assign or not assign “sporty”

to the middle car in Figure 1 because different people have

different opinions. Thus, pairwise approaches [17, 11, 12]

have been proposed, which aim to learn a ranking function

to predict the attribute strength for images. For example, in

Figure 1. most of the people would agree that the middle

car is more “sporty” than the left one and less “sporty” than

the right one

Pointwise and pairwise labels have their own advantages

as well as limitations in terms of labeling complexity and

representational capability. Labeling complexity: given 10

images, we only need 10 sets of class categories/tags. How-

ever, we need to label at least 45 image pairs to capture the

overall ordering information. (Although the ranking rela-
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tion is considered as transferable, e.g. A ≻ B&B ≻ C ⇒
A ≻ C). Representational capability: pointwise labels

such as tags/class labels imply the presence of content prop-

erties such as whether a shoe is made of leather, contains a

heel, buckle, etc. While pairwise labels capture the rela-

tions in a same property, e.g., A has a higher heel than B.

Solely relying on pointwise labels may cause ambiguity or

produce noisy data for the models as in the example of as-

signing “sporty” to the middle car in Figure 1, while only

using pairwise labels may also cause problems when the

images have very similar properties.

As pointwise and pairwise labels encapsulate informa-

tion of different types and may have different benefits for

vision problems and recommendation systems[22] , we de-

velop a new framework for fusing different types of training

data by capturing their underlying relations. For example,

in Figure 2, the tags, “leather, cognac, lace up” may suggest

the left shoe with a higher score on the “formal” attribute,

while the “high heel” may indicate the right shoe with a

lower score on the “comfort” attribute. On the other hand,

the higher score on “formal” and “comfort” with tag “Ox-

ford” could help label the left image as “shoe” and enable

the rare tag annotation such as “wingtip”. To the best of

our knowledge, there are only a few recent works that fused

pointwise and piarwise labels [18, 4]. However, they sim-

ply combined regression and ranking in the loss functions

for ranking tasks and totally ignored the relations between

pointwise labels and pairwise labels.

In this paper, we investigate the problem of fusing point-

wise and pairwise labels by exploiting their underlying re-

lations for joint pointwise label prediction such as, image

classification and annotation, and pairwise label prediction,

e.g., relative ranking. We derive a unified bipartite graph

model to capture the underlying relations among two types

of labels. Since traditional approaches cannot take advan-

tages of relations among pointwise and pairwise labels,

we proceed to study two fundamental problems: (1) how

to capture relations between pointwise and pairwise labels

mathematically; and (2) how to make use of the relations

for jointly addressing vision tasks. These two problems are

tackled by the propose framework PPP and our contribu-

tions are summarized as follows:

• We provide a principled approach to modeling rela-

tions between pointwise and pairwise labels;

• we propose a novel joint framework PPP, which can

predict both pointwise and pairwise labels for images

simultaneously; and

• We conduct experiments on various benchmark

datasets to understand the working of the proposed

framework PPP.

In the remaining of the paper, we first give a formal

problem definition and basic model in Section 2. Then the

proposed framework and an optimization method for model

learning is presented in Section 3. Experiments and results

are demonstrated in Section 4, with further discussion in

section 5.

2. The Proposed Method

Before detailing the proposed framework, we first in-

troduce notations used in this paper. We use X ∈ R
n×d

to denote a set of images in the database where n is the

number of images and d is the number of features. Note

that there are various ways to extract features such as SIFT,

Gist or the features learned via deep learning frameworks.

Let Yt ∈ R
n×c1 and Yc ∈ R

n×c3 be the data-tag and

data-label matrices which represent the pointwise labels.

Y(i, j) = 1 if the i-th image is annotated/classified with

j-th tag/class label, Y(i, j) = 0 otherwise. Given a fixed

training set D, a candidate pair set P can be drawn. The

pair set implied by the fixed training set D uses pairwise

labels. In the proposed framework, given a pair of im-

ages < a, b > on the attribute q, if ya ≻ yb, then a has

a positive attribute score y(a, q, 1) = |ya − yb|, and a neg-

ative score y(a, q, 2) = 0; while b has a positive attribute

y(b, q, 1) = 0, and a negative score y(b, q, 2) = |ya − yb|.
Thus, the pairwise label is defined as Yr ∈ R

m×c2 , where

m is the number of pairs drawn from training samples and

c2 = 2q where q is the number of attributes. For ex-

ample, let < a, b > be the first pair, the pairwise label

Yr(1, 2(q − 1) + 1) represents how likely the ya ≻ yb and

Yr(1, 2(q − 1) + 2) represents how likely ya ≺ yb on at-

tribute q.

2.1. Baseline Models

In our framework, pointwise labels are considered for

classification and annotation tasks. For classification, we

assume that there is a linear classifier Wc ∈ R
d×c3 to map

X to the pointwise label Yc as Yc = XWc. Wc can be

obtained by solving the following optimization problem:

min
Wc

Ω(Wc) + L(Wc,Yc, D) (1)

where L() is a loss function and Ω is a regularization

penalty to avoid overfitting, D is the training sample set.

Here we employ least square for loss function L.

For tag annotation, we also assume that there is a linear

function Wt ∈ R
d×c1 which captures the relation between

data X and pointwise label Yt as Yt = XWt. Similarly,

the optimization problem to learn Wt is:

min
Wt

Ω(Wt) + L(Wt,Yt, D) (2)

For pairwise label based approaches, a simple and suc-

cessful approach to utilizing the pairwise label is Rank

6006



Figure 2. The demonstration of capturing the relations between pointwise label and pairwise label via bipartite graph. For example, the

attribute “formal” with tags “leather, lace up, congnac” will form a group via the upper bipartite graph, while label “sandal” with attribute

“less formal” and tags “high heel, party” will form a group via the lower bipartite graph.

SVM, whose goal is to learn a model W that achieves little

loss over a set of previously unseen data, using a prediction

function. Similar to RankSVM, in our framework, the orig-

inal distribution of training examples are expanded into a

set of candidate pairs and the learning process is over a set

of pairwise feature vectors as:

min
W

L(W,Yr, P ) + Ω(Wr) (3)

where P is a set of training pairs. The loss function L is

defined over the pairwise difference vector x:

L(W,Yr, P ) =
∑

((a,ya,qa),(b,yb,qb))∈P

l(t(ya−yb), f(w, a−b))

(4)

where the transformation function t(y) transforms the dif-

ference of the labels [18]. In our framework, the transfor-

mation function is defined as t(y) = sign(y).

Note that one may form a unified model by simply

adding all the above objective functions together. Such an

approach would still essentially treat the component models

as independent tasks (albeit trade-off among them might be

considered via weighting), since no explicit relations among

them are considered.

2.2. Capturing Relations between Poinwise and
Pairwise Labels

In the previous subsection, we defined three tasks that

use pointwise and pairwise labels separately. Capturing the

relations between pointwise and pairwise labels can further

pave a way for us to develop a joint framework that enables

interaction between classification, annotation and ranking

simultaneously.

First, the relations between attributes and tags can be de-

noted as a bipartite graph as shown in Figure 2. We assume

that B ∈ R
c2×c1 is the adjacency matrix of the graph where

B(i, j) = 1 if both the i-th tag and the j-th attribute co-

occur in the same image and B(i, j) = 0 otherwise. Note

that in this paper, we do not consider the concurrence fre-

quencies of tags and attributes and we would like to leave

it as one future work. From the bipartite graph, we can

identify groups of attributes and tags where attributes and

tags in the same group could share similar properties such

as semantical meanings. A feature X(:, i) should be either

relevant or irrelevant to the attributes and tags in the same

group. For example, Wr(i, j) indicates the effect of the i-th

feature on predicting the j-th attribute; while Wt(i, k) de-

notes the impact of the i-th feature on the k-th tag. There-

fore we can impose constraints on Wt and Wr together,

which are derived from group information on the bipartite

graph, to capture relations between attributes and tags.

We can adopt any community detection algorithms to

identify groups from the bipartite graph. In this paper, we
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use a very simple way to extract groups from the bipartite

graph – for the j-th attribute, we consider the tags that con-

nect to that attribute in the bipartite graph as a group, i.e.,

B(i, j) = 1. Note that a tag may connect to several at-

tributes thus extracted groups via the aforementioned pro-

cess have overlaps. Assume that G is the set of groups we

detect from the attribute-tag bipartite graph and we propose

to minimize the following term to capture relations between

attributes and tags as:

ΩG(Wt,r) =

d∑

i=1

∑

g∈G

αg

∥∥wi
g

∥∥
2

(5)

where Wt,r = [Wt,Wr] and αg is the confidence

of the group g and wi
g is a vector concatenating

{Wt,r(i, j)}j∈g . For example, if g = {1, 5, 9}, wi
g =

[Wt,r(i, 1),Wt,r(i, 5),Wt,r(i, 9)] . Next we discuss the

inner workings of Eq. (5). Let us check terms in Eq. (5) re-

lated to a specific group g,
∑d

i=1

∥∥wi
g

∥∥
2
, which is equal to

adding a ℓ1 norm on the vector g = [w1
g,w

2
g, . . . ,w

d
g ], i.e.,

‖g‖1. That ensures a sparse solution of g; in other words,

some elements of g could be zero. If gi = 0 or ‖w2
g‖2 = 0,

the effects of the i-th feature on both the attribute and tags

in the group g are eliminated simultaneously.

Similarly, we build the bipartite graph to capture the

underlying relations for the attributes and class labels. In

[21], it was suggested that the co-occurrence of tags and la-

bels should also be considered. Thus, we build a mixture

bipartite graph to extract the group information between

class labels, tags, and attributes. The group regularization

ΩG2(Wt,r,c) is similar to Eq. 5 and illustration is shown

in Figure 2, where a tag or an attribute will connect to the

class label if they are associated with each other. Note that

a group extracted from Figure 2 could include a class label,

a set of attributes and a set of tags.

2.3. The Proposed Framework

With the model component to exploit the bipartite graph

structures, the proposed framework is to solve the following

optimization problem:

min
W

L(Wc,Yc, D) + L(Wt,Yt, D) + L(Wr,Yr, P )

+ λ(‖Wc‖
2
F + ‖Wt‖

2
F + ‖Wr‖

2
F )

+ αΩG1(Wt,r) + βΩG2(Wt,r,c)
(6)

In Eq. 6, the first six term is from the basic models to predict

the class label, tags and ranking order. The seventh and

eighth term are to capture the overlapped structure of the

output, which is controlled by α and β respectively. The

group regularization is defined as blow:

ΩG(Z) =
∑

i∈G

‖Zg‖2 =

d∑

i=1

∑

i∈G

‖zig‖2 (7)

3. An Optimization Method for PPP

Since the group structures are overlapped, directly opti-

mizing the objective function is difficult. We propose to use

Alternating Direction Method of Multiplier (ADMM)([25,

2]) to optimize the objective function. We first introduce

two auxiliary variables P = [Wt,Wr]M1 and Q =
[Wt,Wr,Wc]M2. M1 ∈ {0, 1}(c1+c2)×c2(c1+c2) is de-

fined as: if i − th tag connects to the jth attribute then

M1(i, (c1+c2)(j−1)+i) = 1, otherwise it is zero. The def-

inition of M2 ∈ {0, 1}(c1+c2+c3)×c3(c1+c2+c3) is similar to

M1. With these two variable, solving the overlapped group

lasso on W is transfered to the non-overlapped group lasso

on P and Q, respectively. Therefore, the objective function

becomes:

min
W,P,Q

L(Wc, D) + L(Wt, D) + L(Wr, P )

+ αΩG(P) + βΩG2(Q)

+ λ(‖Wc‖
2
F + ‖Wt‖

2
F + ‖Wr‖

2
F )

s.t.P = [Wt,Wr]M1;Q = [Wt,Wr,Wc]M2;
(8)

which can be solved by the following ADMM problem:

min
W,P,Q

L(Wc,Yc, D) + L(Wt,Yt, D) + L(Wr,Yr, P )

+ λ(‖Wc‖
2
F + ‖Wt‖

2
F + ‖Wr‖

2
F ) + αΩG(P)

+ βΩG2(Q) + 〈Λ1,P− [Wt,Wr]M1〉

+ 〈Λ2,Q− [Wt,Wr,Wc]M2〉

+
µ

2
‖P− [Wt,Wr]M1‖

2
F

+
µ

2
‖Q− [Wt,Wr,Wc]M2‖

2
F

(9)

where Λ is the Lagrangian multiplier and µ is a scaler to

control the penalty for the violation of equality constrains

P = [Wt,Wr]M1 and Q = [Wt,Wr,Wc]M2. Noting

that the loss function L has lots of choices, we use the least

square loss function in this paper.

3.1. Updating W

To update W, we fix the other variable except W and

remove terms that are irrelevant to W. Then the Eq. 9 be-

comes:

min
W

∑

x∈D

‖xWt − yt‖
2
2 +

∑

x∈D

‖xWc − yc‖
2
2

+
∑

xi,xj∈P

‖(xi − xj)Wr − yr‖
2
2

+ λ(‖Wc‖
2
F + ‖Wt‖

2
F + ‖Wr‖

2
F )

+
µ

2
‖(P+

1

µ
Λ1)− [Wt,Wr]M1‖

2
F

+
µ

2
‖(Q+

1

µ
Λ2)− [Wt,Wr,Wc]M2‖

2
F

(10)
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Setting the derivative of Eq. 10 w.r.t Wt to 0, we get:

XT
DXDWt + λWt +Wt(M

t
1M

tT
1 +Mt

2M
tT
2 )

= XTY +
µ

2
[(P+

1

µ
Λ1)M

t
1 + (Q+

1

µ
Λ2)M

t
2]

(11)

where Mt
1 is the part of M1 corresponding to Wt. Directly

getting the close form solution from Eq. 11 is intractable.

On the other hand XT
DXD+ 1

2λI and Mt
1M

tT
1 +Mt

2M
tT
2 +

1
2λI are symmetric and positive definite. Thus, we employ

eigen decomposition for each of them:

XT
DXD +

1

2
λI = U1Σ1U

T
1

Mt
1M

tT
1 +Mt

2M
tT
2 +

1

2
λI = U2Σ2U

T
2

(12)

whereU1,U2 are eigen vectors and Σ1,Σ2 are diagonal

matrices with eigen value on the diagonal. Substituting Eq.

12 into Eq. 11:

U1Σ1U
T
1 Wt+WtU2Σ2U

T
2 = XT

DYt +
µ

2
(P+

1

µ
Λ1)M

t
1

+
µ

2
(Q+

1

µ
Λ2)M

t
2

(13)

Multiplying UT
1 and U2 from left to right on both sides,

and letting W̃t = UT
1 WtU2 and Zt = UT

1 [X
T
DYt +

µ
2 [(P+ 1

µ
Λ1)M

t
1 + (Q+ 1

µ
Λ2)M

t
2]]U2 , we can obtain:

Σ1W̃t + W̃tΣ2 = Zt (14)

Then, we can get W̃t and Wt as:

W̃t(s, t) =
Zt(s, t)

σs
1 + σt

2

(15)

Wt = U1W̃tU
T
2 (16)

Similarly, setting the derivative of Eq. 10 w.r.t Wc to

zero and apply the eigen decomposition, we have the closed

form solution of Wc:

W̃c(s, t) =
Zc

σs
1 + σt

3

(17)

Wc = U1W̃cU
T
3 (18)

where Zc = UT
3 [X

T
DYc +

µ
2 (Q + 1

µ
Λ2)]M

c
2 and U3, σ3

are the eigen vector and eigen value for the symmetric and

positive definite matrix Mc
2M

cT
2 + 1

2λI.

Noting that for Wr, which input is data pairs, we can

use the same learning process by using the transform label

function mentioned above. For example, we regard the pair

difference as one data sample for XP and use the positive

and negative label for label transformation. Setting the Eq.

10 w.r.t Wr to zero, we can obtain:

XT
PXPWr + λWr +Wr(M

r
1M

rT
1 +Mr

2M
rT
2 )

= XT
PYr +

µ

2
[(P+

1

µ
Λ1)M

r
1 + (Q+

1

µ
Λ2)M

r
2]

(19)

Similar to Wc, with eigen decomposition, we can get the

closed form solution for Wr as:

W̃r(s, t) =
Zr

σs
4 + σt

5

(20)

Wr = U4W̃rU
T
5 (21)

where Zr = U4[X
T
PYr + µ

2 [(P + 1
µ
Λ1)M

r
1 + (Q +

1
µ
Λ2)M

r
2]U

T
5 , U4, σ4 are eigen vector and eigen values for

XT
PXP + 1

2λI, and U5, σ5 are eigen vector and eigen value

for Mr
1M

rT
1 +Mr

2M
rT
2 + 1

2λI.

3.2. Updating P

After removing terms that are irrelevant to P, Eq. 9 be-

comes:

min
P

µ

2
‖P−[Wt,Wr]M1‖

2
F+αΩG(P)+Tr(Λ1P) (22)

When applied to the collection of group for the parameters,

P, ΩG(P)) no longer have overlapping groups. We denote

j−th group in i-th row as Pi,j = P(i, (c1+c2)(j−1)+1 :
(c1+c2)j). Hence, we can solve the problem separately for

each row of P within one group by the following optimiza-

tion:

min
Pi,j

α‖Pi,j‖
2
2 +

µ

2
‖Pi,j − (([Wc,Wr]M1)i,j −

Λ1ij

µ
)‖2F

(23)

Note that Eq. 23 is the proximal operator [27] of 1
µ
(P )i,j

applied to (([Wc,Wr]M1)i,j −
Λ1ij

µ
). Let ZP

i,j =

([Wc,Wr]M1)i,j −
Λ1ij

µ
. The solution by applying the

proximal operator used in non-overlapping group lasso to

each sub-vector is:

Pi,j = prox(ZP
i,j) =




0 if‖ZP

i,j‖2 ≤ α
µ

‖ZP
i,j‖2−

α
µ

‖ZP
i,j‖2

ZP
i,j otherwise

(24)

3.3. Updating Q

Similar to P, we can update Q by proximal operator

used in non-overlapping group lasso to each sub-vector of

Q:

Qi,j = prox(ZQ
i,j) =




0 if‖ZQ

i,j‖2 ≤ β
µ

‖ZQ
i,j‖2−

β
µ

‖ZQ

i,j‖2

Z
Q
i,j otherwise

(25)

where Qij = Q(i, (c1+c2+c3)(j−1)+1 : (c1+c2+c3)j)

and Z
Q
i,j = ([Wt,Wr,Wc]M2)i,j −

Λi,j

µ
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3.4. Updating Λ1,Λ2 and µ

After updating the variables, we now need to update the

ADMM parameters. According to [2], they are updated as

follows:

Λ1 = Λ1 + µ(P− [Wt,Wr]M1) (26)

Λ2 = Λ2 + µ(Q− [Wt,Wr,Wc]M2) (27)

µ = min(ρµ, µmax) (28)

Here, ρ > 0 is a parameter to control the convergence speed

and µmax is a large number to prevent µ from becoming too

large.

With these updating rules, the optimization method for

our proposed method is summarized in Algorithm 1

Algorithm 1 The algorithm for the proposed framwork

Input: XD ∈ RN×d and XP ∈ Rm×d and corresponding

label Yt,Yc and Yr

Output: c1 tags label c2 relative score and c3
class label for each data instance

1: Initialize random Sample training set D and drawn ran-

dom pair set P from D.

2: Setting µ = 10−3, ρ = 1.1, µmax = 108 and building

M1 and M2

3: Precompute the eigen decomposition

4: repeat

5: Calculate W̃t, W̃t and W̃r

6: Update Wt,Wr and Wc by Eq. 16, Eq. 21, and

Eq. 18, respectively.

7: Calculate ZP and ZQ

8: Update P and Q

9: Update Λ1, Λ2 and µ

10: until convergence

11: Using max pooling for testing use XW to predict tags,

relative relation and labels.

3.5. Convergence Analysis

Since the sub-problems are convex for P and Q, respec-

tively, Algorithm 1 is guaranteed to converge because they

satisfy the two assumptions required by ADMM. The proof

of the convergence can be found in [2]. Specially, Algo-

rithm 1 has dual variable convergence. Our empirical re-

sults show that our algorithm often converges within 100

iterations for all the datasets we used for evaluation.

3.6. Time Complexity Analysis

The main computation cost for W involves the eigen de-

composition on XTX+ 1
2βI, while other terms that involve

eigen decomposition is very fast because the feature dimen-

sion of MMT is small. The time complexity for eigen de-

composition is O(d3). However, in Algorithm 1 the eigen

decomposition is only computed once before the loop and

dimension reduction algorithm can be employed to reduce

image feature dimensions d. The computation cost for Z is

O(nd2) due to the sparsity of M. The computation of P

depends on the proximal method within each group. Since

there are c2 groups which have the group size c1 + c2 for

each feature dimension, the total computation cost for P is

O(dc2(c1 + c2)) and it is similar for Q. It is worth noting

that P and Q can be computed in parallel for each feature

dimension.

4. Experiment

In this section, we conduct experiments to evaluate the

effectiveness of PPP. After introducing datasets and exper-

imental settings, we compare PPP with the state-of-the-art

methods of tag prediction, classification and ranking.

4.1. Experiments Settings

The experiments are conducted on 3 publicly available

benchmark datasets.

Shoe-Zappo dataset [26]: It is a large shoe dataset

consisting of 50,025 catalog images collected from Zap-

pos.com. The images are divided into 4 major categories

shoes, sandals, slippers, and boots. The tags are func-

tional types and individual brands such as high-heel, ox-

ford, leather, lace up, and pointed toe. The number of tags is

147 and 4 relative attribute is defined as “open” , “pointy”,

“sporty” and “comfortable”. The ground truth is labeled

from AmazonTurk.

OSR-scene dataset [16]: It is a dataset for out door

scene recognition with 2688 images. The images are

divided into 8 category named as coast, forest, high-

way, inside-city, mountain, open-country, street and tall-

building. 6 attributes with pointwise label and pairwise la-

bel are provided by [17] named by natural, open, perspec-

tive, large-objects, diagonal-plane and close-depth.

Pubfig-face dataset [13]: It is a dataset containing 800

images from 8 random identities (100 images per person)

named Alex Rodriguez, Clive Owen, Hugh Laurie , Jared

Leto , Miley Cyrus, Scarlett Johansson , Viggo Mortensen

and Zac Efron. We use the 11 attributes with pintwise label

and pairwise label provided by [17]. The example attributes

are named as masculine-looking, white, young, smiling and

etc.

4.2. Performance Comparison

We compare PPP with the following representative algo-

rithms:

• SVM [3]: It uses the state of the art classifier SVM for

classification with linear kernel; We also apply it to tag

prediction by considering tags as a kind of labels;
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• GLasso [28]: The original framework of group lasso

is to handle high-dimensional and multi-class data. To

extend it for joint classification and tag prediction, we

also consider tags as a kind of labels and apply GLasso

to learn the mapping of features to tags and label. Note

that it does not make use of the pointwise and pairwise

label bipartite graph. We use the implementation in

[15];

• sLDA [21]: It is a joint framework based on topic

models, which learns both class labels and annotations

given latent topics;

• LS [9]: A multi-label classification method that ex-

ploits the label correlation information. To apply LS

for joint classification and tag prediction, we consider

tags as a kind of labels and use tag and label relations

to replace the label correlation in the original model;

and

• FT [6]: It is one of the state-of-the art annotation

method which is based on linear mapping and co-

regularized joint optimization. To apply it for classi-

fication, we consider labels as tags to annotate; and

• RD: It predicts labels and tags by randomly guessing.

• MultiRank [5]: It is a ranking method based on the as-

sumption that the correlation exists between attributes,

where the ranking function learns all attributes to-

gether via multi task learning framework.

• RA [17]: It is the method for image ranking based on

relative attributes.

Note that for all the baseline methods, none of them can

utilize both pointwise and pairwise labels. Although we

get the performance of the proposed framework by jointly

predicting both pointwise and pairwise labels, we present

our results for each task separately for a clear comparison.

Moreover, we could use more advanced features, e.g., CNN

feature, however, to compare with other methods fairly, we

adopt the original feature provided by each datasets, which

can easily show the performance gain from the proposed

model.

4.3. Pointwise label Prediction

For pointwise label prediction, our method is compared

with SVM, Glasso, sLDA, LS, FT, and RD. For all the base-

line methods with parameters, we use cross validation to de-

termine their values. For the Shoe dataset, we use the same

data split and features (990 gist and color features) in [26].

It contains 11102 data samples for training and 2400 data

sample for testing. For OSR and Pubfig, we use the same

data split and features in [17].

Table 1. Performance comparison in terms of classification. The

number after each dataset means the class label number.

Method Zappos(4) OSR(8) Pubfig (8)

SVM 67.41 % 42.21 % 50.77%

GLasso 78.31% 50.11% 59.13%

sLDA 74.32% 46.33% 56.21%

LS 84.46% 61.22% 66.56%

FT 84.69% 59.38% 67.45%

RD 25.01% 12.51% 12.50%

PPP 89.39% 62.33% 74.95%

Since OSR and Pubfig contain a small number of at-

tributes, we leave one random-picked attribute for pairwise

prediction and use the rest for tag annotation. Especially,

to evaluate the performance of tag annotation, we rank all

the tags based on their relevant scores and return the top K

ranked tags. We use the average precision AP@K as the

evaluation metric which has been widely used in the liter-

ature [6, 21]. Meanwhile since the data samples are bal-

anced, we use accuracy as the metric to evaluate the classi-

fication performance. The comparison results are shown in

Table 1 and Table 2 for classification and tag annotation,

respectively. We repeat 10 times for the training-testing pro-

cess and report the average performance.

From the tables, we make the following observations:

• The proposed method that utilizes pairwise labels to

predict pointwise labels tends to outperform the meth-

ods which solely rely on pointwise labels. These re-

sults support that (1) pairwise attributes can provide

evidence for the pointwise label prediction; especially

for the Pubfig dataset that contains 8 label classes, our

method utilizes information from pairwise attributes

significantly improve the classification performance.

(2) The performance of tag prediction AP@K indi-

cates that the pairwise attributes contain important in-

formation for tag prediction;

• Our method with model components to capture re-

lations between pairwise and pointwise labels out-

performs those without. For example, compared to

GLasso, the proposed framework, modeling the rela-

tions via the bipartite graph, gains remarkable perfor-

mance improvement for both classification and tag pre-

diction; and

• Most of the time, the proposed framework PPP per-

forms the best among all the baselines, which demon-

strates the effectiveness of the proposed algorithm.

There are two major reasons. First, PPP jointly per-

forms pointwise and pairwise label prediction. Sec-

ond, PPP captures relations between labels by extract-

ing group information from the bipartite graph, which
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Table 2. Performance comparison in terms of tag recommendation.

Method
Zappo (147 tags) OSR (5 tags) Pubfig (10 tags)

AP@3 AP@5 AP@10 AP@1 AP@2 AP@3 AP@1 AP@3 AP@5

SVM 50.57% 40.89% 38.53% 68.51% 63.69% 60.12% 46.21% 38.31% 34.12%

GLasso 64.34% 59.81% 55.37% 87.11% 83.34% 80.87% 90.12% 88.76% 86.41%

sLDA 62.57% 57.22% 51.63% 90.15% 88.06% 84.78% 91.12% 87.93% 84.17%

LS 74.76% 66.62% 61.85% 94.19% 93.19% 92.75% 93.71% 92.66% 91.91%

FT 67.37% 59.52% 51.98% 98.62% 94.45% 92.22% 92.45% 91.50% 90.16%

RD 1.44% 1.43% 1.44% 20.00% 20.01% 20.01% 10.01% 10.00% 10.01%

PPP 77.10% 71.08% 62.95% 96.69% 94.21% 90.14% 94.48% 93.67% 92.71%

Table 3. The average ranking accuracy on three dataset

Method Zappos OSR Pubfig

RA 70.37% 76.10% 71.23%

MultiRank 76.12% 84.93% 74.91%

PPP 79.67% 88.40% 76.32%

works as the bridge for building interactions between

pointwise and pairwise labels.

4.4. Pairwise label Prediction

For pairwise label prediction, we generate pairs drawn

from the training set used in the pointwise label predic-

tion. For the Shoe dataset, we use 300 pairs; while for OSR

and Pubfig, we use 100 pairs (the number suggested in [5])

drawn from training set. We compute the average ranking

accuracy with standard deviation by running 10 rounds of

each implementation. The results are shown in Table 3.

Moreover, we also plot in Figure 3 to show how average ac-

curacy changes with different sizes of training samples on

the attributes on the Shoe dataset (due to the space limits,

we omit the figure on OSR and Pubfig).

From Table 3 and Figure 3, we can have the following

observations:

• The proposed method that leverages pointwise labels

to predict pairwise labels often outperforms the meth-

ods which only use pairwise labels. These results sup-

port that pointwise labels can help the pairwise label

prediction;

• The performance of the ranking accuracy varies with

the number of the training pairs. With a small amount

of labeled data, e.g., 10 pairs, the proposed method

significantly outperforms relative attribute methods,

which demonstrates that the pointwise labels contain

important information for attribute ranking;

• The comparison based on multi-task attribute learn-

ing methods and our method demonstrates that sim-

ply combining the attributes together fails to differ-

entiate these attributes which are not related to other

attributes, while our methods use group structures,

Figure 3. Learning curve of average ranking accuracy with regard-

ing to different numbers of training pairs.

which makes the correlated attributes have strong over-

laps, providing a discriminative way to capture the cor-

relation between attributes.

5. Conclusion

In this paper, we propose a novel way to capture the rela-

tions between pointwise labels and pairwise labels. More-

over, PPP provides a new viewpoint for us to have a bet-

ter understanding how pointwise and pairwise labels inter-

act with each other. Experiments demonstrated : (1) the

advantages of the proposed methods for pointwise label

based tasks including image classification, tag annotation

and pairwise label based image ranking; and(2) the impor-

tance of considering the group correlation between point-

wise labels and pairwise labels.
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