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Abstract

Infinite dimensional covariance descriptors can provide

richer and more discriminative information than their low

dimensional counterparts. In this paper, we propose a novel

image descriptor, namely, robust approximate infinite di-

mensional Gaussian (RAID-G). The challenges of RAID-G

mainly lie on two aspects: (1) description of infinite dimen-

sional Gaussian is difficult due to its non-linear Rieman-

nian geometric structure and the infinite dimensional set-

ting, hence effective approximation is necessary; (2) tra-

ditional maximum likelihood estimation (MLE) is not ro-

bust to high (even infinite) dimensional covariance matrix

in Gaussian setting. To address these challenges, explicit

feature mapping (EFM) is first introduced for effective ap-

proximation of infinite dimensional Gaussian induced by

additive kernel function, and then a new regularized MLE

method based on von Neumann divergence is proposed for

robust estimation of covariance matrix. The EFM and pro-

posed regularized MLE allow a closed-form of RAID-G,

which is very efficient and effective for high dimensional

features. We extend RAID-G by using the outputs of deep

convolutional neural networks as original features, and ap-

ply it to material recognition. Our approach is evaluated on

five material benchmarks and one fine-grained benchmark.

It achieves 84.9% accuracy on FMD and 86.3% accuracy

on UIUC material database, which are much higher than

state-of-the-arts.

1. Introduction

Recently, the covariance matrices as region image repre-

sentations have attracted increasingly attentions in a num-

ber of computer vision tasks, such as pedestrian detection

[45], visual tracking [38], image set classification [49], ac-

tion recognition [24], semantic segmentation [7], Diffusion

∗Peihua Li is the corresponding author.

The work was supported by the National Natural Science Foundation of

China (61471082, 61271093) and the Hong Kong RGC GRF grant (PolyU

5313/13E). We thank NVIDIA corporation for donating GPU.

Tensor Imaging (DTI) segmentation [25], and texture clas-

sification [44, 22, 29, 31]. However, covariance descriptors

in the original low-dimensional feature space usually have

limited capability in encoding richer and more discrimina-

tive information [23, 20]. Meanwhile, dramatic increase of

feature dimension brings challenges on the robust estima-

tion of covariance representations.

To address limitations of covariance descriptors in the

original low-dimensional feature space, one of recent exten-

sions to covariance representations is infinite dimensional

covariance descriptors, which usually are significantly su-

perior to the ones constructed in the original feature space

[53, 23, 20]. The underlying idea of infinite dimensional

covariance descriptors is to map, through some kernel func-

tions, the original features into some Reproducing Kernel

Hilbert Space (RKHS) ℋ in which one constructs covari-

ance descriptors. However, explicit forms of covariances in

RKHS often cannot be obtained because of unknown map-

ping functions, and therefore kernel tricks are exploited.

Zhou et al. derived a family of probabilistic distance mea-

sures (e.g. Bhattacharyya distance and KL divergence) in

RKHS for matching infinite dimensional Gaussian mod-

els (covariances with additional means) [53]. Harandi et

al. compared covariance descriptors in RKHS with the dis-

tances induced by Bregman divergences. Minh et al. gen-

eralized the Log-Euclidean metric [2] for matching the infi-

nite dimensional covariance descriptors [20].

The aforementioned methods all depend on computation

of Gram matrices and kernel-based classifiers (e.g. kernel

SVM), which involve high computational cost and memory

usage, unscalable for large scale problems. To tackle these

issues, Faraki et al. [17] proposed to approximate infinite

dimensional covariance descriptors in RKHS by employ-

ing two classical explicit feature mappings, namely, ran-

dom Fourier transform (rFt) [39] and Nystr�̈m method [50].

This method is very efficient since it gives approximately fi-

nite and explicit forms of infinite dimensional covariances.

However, as explained in [47], rFt requires a large num-

ber of random projections (several times the dimensional-

ity of the original features) to obtain better approximation,
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Methods Descriptor Kernels or mappings Estimator Metric Linear SVM ?

Zhou et al. [53] Gaussian RBF kernel (no explicit mapping) Ledoit-Wolf estimator Probabilistic distances in ℋ No

Harandi et al. [23] Covariance RBF kernel (no explicit mapping) Ledoit-Wolf estimator Bregman Divergences in ℋ No

Log-HS [20] Covariance RBF kernel (no explicit mapping) Ledoit-Wolf estimator Log-Hilbert-Schmidt metric No

Faraki et al. [17] Covariance
{Random Fourier transform

Nystr�̈m method

}
for RBF kernel Ledoit-Wolf estimator Log-Euclidean metric Yes

RAID-G (Ours) Gaussian Explicit feature maps of
{Hellinger’s kernel

� 2 kernel

} Regularized MLE

with von Neumann divergence

Gaussian Embedding

and vectorization
Yes

Table 1. Comparison of different infinite dimensional image descriptors.

which may be intractable if the dimensions of the original

features themselves are very high. The Nystr�̈m method is

data-dependent, and needs to compute Gram matrix for a

set of training samples. However, it is not easy to select

a small number of representative training samples. Based

on the Nystr�̈m method, Perronnin et al. [37] proposed ad-

ditive kernel principal component analysis to approximate

additive kernels.

In this paper, we propose a novel approximate infinite di-

mensional Gaussian descriptor, which can tackle the issues

in [53, 23, 20]. Different from [17], we estimate approx-

imate infinite dimensional Gaussian by exploiting two ap-

proximate homogenous additive kernel functions, namely,

explicit feature maps of Hellinger’s kernel and � 2 kernel,

which are previously used to speed up large scale non-linear

SVM [47]. Different from Nystr�̈m method, our method is

data-independent. Compared with rFt of RBF kernel, our

method allows for component-wise approximation of ho-

mogenous additive kernel, thus leads to more compact map-

ping vectors and is fit for high dimensional original features.

Alternative extension to covariance representations is to

enhance the original features. The results in [7] demon-

strated enhancement of original features can improve per-

formance of covariance representations. Recently, many

works have shown deep Convolutional Neural Networks

(CNN) features perform much better than traditional, hand-

crafted features [19, 15, 12]. Based on deep CNN features

[9, 43], Cimpoi et al. [12] proposed a state-of-the-art tex-

ture descriptor called FV-CNN, which modeled outputs of

convolutional layer from pre-trained deep CNN with Fisher

vector (FV) coding [40]. Similar to [12], we construct infi-

nite dimensional Gaussian descriptor by using the convolu-

tional features as well, which are of high dimension (512 or

1536 in our case). As far as we know, previous works on co-

variance or Gaussian descriptors have never made such an

attempt. The reason may be that, for an input image, usually

only a very small number of deep CNN features are avail-

able, the dimensions (512 or higher) of which are inherently

much higher than those of the traditional ones, making ro-

bust estimation of covariances difficult.

It is well known that conventional Maximum Likelihood

Estimation (MLE) is not robust to high dimensional prob-

lems with a small number of samples [5, 51]. Specifically,

covariance matrices in (approximate) RKHS suffer from

rank-deficient problem as dimensionality of mapping fea-

tures is larger than the number of samples. The aforemen-

tioned methods [53, 23, 20, 17] simply exploit the Ledoit-

Wolf (LW) estimator [28] to tackle this problem, where at

the core a small positive number is added to all diagonal en-

tries of one sample covariance matrix. The LW estimator is

simple and efficient but has limited capability. In this paper,

we propose a regularized MLE to robustly estimate high

dimensional covariance in the Gaussian setting. The key

idea is to impose structural constraint in the original MLE

through the von Neumann matrix divergence [14], which is

intimately connected with exponential distributions. Specif-

ically, by encouraging the identity matrix structure in the

covariance matrix, we obtain a robust and efficient estima-

tor. This estimator, which we call vN-MLE, has a closed-

form expression and can significantly improve performance

of approximate infinite dimensional Gaussians.

Comparison of our method with related work [53, 23,

20, 17] is presented in Table 1. The main contribution

of this paper is a robust approximate infinite dimensional

Gaussian (RAID-G) descriptor, and we apply it to mate-

rial recognition. We introduce explicit mapping functions

and propose a novel robust covariance estimator, obtain-

ing closed-form approximate infinite-dimensional Gaussian

descriptors. With Gaussian embedding [34] and vectoriza-

tion, RAID-G can be fed into a linear classifier (e.g. SVM),

which is efficient and scalable to large scale classification

problem. Experiments are conducted on five material and

one fine-grained benchmarks, and the results demonstrate

that RAID-G is a very competitive image descriptor.

1.1. Related work

In this paper, we model images with Gaussian descrip-

tors. Compared with covariance descriptor, Gaussian has

additional mean information which has proven useful in

[35, 41] and also in our experiments. The Gaussian de-

scriptors with hand-crafted features in the original low-

dimensional space have been proposed for image classifi-

cation [35, 41]. Different from them, we extend Gaussian

descriptors to RKHS and employ the deep CNN descriptors

as original features. Note that the Gaussian descriptors with

deep CNN features in the original space is our baseline.

Robust estimation of covariance matrix has been an im-

portant topic in machine learning and statistics. One of the
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most commonly used methods obtain a robust estimation

by shrinking the eigenvalues of sample covariance matrix

[13, 28, 10]. Alternative methods to handle this problem are

regularized MLE [5, 51, 52]. Many regularizers (e.g. spar-

sity, group-sparsity, or low rank) are proposed to estimate

high dimensional parameters in recent years. As suggested

in [52], these constraints for the covariance estimation in

regularized MLE lead to non-convex problems. Won et al.

[51] proposed a regularized MLE with condition number

constraint, which can be solved by a Steinian-type shrink-

age of eigenvalues. It has two parameters to be determined

and lead to additional non-trivial computational load. Our

method is a regularized MLE method, where we introduce

a novel regularizer, i.e., the von Neumann divergence be-

tween covariance matrix and the identity matrix, which is

clearly different from the previous methods.

2. Preliminary

This section briefly reviews the traditional MLE-based

method to estimate Gaussian descriptors. Given a set of

� features X = {x1, . . . ,x� ∣x� ∈ ℝ
�}, we model their

distribution with a Gaussian probability density

�(x) = ∣2�Σ∣− 1

2 exp
(
− 1

2
(x− �)�Σ−1(x− �)

)
,

with mean vector � and covariance matrix Σ, where ∣ ⋅ ∣ and

� indicate matrix determinant and transpose, respectively.

The likelihood function of the sample set is

�(X;�,Σ) =
∏�

�=1 �(x�;�,Σ), where �(x�;�,Σ)
denotes the probability of x� given the parameters of the

mean and covariance. By MLE, the mean of samples can

be estimated as

� =
1

�

∑�

�=1
x�. (1)

Then estimation of covariance matrix reduces to the follow-

ing optimization problem:

min
Σ

�

2
log ∣Σ∣+ 1

2
tr(Σ−1

S), (2)

where S = 1
�

∑�

�=1(x� − �)(x� − �)� is the sample co-

variance matrix, and tr(⋅) indicates trace of matrix. By min-

imizing the objective (2) one obtains

Σ =
1

�

∑�

�=1
(x� − �)(x� − �)� , (3)

which is equal to the sample covariance matrix S. Hence,

we can compute Gaussian descriptors in the original feature

space with Eq. (1) and Eq. (3).

3. Proposed method

We start with approximate the infinite dimensional Gaus-

sians by explicit feature mappings. Next, we propose the

regularized MLE for robust estimation of high dimensional

covariances. Then we describe application of the proposed

Gaussian descriptor to material recognition. Finally we pro-

vide computational complexity analysis.

3.1. Approximate infinite dimensional Gaussians

In order to obtain infinite dimensional Gaussian descrip-

tor, we need to compute mean vector and covariance matrix

in RKHS. Given a set X of features (deep CNN features

in our case) in the original feature space ℝ
�, we map x�

into a RKHS, denoted by ℋ, by some mapping function

� : ℝ
� → ℋ,x� �→ �(x�), where �(⋅) is a function of

much higher dimension or even infinite dimension. Then in

ℋ the mean �̂ and sample covariance Ŝ of mapping features

�(x�) can be computed as

�̂ =
1

�

∑�

�=1
�(x�), Ŝ =

1

�
Φ(X)JΦ(X)� . (4)

Here Φ(X) = [�(x1) ⋅ ⋅ ⋅ �(x� )] and J = I� − 1
�
1�1

�
�

is the centering matrix, where I� is the identity matrix of

order � and 1� is a � -dimensional vector with all ele-

ments being ones.

Though the mapping function � usually is unknown,

by the commonly used kernel trick �(x�,x�) =
⟨�(x�), �(x�)⟩ (e.g. the RBF kernel �(x�,x�) =
exp(−∥x� − x�∥22/2�2)), one can obtain the inner product

of any pair of mapping functions. However, such methods

often can not obtain the explicit forms of �̂ and Ŝ, and suffer

from high computational cost [53, 23, 20]. Faraki et al. [17]

proposed rFt and Nystr�̈m method to obtain approximate

mapping function �. In contrast, we introduce approximate

mapping functions corresponding to the Hellinger’s kernel

and � 2 kernel.

The Hellinger’s and � 2 kernels have been success-

fully used in one of popular image classification methods,

namely the Bag-of-visual words model. The Hellinger’s

kernel, also known as Bhattacharyya’s coefficient, is of the

form �(x�,x�) =
∑�

�=1

√
��� �

�
� , where ��� is the �−th

element of x�. Clearly the mapping function ���� of the

Hellinger’s kernel has closed-form expression

����(x�) =
√
x�. (5)

Here
√ ⋅ should be interpreted as element-wise square root

operation. Hence, its computation complexity is linear in

dimension of the original features, rendering it very efficient

for handling high dimensional features.

The � 2 kernel is given by �(x�,x�) =∑�

�=1 2(�
�
� �

�
� )/(��� + ��� ), which is a �-homogeneous

kernel widely used in histogram matching. The explicit

mapping function of � 2 kernel can be written as

��ℎ�(x�) = �
−�� log(x�)

√
x�sech(��) ,
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where � is the imaginary unit and � is frequency. For effi-

ciency, ��ℎ� is approximated by three sampled points of the

following form[47]:

�̂�ℎ�(x�) =
√
x�

[√
�,

√
2�sech(��) cos(� log(x�)),

√
2�sech(��) sin(� log(x�))

]�
, (6)

where � is the sampling period. The map �̂�ℎ�(x�) is three

times of the dimension of x�. More accurate approxima-

tions are available which, however, will incur much higher

dimensions of the mapping function. Eq. (6) involves only

element-wise square root, log, sin and cos, so its compu-

tational complexity also is linear in the dimension of the

original features.

The two mappings (5) and (6) are both data-independent,

requiring no training stage and allowing for explicit forms

of approximate infinite dimensional Gaussian in RKHS.

Note that the Hellinger’s and � 2 kernels are designed for

histogram matching. We in this paper use them to transform

the outputs of the convolutional layer of CNNs, since they

are histogram-like features in the sense that they are non-

negative and sparse. The mapping (5) shares similar philos-

ophy with rootSIFT [1], which is applied to histogram-like

SIFT features and achieves non-trivial improvement in both

image retrieval and classification. To our best knowledge,

we are among the first who apply the Hellinger’s and � 2

kernel mappings to CNN features.

3.2. Robust estimation of approximate infinite di-
mensional Gaussian

So far, we can compute approximate infinite dimensional

Gaussian with Eq. (4), Eq. (5) or Eq. (6) based on the classi-

cal MLE. However, it can not work well when dimension of

the original features is very high (512 or 1536 in our case)

and the number of samples is small. Imposing structural

constraints is a commonly used method in robust covari-

ance estimation. The well-known LW estimator [28] and its

variants explore the solution among the convex combination

of the sample covariance matrices and a prior SPD matrix

(typically the identity matrix). Our work is motivated by

these methods but the key difference is that we impose the

constraint through the von Neumann matrix divergence [14]

to measure the similarity between matrices.

Let � be a real-valued differential convex function over

matrices. The Bregman matrix divergence is defined as

��(A;B) = �(A)− �(B)− ⟨▽�(A),A−B⟩ (7)

where ⟨⋅, ⋅⟩ denotes the inner product and ▽ is the gradient

with respect to matrix. In this paper, we only consider ��

defined on SPD matrices. When � is adopted to be the von

Neumann entropy �(A) = tr(A log(A) −A) [36], where

tr denotes the matrix trace and the resulting divergence ��

is called von Neumann matrix divergence:

�vN(A,B) = tr(A(log(A)− log(B))−A+B), (8)

which is also known as the quantum relative entropy in the

quantum mechanics. Note that �vN has been successfully

used in the low rank kernel learning problem [27]. The di-

vergence�vN is bounded, invariant to orthonormal transfor-

mation. There is a unique Bregman divergence associated

with every member of the exponential family of probability

distributions. This recommends the matrix divergences for

solving statistical related problems.

The regularizer we introduced in the MLE is the von

Neumann divergence �vN(I, Σ̂), which encourages the

structure of the identity matrix I in the covariance matrix

Σ̂. Our robust estimator of covariance matrix is regularized

maximum likelihood estimator:

min
Σ̂

log ∣Σ̂∣+ tr(Σ̂
−1

Ŝ) + ��vN(I, Σ̂), (9)

where 0 < � < 1 is a regularizing parameter. As shown

in [52], the type of regularized MLE problems is non-

convex, but our estimator can obtain a unique optimal so-

lution which has an analytic form. The following theorem

gives our conclusion.

Theorem 1 Let the singular value decomposition (SVD) of

Ŝ be Ŝ = Ûdiag(��)Û
� , where diag(��) is the diagonal

matrix of the singular values in decreasing order and Û is

the orthogonal matrix consisting of the eigenvectors. Then

the optimal solution to the problem (9) can be computed as

Σ̂ = Ûdiag(��)Û
� ,

�� =

√(
1− �
2�

)2

+
��
�

− 1− �
2�

. (10)

The proof of Theorem 1 is given in the supplementary ma-

terial. The proposed estimator essentially consists of a non-

linear transformation of the eigenvalues of the sample co-

variance. It has analytic form and thus can be computed

very efficiently, well suitable for large-scale problem.

We mention that other regularizers �vN(P, Σ̂), where

P is some known SPD matrix standing for a prior knowl-

edge about the covariance matrix, can be used in our robust

estimator (9). Such regularizers impose stronger structural

constraint on the covariance than the naive identity matrix

used in the current paper. We may obtain additional, po-

tential benefits by using these regulaizers, but cannot derive

analytic solutions.

3.3. Application to material recognition

This section presents application to material recognition

of our RAID-G descriptor. Material recognition has at-

tracted growing attentions in recent years [6, 32, 42, 11, 4],
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Figure 1. Overview of recognition paradigm with the proposed ro-

bust approximate infinite dimensional Gaussian.

possibly due to its broad applications in automatical types

of household wastes discrimination, robotic navigation and

assisted driving, etc. We adopt deep CNN features as the

original features. Note that we have not seen previous at-

tempts which use very high-dimensional CNN features in

the context of covariance or Gaussian descriptors. The

overview of our recognition paradigm is illustrated in Fig. 1.

Given an input image, we extract CNN features in multi-

scale setting by rescaling the image by some factors (e.g.

2{−1,0,1,2}). We employ a 19-layer convolutional network

(VGG-VD19) [43] pre-trained on ILSVRC database to ob-

tain 512-dimensional outputs of the last convolutional layer

via MatConvNet implementation [46].

For the original CNN features, we first map them into

RKHS through Eq. (5) or Eq. (6), then we compute mean

�̂ and sample covariance Ŝ through Eq. (4), and finally

estimate covariance matrix Σ̂ with the proposed vN-MLE

method. As the space of Gaussian models forms a Rieman-

nian manifold, we embed them into the space of symmetric

positive definite (SPD) matrices by using the method in [30]

with minor modification:

� (�̂, Σ̂) ∼ G(�) =

[
Σ̂+ �2�̂�̂� ��̂

��̂� 1

]
, (11)

where � > 0 is a parameter to balance the dimension and

orders of magnitude between mean vector and covariance

matrix. It is easy to see that G(�) is a SPD matrix.

Since we embed Gaussian models in the space of SPD

matrices, the metrics based on the geometry of this manifold

is ready for use. However, most of them entangle in mea-

suring distance such that non-linear kernel machines have

to be resorted. The Log-Euclidean metric is decoupled and

so can be combined with a linear SVM. However, surpris-

ingly, its performance is not satisfactory compared with the

Frobenius norm (F-norm) between the SPD matrices (see

comparison in Section 4.6). In addition, F-norm is com-

putationally more efficient, particularly for much higher di-

mensional SPD matrices. In terms of these considerations,

we simply view SPD matrices as being in the Euclidean

space, which are directly fed to a linear SVM for training

and testing after a vectorizing procedure. We implement a

one-vs-all classifier by using LIBSVM package [8].

3.4. Computational complexity of RAID-G

Given CNN features extracted by CPU or GPU, RAID-

G mainly includes three steps, namely, feature mappings

(Eq. (5) or Eq. (6)), robust estimation (Eq. (10)), and Gaus-

sian embedding (Eq. (11)). Let dimension of local descrip-

tors be �, complexity of feature mapping via Eq. (5) and

Eq. (6) are �(�) and �(3�), respectively. The robust esti-

mation requires eigenvalue decomposition with �(�3) and

�(27�3) costs for Hellinger’s kernel mapping and � 2 ker-

nel mapping, respectively. This cost is dominant in the com-

putation of our RAID-G. The Gaussian embedding takes

�(�2) cost. We use a single GeForce GTX Titan Black

GPU to extract deep CNN features which can process about

20 images per second. For each image, RAID-G with ����

(resp. ��ℎ�) takes about 0.3s (resp. 8s) on a workstation

with Core i7 CPU at 3.8GHz by using Matlab programming.

4. Experiments

In this section, we evaluate the proposed methods on five

material databases, which are briefly described as follows.

Flickr Material Database (FMD) [21] consists of 1,000 im-

ages of 10 material categories. It is a real-world dataset

which contains appearance changes and high intra-class

variations. We randomly pick 50 training and 50 testing

images per class.

UIUC material [32] is a challenging benchmark for recog-

nizing material in the wild. It contains 18 categories, 12

samples per category. We randomly choose half of the sam-

ples from each category for training, and the rest for testing.

KTH-TIPS 2b [6] is a widely used benchmark with scale,

viewpoint and illumination changes. It contains 4,752 im-

ages in 11 classes where each class includes 4 subsets with

108 samples. For each class we randomly select one sample

per subset for training and the remaining for testing.

Describable Textures Dataset (DTD) [11] consists of 5,640

material images collected from Internet (in the wild) which

are jointly labeled with 47 classes. We utilize ten pre-

defined splits in [11] to evaluate the proposed methods.

Open Surfaces [3] is recently proposed in the computer

graphics community, and can be used for material recogni-

tion in clutter. In this paper, we exploit its subset of 10,422

images [12], which consists of 53,915 labeled material seg-

ments of 22 classes.

The following methods are evaluated in our experiments:

COV-CNN, Gau-CNN and RoG-CNN which respectively

indicates covariance descriptor, Gaussian descriptor with

LW estimator, Gaussian descriptor with the proposed vN-

MLE method, all using CNN features in the original space

ℝ
�; RAID-G-CNN-Hel and RAID-G-CNN-Chi which in-

dicate Gaussian descriptor with our vN-MLE method, both
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Methods FMD UIUC Material KTH-TIPS 2b DTD Open Surfaces

COV-CNN 80.2± 1.1 80.5± 3.6 76.7± 2.8 70.1± 1.2 55.0
Gau-CNN 81.3± 1.4 81.7± 2.9 77.5± 2.4 70.5± 1.5 55.7
RoG-CNN 83.6± 1.6 84.5± 1.8 79.5± 1.5 73.9± 1.1 58.9
RAID-G-CNN-Hel 84.4± 1.3 85.7± 2.1 80.4± 1.2 75.8± 1.4 60.3
RAID-G-CNN-Chi 84.9± 1.4 86.3± 2.9 81.3± 1.6 76.4± 1.1 61.1

FC [12] 77.4± 1.8 75.9± 2.3 75.4± 1.5 62.9± 0.8 43.4
FV-CNN [12] 79.8± 1.8 80.5± 2.7 81.8± 2.5 72.3± 1.0 59.5
FC + FV-CNN∗ [12] 82.4± 1.5 82.6± 2.1 81.1± 2.4 74.7± 1.0 60.9

State-of-the-art I 60.6 [42] 60.1 [18] 70.7± 1.6 [16] 61.2± 1.0 [40] 39.8 [40]

State-of-the-art II 66.5± 1.5 [4] 66.6± 3.1 [22] 77.3± 2.3 [11] 66.7± 0.9 [11] -

Table 2. The accuracy (%) of various methods on five material benchmarks. ∗: The score level fusion is used to combine FC and FV-CNN.

using CNN features mapped to RKHS via the mapping

functions ���� and ��ℎ�, respectively.

4.1. Experimental evaluation

The results of the proposed methods and state-of-the-art

methods on five material databases are presented in Table 2.

Covariance vs. Gaussian The Gaussian descriptors always

outperform covariance descriptors on all databases, achiev-

ing non-trivial improvements with little additional cost. We

attribute this to combination of mean information, which is

also reported in [35, 41]. The parameter � in Eq. (11) is

set to 0.3 on FMD, UIUC, KTH-TIPS 2b and 0.1 on DTD,

Open Surfaces, respectively, by cross validation.

Robust estimation RoG-CNN outperforms Gau-CNN on all

databases and obtains more than 2.7% gains on average.

This big performance improvements demonstrate that the

proposed vN-MLE estimator has better capability to deal

with very high-dimensional data. The covariance estima-

tion will be further evaluated in Section 4.2.

Kernel mappings RAID-G-CNN-Hell and RAID-G-CNN-

Chi can achieve about 1.1% and 1.8% gains over RoG-CNN

on average, respectively. The improvement over RoG-CNN

demonstrates benefits of Gaussian descriptors constructed

in RKHS over those constructed in the original space. The

� 2 kernel mapping outperforms Hellinger’s while the latter

is more efficient. Notably, RAID-G with ���� and ��ℎ� can

improve Gaussian descriptors in the original space (Gau-

CNN) with LW estimator by about 3.8% and 4.5% on av-

erage, respectively. It indicates effectiveness of our EFM

and vN-MLE method in estimation of approximate infinite

dimensional Gaussian descriptors.

Comparison with state-of-the-arts From Table 2, we see

that RAID-G performs much better than deep CNN fea-

tures based methods [16, 11, 4], and has clear advantages

over FC, in which fully-connected (FC) layer outputs of

deep networks are fed to SVM for classification. More-

over, RAID-G outperforms FV-CNN and FC+FV-CNN, and

achieves the best results on all benchmarks except KTH-

TIPS 2b. RAID-G is slightly inferior to FV-CNN on KTH-

TIPS 2b database, but their results are comparable. Finally,

Methods FMD UIUC Material

Gau-CNN (LW) 81.3± 1.4 81.7± 2.9
Gau-CNN (Stein) 81.9± 0.7 82.2± 1.8
Gau-CNN (MMSE) 81.2± 1.2 80.9± 1.9
Gau-CNN (EL-SP) 81.5± 1.6 82.0± 2.3
RoG-CNN (vN-MLE) 83.6± 1.6 84.5± 1.8

Gau-CNN-Chi (LW) 83.1± 0.9 81.6± 4.1
Gau-CNN-Chi (Stein) 83.2± 0.8 83.6± 3.0
Gau-CNN-Chi (MMSE) 83.1± 0.8 82.0± 4.3
Gau-CNN-Chi (EL-SP) 83.2± 1.1 82.1± 3.1
RAID-G-CNN-Chi (vN-MLE) 84.9± 1.4 86.3± 2.9

Table 3. Comparison with various robust estimators on FMD and

UIUC material databases.

we mention that compared with [42, 40, 18, 22] employing

classical hand-crafted features, RAID-G with deep CNN

features achieves 10%∼20% improvements.

4.2. Effect of robust covariance estimation

Here, we compare the proposed vN-MLE with four ro-

bust covariance estimation methods (i.e. LW estimator [28],

Stein estimator [13], MMSE estimator [10] and elementary

sparse (EL-SP) estimator [52]) on FMD and UIUC material

database. The LW estimator is implemented by adding a

small scalar (1�−3 in our case) to diagonal elements of co-

variance. The Stein and MMSE estimators are implemented

as described in their respective papers. For EL-SP, we em-

ploy element-wise hard thresholding, and decide the value

of threshold by cross validation.

As Table 3 presents, in the original feature space, vN-

MLE outperforms LW, Stein, MMSE and EL-SP on FMD

and UIUC by over 1.7% and 2.3%, respectively. In

RKHS, the advantage of regularized MLE is still obvious

when approximate � 2 kernel mapping is used, particularly

on UIUC. These comparisons demonstrate that vN-MLE

is superior to the competing methods in the very high-

dimensional setting.

4.3. Comparison with explicit feature mappings

The explicit feature mappings result in analytic forms of

RAID-G. The mapping function of Hellinger’s kernel does

4438



Methods FMD UIUC Material

RAID-G-CNN-rFt (1x) 79.7± 1.6 80.6± 2.2
RAID-G-CNN-rFt (3x) 80.6± 2.3 81.8± 2.7
RAID-G-CNN-Nystr�̈m (1x) 82.2± 2.2 83.3± 3.1
RAID-G-CNN-Nystr�̈m (3x) 82.8± 1.9 84.0± 2.7
RAID-G-CNN-Hel 84.4± 1.3 85.7± 2.1
RAID-G-CNN-Chi 84.9± 1.4 86.3± 2.9

CDL��� [17] - 47.4± 3.1
CDL������̈� [17] - 46.3± 2.6

Table 4. Effects of various feature mappings on FMD and UIUC

material database.

not change the dimension of the original features (1x), and

that of � 2 kernel increases the dimension to 3 times that

of the original ones (3x). We compare with two common

mappings, i.e., rFt and Nystr�̈m method on FMD and UIUC

material database. For fair comparison, we set the dimen-

sions of the mapping features in rFt and Nystr�̈m method

to 1x and 3x, respectively, and use the Gaussian descriptors

(identified as SPD matrices using Eq. (11)). Note that larger

number of basis in rFt and Nystr�̈m method is unaffordable

due to rapidly growing dimensions of the mapping features.

We implement both rFt and the Nystr�̈m method with the

RBF kernels, whose bandwidths � are set as 3�2 and 1�2
on FMD and UIUC, respectively, by cross-validation.

The comparison results are shown in Table 4, it can

be seen that our methods always outperform rFt and the

Nystr�̈m method. The rFt produces unsatisfactory results

as a large number of random projections are required for

better approximation, as mentioned in [47]. The Nystr�̈m
method achieves favorable results, but it is data-dependent

requiring a training stage. Finally, we mention that the pro-

posed RAID-G-CNN achieves about 40% gains over the ap-

proximate infinite dimensional covariance descriptors with

hand-crafted features [17].

4.4. Comparison with infinite dimensional covari-
ance

Using the KTH-TIPS 2b database, we compare with two

infinite dimensional covariance descriptors [23, 20] which

are closely related to RAID-G. Following the settings in

[23, 20], we randomly choose three samples per subset in

each class for training and the remaining for testing. Mean-

while, we also compute RAID-G with 23D hand-crafted

features, which consists of �, �, � color intensities and

20 Gabor filters with 4 orientations and 5 scales. We

adopt a linear SVM to RAID-G with both hand-crafted fea-

tures and deep CNN features. Note that, although hand-

crafted features are not histogram-like ones, their elements

always are nonnegative so we can compute RAID-G with

the Hellinger’s and � 2 kernel mappings.

The results of the baseline, namely, covariance descrip-

tors in the original space with Log-Euclidean metric and

Methods Accuracy (in %)

RAID-G-Hel (23D Handcrafted features) 78.8± 4.8
RAID-G-Chi (23D Handcrafted features) 78.2± 4.7
RAID-G-CNN-Hel 89.0± 5.4
RAID-G-CNN-Chi 89.3± 4.5

Log-E RBF (baseline) (23D Handcrafted features) 74.1± 7.4
Harandi et al. [23] (23D Handcrafted features) 80.1± 4.6
Log-HS [20] (23D Handcrafted features) 81.9± 3.3

Table 5. Comparison with infinite dimensional covariance descrip-

tors on KTH-TIPS 2b database. We randomly select three training

samples for per subset in each class and the remaining for testing.

Combination of the CNN features with the methods in [23, 20] will

be computationally prohibitive (see complexity analysis therein).
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Figure 2. Accuracy against � in vN-MLE method with RAID-G-

CNN-Chi on FMD.

RBF kernel SVM, and two infinite dimensional covari-

ance descriptors [23, 20] in Table 5 are duplicated from

[20]. When hand-crafted features are used, RAID-G and the

methods in [23, 20] all significantly outperform the base-

line. The methods in [23, 20] are slightly better than RAID-

G. However, if employing high dimensional deep CNN fea-

tures, RAID-G achieves more than 7% improvements over

infinite dimensional covariance descriptors [23, 20], where

CNN features cannot be used due to unaffordable cost (see

complexity analysis therein). The gains over [17, 23, 20] in

Table 4 and Table 5 demonstrate that RAID-G can flexibly

handle high dimensional deep CNN features while bringing

significant performance improvement.

4.5. Effect of � in vN-MLE

Our vN-MLE method has only one parameter �, which

makes a tradeoff for the degree of regularization based on

the von Neumann divergence. Here, we assess the effect of

� in Eq. (10) on classification performance. We use RAID-

G-CNN-Chi as image representation and FMD for evalua-

tion. The results are illustrated in Fig. 2. We can see that

the best result (84.9%) is achieved at � = 0.75, and the ac-

curacy does not change much for � = [0.3 ∼ 0.9], which

indicates that vN-MLE is insensitive in a wide range of �.

We set � to 0.75 throughout all our experiments.
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Databases Log-Euclidean metric F-norm △+/△−

FMD 82.3± 1.3 84.4± 1.3 +2.1
UIUC Material 80.6± 4.3 85.7± 2.1 +5.1
KTH-TIPS 2b 79.0± 2.0 80.4± 1.2 +1.4
DTD 69.1± 0.9 75.8± 1.4 +6.7
Open Surfaces 57.9 60.3 +2.4
CUB200-2011 75.6 81.4 +5.8

Table 6. Comparison of Log-Euclidean metric and F-norm dis-

tance with RAID-G-CNN-Hel on various benchmarks.

4.6. Comparison of metrics between covariances

The Log-Euclidean metric and F-norm are two kinds of

decoupled metrics for matching covariance matrices. We

compare them by using RAID-G-CNN-Hel as image repre-

sentation on various benchmarks. The comparison results

are shown in Table 6. It can be seen that F-norm is superior

to Log-Euclidean metric on all benchmarks, and achieves

about 4% gains on average. The reason for the inferior per-

formance of Log-Euclidean metric may be that logarithm

of eigenvalues in the Log-Euclidean metric harm the effect

of shrinkage in the proposed vN-MLE. Note that the focus

of this paper is on robust estimation for approximate infi-

nite dimensional Gaussians, so a full evaluation of different

metrics between covariance matrices is beyond our scope.

5. Application to fine-grained recognition

Finally, we apply RAID-G-CNN to fine-grained recog-

nition problem in order to assess the generality of our meth-

ods. Note that we do not use any part detection meth-

ods, bounding box and fine-tuning of CNN models. We

employ Bird CUB200-2011 database including 11,788 im-

ages from 200 species [48]. It is a challenging benchmark

with large intra-class variation and small inter-class varia-

tion. We report accuracy on the provided training/testing

split. The results are illustrated in Fig. 3, and we can

see that our RAID-G-CNN significantly outperforms FC

and FV-CNN. Moreover, without bounding box and fine-

tuning technique, RAID-G-CNN is superior to state-of-the-

art methods specifically designed for fine-grained recogni-

tion, e.g. [26] where segmentation, alignment and part mod-

els based on eight-layer CNNs are exploited, and [33] where

an eight-layer CNN and sixteen-layer CNN are combined.

The results on the fine-grained problem indicate that RAID-

G has potential in diverse vision tasks.

6. Conclusion

In this paper, we study the problem of robust estimation

of approximate infinite dimensional Gaussians. To our best

knowledge, our work is among the first which constructs

Gaussian or approximate infinite dimensional Gaussian us-

ing very high-dimensional features (e.g. CNN features of

512 dimension), and which reveals, through the proposed

Figure 3. Results of different methods on Bird CUB200-2011

database without part detection, bounding box and fine-tuning.

Note that by using bounding box and fine-tuning, Krause et al.

[26] and B-CNN [33] can achieve 82.8% and 85.1%, respectively.

vN-MLE method, the crucial influence of robust estimation

on high dimensional Gaussian descriptors. Our RAID-G

achieves very competitive results on most of the material

benchmarks. The feature mappings we introduced are gen-

eral and can be used in other types of approximate infinite

dimensional descriptors. The vN-MLE method is suitable

for high dimensional covariance estimation, which can be

extended to high dimensional mixture model estimation,

such as Gaussian mixture model. In future, we will apply

RAID-G to a diversity of computer vision tasks.

References

[1] R. Arandjelovic and A. Zisserman. Three things everyone

should know to improve object retrieval. In CVPR, 2012.

[2] V. Arsigny, P. Fillard, X. Pennec, and N. Ayache. Fast and

simple calculus on tensors in the Log-Euclidean framework.

In MICCAI, 2005.

[3] S. Bell, P. Upchurch, N. Snavely, and K. Bala. Opensur-

faces: a richly annotated catalog of surface appearance. ACM

TOG., 32(4):1–17, 2013.

[4] S. Bell, P. Upchurch, N. Snavely, and K. Bala. Material

recognition in the wild with the materials in context database.

In CVPR, 2015.

[5] P. J. Bickel and E. Levina. Regularized estimation of large

covariance matrices. The Annals of Statistics, 2006.

[6] B. Caputo, E. Hayman, and P. Mallikarjuna. Class-specific

material categorisation. In ICCV, 2005.

[7] J. Carreira, R. Caseiro, J. Batista, and C. Sminchisescu. Free-

form region description with second-order pooling. IEEE

TPAMI, 37(6):1177–1189, 2015.

[8] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support

vector machines. ACM TIST, 2(3):27, 2011.

[9] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman.

Return of the devil in the details: Delving deep into convo-

lutional nets. In BMVC, 2014.

[10] Y. Chen, A. Wiesel, Y. C. Eldar, and A. O. Hero. Shrink-

age algorithms for mmse covariance estimation. IEEE TSP,

58(10):5016–5029, 2010.

4440



[11] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and

A. Vedaldi. Describing textures in the wild. In CVPR, 2014.

[12] M. Cimpoi, S. Maji, and A. Vedaldi. Deep filter banks for

texture recognition and segmentation. In CVPR, 2015.

[13] M. J. Daniels and R. E. Kass. Shrinkage estimators for co-

variance matrices. Biometrics, 57(4):1173–1184, 2001.

[14] I. S. Dhillon and J. A. Tropp. Matrix nearness problems

with bregman divergences. SIAM J. MAP, 29(4):1120–1146,

2008.

[15] M. Dixit, S. Chen, D. Gao, N. Rasiwasia, and N. Vascon-

celos. Scene classification with semantic Fisher vectors. In

CVPR, 2015.

[16] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang,

E. Tzeng, and T. Darrell. Decaf: A deep convolutional acti-

vation feature for generic visual recognition. In ICML, 2014.

[17] M. Faraki, M. Harandi, and F. Porikli. Approximate infinite-

dimensional region covariance descriptors for image classi-

fication. In ICASSP, 2015.

[18] M. Faraki, M. Harandi, and F. Porikli. Material classification

on symmetric positive definite manifolds. In WACV, 2015.

[19] Y. Gong, L. Wang, R. Guo, and S. Lazebnik. Multi-scale

orderless pooling of deep convolutional activation features.

In ECCV, 2014.

[20] M. Ha Quang, M. San Biagio, and V. Murino. Log-

Hilbert-Schmidt metric between positive definite operators

on Hilbert spaces. In NIPS, 2014.

[21] L. Haran, R. Rosenholtz, and E. H. Adelson. Material per-

ception: What can you see in a brief glance? Journal of

Vision, 9(8):784, 2009.

[22] M. T. Harandi, M. Salzmann, and R. Hartley. From manifold

to manifold: Geometry-aware dimensionality reduction for

SPD matrices. In ECCV, 2014.

[23] M. T. Harandi, M. Salzmann, and F. M. Porikli. Bregman

divergences for infinite dimensional covariance matrices. In

CVPR, 2014.

[24] M. E. Hussein, M. Torki, M. A. Gowayyed, and M. El-Saban.

Human action recognition using a temporal hierarchy of co-

variance descriptors on 3D joint locations. In IJCAI, 2013.

[25] S. Jayasumana, R. I. Hartley, M. Salzmann, H. Li, and M. T.

Harandi. Kernel methods on Riemannian manifolds with

Gaussian RBF kernels. IEEE TPAMI, 37:2464–2477, 2015.

[26] J. Krause, H. Jin, J. Yang, and L. Fei-Fei. Fine-grained

recognition without part annotations. In CVPR, 2015.

[27] B. Kulis, M. A. Sustik, and I. S. Dhillon. Low-rank kernel

learning with Bregman matrix divergences. JMLR, 10:341–

376, 2009.

[28] O. Ledoit and M. Wolf. A well-conditioned estimator for

large-dimensional covariance matrices. JMA, 88(2):365–

411, 2004.

[29] P. Li and Q. Wang. Local Log-Euclidean covariance matrix

(L2ECM) for image representation and its applications. In

ECCV, 2012.

[30] P. Li, Q. Wang, and L. Zhang. A novel Earth Mover’s Dis-

tance methodology for image matching with Gaussian mix-

ture models. In ICCV, 2013.

[31] P. Li, Q. Wang, W. Zuo, and L. Zhang. Log-Euclidean ker-

nels for sparse representation and dictionary learning. In

ICCV, 2013.

[32] Z. Liao, J. Rock, Y. Wang, and D. Forsyth. Non-parametric

filtering for geometric detail extraction and material repre-

sentation. In CVPR, 2013.

[33] T. Lin, A. RoyChowdhury, and S. Maji. Bilinear CNN mod-

els for fine-grained visual recognition. In ICCV, 2015.

[34] M. Lovric, M. Min-Oo, and E. A. Ruh. Multivariate nor-

mal distributions parametrized as a Riemannian symmetric

space. JMVA, 74(1):36–48, 2000.

[35] H. Nakayama, T. Harada, and Y. Kuniyoshi. Global Gaussian

approach for scene categorization using information geome-

try. In CVPR, 2010.

[36] M. A. Nielsen and I. L. Chuang. Quantum Computation and

Quantum Information. Cambridge University Press, 2011.

[37] F. Perronnin, J. Sánchez, and Y. Liu. Large-scale image cat-

egorization with explicit data embedding. In CVPR, 2010.

[38] F. Porikli, O. Tuzel, and P. Meer. Covariance tracking using

model update based on Lie algebra. In CVPR, 2006.

[39] A. Rahimi and B. Recht. Random features for large-scale

kernel machines. In NIPS, 2007.

[40] J. Sanchez, F. Perronnin, T. Mensink, and J. Verbeek. Image

classification with the Fisher vector: Theory and practice.

IJCV, 105(3):222–245, 2013.

[41] G. Serra, C. Grana, M. Manfredi, and R. Cucchiara. GOLD:

Gaussians of local descriptors for image representation.

CVIU, 134:22–32, 2015.

[42] L. Sharan, C. Liu, R. Rosenholtz, and E. H. Adelson. Recog-

nizing materials using perceptually inspired features. IJCV,

103(3):348–371, 2013.

[43] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In ICLR, 2015.

[44] O. Tuzel, F. Porikli, and P. Meer. Region covariance: A fast

descriptor for detection and classification. In ECCV, 2006.

[45] O. Tuzel, F. Porikli, and P. Meer. Pedestrian detection

via classification on Riemannian manifolds. IEEE TPAMI,

30(10):1713–1727, 2008.

[46] A. Vedaldi and K. Lenc. MatConvNet – convolutional neural

networks for MATLAB. In ACMM, 2015.

[47] A. Vedaldi and A. Zisserman. Efficient additive kernels via

explicit feature maps. IEEE TPAMI, 34(3):480–492, 2012.

[48] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.

The Caltech-UCSD Birds-200-2011 Dataset. Technical re-

port, 2011.

[49] R. Wang, H. Guo, L. S. Davis, and Q. Dai. Covariance dis-

criminative learning: A natural and efficient approach to im-

age set classification. In CVPR, 2012.

[50] C. K. I. Williams and M. Seeger. Using the Nyström method

to speed up kernel machines. In NIPS, 2001.

[51] J.-H. Won, J. Lim, S.-J. Kim, and B. Rajaratnam. Condition-

number-regularized covariance estimation. J. R. Statist. Soc.

B, 75(3):427–450, 2013.

[52] E. Yang, A. Lozano, and P. Ravikumar. Elementary esti-

mators for sparse covariance matrices and other structured

moments. In ICML, 2014.

[53] S. K. Zhou and R. Chellappa. From sample similarity to en-

semble similarity: Probabilistic distance measures in repro-

ducing kernel Hilbert space. IEEE TPAMI, 28(6):917–929,

2006.

4441


