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Abstract

Markov Random Fields (MRFs) are a widely used graph-

ical model, but the inference problem is NP-hard. For

first-order MRFs with binary labels, Dead End Elimination

(DEE) [7] and QPBO [2, 14] can find the optimal label-

ing for some variables; the much harder case of larger la-

bel sets has been addressed by Kovtun [16, 17] and related

methods [12, 23, 24, 25], which impose substantial com-

putational overhead. We describe an efficient algorithm to

correctly label a subset of the variables for arbitrary MRFs,

with particularly good performance on binary MRFs. We

propose a sufficient condition to check if a partial labeling

is optimal, which is a generalization of DEE’s purely local

test. We give a hierarchy of relaxations that provide larger

optimal partial labelings at the cost of additional computa-

tion. Empirical studies were conducted on several bench-

marks, using expansion moves [4] for inference. Our algo-

rithm runs in a few seconds, and improves the speed of MRF

inference with expansion moves by a factor of 1.5 to 12.

1. Introduction

We address the inference problem for pairwise Markov

Random Fields (MRFs) defined over n variables x =
(x1, . . . , xn), where each xi is labeled from a discrete la-

bel set Li. There is an energy function E(x) that we wish

to minimize given a set of parameters θ; θ characterizes

the unary costs θi : Li 7→ R
+ and the pairwise costs

θij : Li × Lj 7→ R
+. The energy function is

E(x) =
∑

i∈V

θi(xi) +
∑

(i,j)∈E

θij(xi, xj) (1)

where G = (V,E) is the graph representation of the MRF.

The MRF inference problem is to find x∗ =
argminx E(x), which is equivalent to finding the MAP es-

timate. This is widely used in applications such as image

segmentation, stereo, etc [11, 26]. Unfortunately the MRF

Method Handles |L| > 2? Bottleneck

Our method Yes None

DEE [7] Sometimes None

QPBO [2] No max-flow

Kovtun [16, 17] Yes max-flow

MQPBO [12] Yes max-flow

Swoboda [25] Yes LP, MRF inference

Shekhovtsov [23] Yes LP

Shekhovtsov [24] Yes LP, MRF inference

Table 1. Partial optimality algorithms. The bottleneck column in-

dicates any subroutine with complexity significantly greater than

linear time.

inference problem is NP-hard even when |L| = 2 (i.e. bi-

nary labels) [15].

1.1. Optimal partial labelings

A popular approach to the inference problem is to try to

find the optimal labeling for a subset of the variables [10,

12, 13, 22, 23, 24, 25, 28]. A partial labeling that holds

in every global minimizer is said to be persistent [2]. An

optimal labeling for a subset of the variables can be used to

reduce the difficulty of the inference problem, or can be the

basis for a variety of heuristics such as QPBO-I [21].

Techniques like QPBO [2, 14] find an optimal partial

labeling by seeking an even stronger condition, namely a

partial labeling which will not increase the energy if it is

applied to any complete labeling. QPBO in particular is

widely used in computer vision since it often finds the cor-

rect label for the vast majority of the variables.

Algorithms for finding optimal partial labelings are sum-

marized in Figure 1 and discussed in Section 2. Except for

Dead End Elimination (DEE) [7] they all impose significant

computational costs, using max flow, linear programming or

both. Our technique generalizes DEE, and has significantly

better performance experimentally.
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1.2. Contributions and outline

In this paper, we address the problem of finding an opti-

mal partial labeling as efficiently as possible. We propose a

condition to guarantee that a labeling is part of every global

minimizer, and represent this condition as a system of lin-

ear inequalities. We establish a hierarchy of relaxations of

the original system and derive a family of tractable suffi-

cient conditions. We then propose an efficient algorithm to

find a set of variables satisfying the corresponding condi-

tions. Using the loosest condition in the relaxation hierar-

chy, we can find a globally optimal subset of variables by

running a small number of iterations, each of which takes

O(|V | + |E|) time; this is very efficient compared to the

O(|V |2|E|) running time of max-flow.1 The hierarchy of

relaxations allow us to trade off between the running time

and the number of variables optimally labeled. Our meth-

ods perform particularly well on binary MRFs. We conduct

experiments on a variety of vision applications and obtain

promising experimental results. In particular, when inte-

grated into expansion moves [4] as the MRF inference algo-

rithm our technique labels a large number of variables with

minimal overhead, thus producing a substantial speedup.

We review the literature in Section 2. The proposed al-

gorithm is given in Section 3. Experimental results are il-

lustrated in Section 4. Additional experimental results and

all the detailed proofs are provided in the supplementary

material.

2. Related Work

Empirical studies of MRF inference approaches can be

found in [11, 26]. Since the problem is NP-hard in gen-

eral these techniques find approximate solutions. Rapidly

determining the optimal labels for a subset of the variables

would obviously be of great utility. Existing methods are

summarized in Table 1.

Optimal partial labelings are commonly used in conjunc-

tion with graph cuts, a technique that achieves strong perfor-

mance on both binary and multilabel MRF inference [26].

Graph cuts handle binary MRFs by reduction to min-cut,

which is then solved via max-flow (see [2, 8] for reviews).

The most widely used graph cut methods for multi-label

MRF inference are move-making techniques, which gen-

erate a new proposal at each iteration and reduce the multi-

label problem into a series of binary subproblems (should

each pixel stick with the old label or switch to the new label

in the proposal) and then solved by max-flow/min-cut. Pop-

ular algorithms in this family include expansion moves [4]

and their generalization to fusion moves [19].

1To be precise, O(|V |+ |E|) is the running time of our inner subrou-

tine, which finds a globally optimal subset of variables that increases on

each iteration. In practice this needs to be run a very limited number of

times, as shown in the experimental results that run 5 iterations.

QPBO is a generalization of the binary graph cut reduc-

tion that uses max-flow to find an optimal partial labeling

[2, 14, 21]. The graph where max-flow is run is twice the

size of the original MRF, with 2|V | nodes and 2|E|+ 2|V |
edges. When the energy function is submodular2, then the

partial labeling is complete (i.e., it labels every pixel and is

a global minimizer). However, the computational expense

of running max-flow is non-trivial, and our goal is to find

substantially faster techniques. Note that the only meth-

ods with significantly better running time than max-flow are

DEE and our technique.

Kovtun [16, 17] proposed an approach to handle multi-

label MRFs by constructing a series of binary auxil-

iary problems and solve each of them via graph cuts.

MQPBO [12] and generalized roof duality [28] generalized

QPBO to multi-label cases. The computational costs for

these methods are all at least as large as max-flow.

Recently, Swoboda et. al. [25] use standard MRF infer-

ence algorithms to iteratively update the persistent variable

set. Shekhovtsov [23] formalized the problem to maxi-

mize the number of optimally labeled variables as an LP.

They also proposed to combine these two approaches to-

gether which can take advantage of both of them [24]. The

number of variables labeled by these approaches are signif-

icantly more than Kovtun’s approach and MQPBO. How-

ever, the running time of these approaches is significantly

longer, since these approaches involve solving complex pro-

gramming (either via standard MRF inference solver or LP

solver) iteratively.

Dead End Elimination (DEE) [7] is the only existing

method with cheaper computational costs than max-flow.

It checks a local sufficient condition which only involves a

single vertex and its adjacent edges. We will show in Sec-

tion 3.1 that this condition is a special case of the loosest

condition of our approach, hence our approach will always

label at least as many variables as DEE, with the same run-

ning time complexity. Experimental results confirm our ap-

proach can label substantially more variables than DEE.

An intuitive comparison of our technique with DEE is

provided in Figure 1. The most striking difference is that

DEE considers one individual variable at a time and poten-

tially rules out one of its labels; for binary problems, this

allows it to determine the globally optimal label for that

variable. Our method can determine whether a particular

label is optimal for a set of variables, and is not restricted

to binary labels. Note that when an entire set of variables

fails our sufficient condition for optimality, we shrink the

set, as shown in the middle figure. The crucial step in our

method is the second from the last one, highlighted with a

gray background, where a group of 6 variables is given their

optimal labels all at once.

2For every pairwise cost, we have θij(0, 0)+ θij(1, 1) ≤ θij(0, 1)+
θij(1, 0).
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…

Working set initialized Working set shrunk Working set converged

Working set initialized Update a pixel Update a pixel

…

Figure 1. Our method (top row) versus DEE (bottom row), running

on a binary-valued MRF with 16 variables. Optimally labeled vari-

ables are shown in red, while the working set is light blue. Green

variables fail the sufficient test to be optimally labeled. The key

step of each algorithm is highlighted with a grey background.

Methods that optimally label a subset of the variables can

obviously be used to accelerate MRF inference algorithms

such as expansion moves. For example, Radhakrishnan and

Su [20] used DEE while Alahari et. al. [1] applied Kovtun’s

approach.

3. Hierarchical Relaxation of Persistency

Notation and preliminaries Recall that we have n vari-

ables x1, . . . , xn in (1) and each variable xi takes its value

from a discrete label set Li. We will use x to represent the

vector (x1, . . . , xn) and xS to represent a subvector of x

with indices in S, where S ⊆ V . We will refer to x and

xS as a full labeling and partial labeling (w.r.t. S) respec-

tively. DefineLS = Πi∈SLi as the label space of xS , which

contains the special case where LV is the label space of x.

Given two partial labelings xA and xB where A and B are

disjoint, the partial labeling xA ⊕ xB defined on A ∪ B as

the composition of partial labelings xA and xB .3 We will

view overwriting a full labeling y with a partial labeling xS

as a special case of label composition, i.e., xS ⊕ yV \S .

The following definitions come from the literature on

pseudo-boolean optimization (see, e.g. [2]).

Definition 1. A partial labeling xS is persistent if

xS = x∗
S , ∀x∗ ∈ argminxE(x). (2)

Definition 2. A partial labeling xS is an autarky if

E(xS ⊕ zV \S) < E(yS ⊕ zV \S),

∀zV \S ∈ LV \S and ∀yS ∈ LS such that yS 6= xS . (3)

3Formally, y = xA ⊕ xB for disjoint A,B means that yi = (xA)i
when i ∈ A and yi = (xB)i when i ∈ B.

Persistency is the property that we seek, since it means

that a partial labeling assigns the optimal value to its vari-

ables. Autarky is a stronger condition, which states that

overwriting an arbitrary labeling with this partial labeling

will reduce the energy. Autarky clearly implies persistency,

and is tractable since it can be computed without knowing

the global minimizer(s) x∗. We will therefore use autarky as

a sufficient condition for persistency. Also note that for a set

S, if there exists a persistent partial labeling xS , it must be

unique. So we may also say the set S is persistent without

explicitly referring to its labeling.

We study two questions: 1) given the energy function

E(x) and partial labeling xS , determine if xS is persistent;

2) given the energy function E(x), find a persistent partial

labeling xS as large as possible, where the size of partial

labeling is defined by |S|. We will refer to these as the

persistency decision problem and persistency construction

problem respectively.

3.1. Persistency decision problem

Since there are exponentially many inequalities in (3),

it’s computationally intractable to examine them one by

one. Moreover, the persistency decision problem is NP-

complete [2] so that we cannot expect to check it exactly.

To handle it, we will establish a hierarchical relaxation of

the autarky inequality system (3), which gives us a family

of sufficient conditions to check persistency.

Define ∆E(yS ← xS | zV \S) := E(yS ⊕ zV \S) −
E(xS ⊕ zV \S) to be the energy change when we substitute

yS for xS . Let the index set A := {i ∈ S | yi 6= xi}
be the indices of variables we actually changed from xS to

yS . Then we know that ∆E(yA ← xA | xS\A, zV \S) =
∆E(yS ← xS | zV \S) and the autarky property in (3) is

equivalent to minzV \S∈LV \S
minyi 6=xi,i∈A ∆E(yA ← xA |

xS\A, zV \S) > 0 for all A ⊆ S,A 6= ∅. We expand the

definition of energy using (1) and cancel out the unchanged

terms. Then a further relaxation could be taken by pushing

the min operators into the summation:

min
zV \S∈LV \S

min
yi 6=xi,i∈A

∆E(yA ← xA | xS\A, zV \S)

≥
∑

i∈A

min
yi 6=xi

(

θi(yi)− θi(xi)
)

+
∑

ij∈(A,S\A)

min
yi 6=xi

(

θij(yi, xj)− θij(xi, xj)
)

+
∑

ij∈(A,V \S)

min
yi 6=xi,zj∈Lj

(

θij(yi, zj)− θij(xi, zj)
)

+
∑

ij∈(A,A)

min
yi 6=xi,yj 6=xj

(

θij(yi, yj)− θij(xi, xj).
)

(4)

Here ij ∈ (A,B) is short for {(i, j) ∈ E | i ∈ A, j ∈ B}.
In order to simplify the notation in (4), we define a short-
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Figure 2. The terms in our relaxation (4). To prove the persistency

of the partial labeling xS , we show that every subset A ⊆ S meets

certain conditions. All the variables in A change from their values

in xS , the variables in S\A stay the same, and the ones in V \S
are arbitrary.

hand for each term inside the summation as follows:

δi(xi) := min
yi 6=xi

θi(yi)− θi(xi)

δiij(xi, xj) := min
yi 6=xi

(θij(yi, xj)− θij(xi, xj))

δiij(xi, .) := min
yi 6=xi,zj∈Lj

(θij(yi, zj)− θij(xi, zj))

δ
ij
ij (xi, xj) := min

yi 6=xi,yj 6=xj

(θij(yi, yj)− θij(xi, xj))

(5)

The relationship between A, S and V and the nota-

tion we introduced in (5) is illustrated in Figure 2. Note

that all the unary terms and pairwise terms inside V \A
are unchanged. So δi(xi), which is the minimum energy

change (possibly negative) in unary cost θi inside A, and

δ
ij
ij (xi, xj), δ

i
ij(xi, xj), δ

i
ij(xi, .), which are the minimum

energy change in pairwise cost θij inside A and crossing

the boundary of A respectively, are the only terms we need

to focus on.4

Now we can summarize our analysis above to obtain our

first relaxation of the sufficient conditions.

Theorem 3. The partial labeling xS is persistent if:
∑

i∈A

δi(xi) +
∑

ij∈(A,S\A)

δiij(xi, xj) +
∑

ij∈(A,V \S)

δiij(xi, .)+

∑

ij∈(A,A)

δ
ij
ij (xi, xj) > 0, ∀A ⊆ S,A 6= ∅.

(6)

Note that there are still O(2|S|) inequalities in (6). To

further relax it, we will focus on testing the persistency of

an independent local minimum (ILM) labeling defined as

follows.

Definition 4 (Independent local minimum labeling). A par-

tial labeling xS is called an independent local minimum if

it minimizes each pairwise term θij such that i, j ∈ S.

4In general, our notation δBA (xA) represents the smallest energy

change for one term θA with initial labeling xA, minimizing over all dif-

ferent values of all the variables in B. Sometimes we need to consider

variables not in B to have arbitrary values, which we represent with a pe-

riod. For the unary term, the superscript in δii(xi) is redundant, hence

omitted.

Recall that, as shown in Figure 1, our method considers

an input labeling and then shrinks it, while DEE considers

a single pixel at a time. Our input must be an ILM label-

ing, and the larger the better. Fortunately we will show in

Section 3.3 that we can easily construct large ILM labelings

for the vast majority of MRFs used in vision, and can also

guarantee an ILM labeling of at least size 2 for an arbitrary

MRF. So even in the worst case we retain our advantage

over DEE.

The direct benefit from the ILM labeling assumption is

we have δiij(xi, xj) ≥ 0 and δ
ij
ij (xi, xj) ≥ 0 by definition.

Now we can obtain a hierarchy of relaxations to (6) as fol-

lows.

Theorem 5 (k-condition for S). The ILM partial labeling

xS containing at least k variables is persistent if ∀B ⊆
S, |B| = k ≥ 1, the following inequalities hold:

∑

i∈C

δi(xi) +
∑

ij∈(C,B\C)

δiij(xi, xj) +
∑

ij∈(C,V \S)

δiij(xi, .) > 0,

∀C ⊆ B,C 6= ∅

(7)

Proof. Here is a sketch to show (7) is a sufficient condition

to derive (6). More details can be found in the supplemen-

tary material.

For any A ⊆ S, 1 ≤ |A| ≤ k, we can pick arbitrary B ⊇
A, |B| = k and let C := A, then we have

∑

i∈A δi(xi) +
∑

ij∈(A,B\A) δ
i
ij(xi, xj)+

∑

ij∈(A,V \S) δ
i
ij(xi, .) > 0 from

(7). Combining with the fact that 1) (A,B\A) ⊆ (A,S\A)
and δiij(xi, xj) ≥ 0, 2) δ

ij
ij (xi, xj) ≥ 0, we get the desired

inequality in (6).

For any A ⊆ S, |A| > k, we know
∑

i∈B δi(xi) +
∑

ij∈(B,V \B) δ
i
ij(xi, .) > 0 from (7) (by choosing C :=

B). Now we pick all B ⊆ A, |B| = k and sum

up the previous inequality, we will have
∑

i∈A δi(xi) +
∑

ij∈(A,V \A) δ
i
ij(xi, .) > 0. Combining with the fact that

δ
ij
ij (xi, xj) ≥ 0 and δiij(xi, xj) ≥ 0, we have the desired

inequality in (6).

Our k-condition in (7) is a hierarchy of relaxations of

(6) for different k’s. There are
(

|S|
k

)

(2k − 1) inequalities in

the k-condition for S, hence it’s computationally efficient

to check when k is small. Meanwhile, the larger k is, the

more tightly (7) approximates (6). We thus obtain a tradeoff

between the complexity and accuracy of the relaxation by

varying k.

Now we will claim the sufficient condition to check per-

sistency in DEE is a special case of our 1-condition (i.e.,

k = 1). Note that our 1-condition says the constant partial

labeling xS is persistent if

δi(xi)+
∑

j∈S,(i,j)∈E

δiij(xi, xj)+
∑

j 6∈S,(i,j)∈E

δiij(xi, .) > 0, ∀i ∈ S,

(8)
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while the Goldstein condition used in DEE says5 that vari-

able xi is persistent if

δi(xi) +
∑

(i,j)∈E

δiij(xi, .) > 0. (9)

This is a special case of our 1-condition when S = {i}.
Thus, our 1-condition generalized DEE’s Goldstein condi-

tion from a single variable to an ILM partial labeling.

Approximating the k-condition Recall our k-condition

consists of
(

|S|
k

)

(2k− 1) inequalities, so checking them one

by one will become computationally intractable soon with

the growth of k. Therefore, we propose an approximate way

to check the k-condition that is very efficient in practice,

based on the following lemma.

Lemma 6. The ILM partial labeling xS is persistent if we

can partition S into disjoint subsets S =
⋃

t St and each St

satisfies the corresponding |St|-condition.

Proof. We will also provide a sketch to show this is a suffi-

cient condition of (6) here and defer the details to the sup-

plementary material.

For any non-empty A ⊆ S, we can define At := A∩St.

Then we know that A =
⋃

t At and all At are disjoint. Our

goal is to show
∑

i∈A δi(xi) +
∑

ij∈(A,S\A) δ
i
ij(xi, xj) +

∑

ij∈(A,A) δ
ij
ij (xi, xj) +

∑

ij∈(A,V \S) δ
i
ij(xi, .) is positive.

By dropping non-negative terms and rearranging things, we

can prove
∑

i∈A δi(xi) +
∑

ij∈(A,S\A) δ
i
ij(xi, xj) +

∑

ij∈(A,A) δ
ij
ij (xi, xj) +

∑

ij∈(A,V \S) δ
i
ij(xi, .) ≥

∑

t(
∑

i∈At
δi(xi) +

∑

ij∈(At,St\At)
δiij(xi, xj) +

∑

ij∈(At,V \St)
δiij(xi, .)) and we know the RHS is

positive due to each St satisfying the |St|-condition.

In practice, we can approximately test the k-condition

for k > 1 by doing an incremental breadth-first search style

greedy partition of S =
⋃

t St such that St are all disjoint,

|St| ≤ k, and St satisfies the |St|-condition, which is de-

scribed in Algorithm 1. The idea is for each single variable

i not satisfying the 1-condition, we will search for a subset

B containing i that can satisfy the 2-condition, 3-condition,

etc. The first found B will be added to our partition. Fi-

nally, we add all the left-over single variables satisfying the

1-condition into our partition and claim the remaining vari-

ables (i.e., U at the end of Algorithm 1) cannot be proved to

be persistent. Note this approximation is still a sound con-

dition guaranteed by Lemma 6, i.e., when U = ∅ at the end,

we know that xS is persistent.

5The original Goldstein condition is to claim one label cannot be per-

sistent, which is equivalent to say its opposite is persistent for the binary

case. For the multi-label case, we need to check |Li| − 1 labels cannot be

persistent, so that the remaining one is persistent.

Input: ILM partial labeling xS

U ← S; t← 0;

for i ∈ U s.t. {i} fails 1-condition test do

for k′ ← 2 to k do
Search for B ⊆ U s.t. i ∈ B, |B| = k′, B

satisfies k′-condition;

if find such a B then

t← t+ 1; St ← B; U ← U\B;

break;

end

end

end

for i ∈ U s.t. {i} satisfies 1-condition do

t← t+ 1; St ← {i}; U ← U\{i};
end

if U = ∅ then

return xS is persistent;

else

return U as the cause that xS fails the test;

end

Algorithm 1: Approximate k-condition Test

Input: Energy function E(x)
W ← ∅; xW ← ∅;
repeat

Construct a set of ILM partial labeling X
described in Section 3.3;

for xS ∈ X do

repeat

Test xS using k-condition;

if xS fails the test then

Find xi causing violation;

S ← S\{i};

end

until xS passes the test or S = ∅;
xW ← xW ⊕ xS ; W ←W ∪ S;

Li ← {(xS)i}, ∀i ∈ S;

end

until converge or after τ iterations;

return xW as the persistent partial labeling of E(x);
Algorithm 2: Persistency Construction

Theoretical connection to [23, 24, 25] The autarky prop-

erty in (3) is a special case of the improving mapping de-

scribed in [23]. Our sufficient conditions in (6) is a special

case of the partial optimality criterions described in [25].

However, checking the sufficient conditions in [23, 24, 25]

require a general MRF inference solver as a subroutine,

which is computational expensive. We proposed a set of

computational tractable sufficient conditions and approxi-

mation algorithm in (7), (8). Therefore, while the sufficient

conditions in [23, 24, 25] are tighter, our conditions can be
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checked more efficiently.

3.2. Persistency construction problem

In Section 3.1, we described a hierarchy of sufficient

conditions and their sound approximations to check persis-

tency of an ILM partial labeling. Now, we will use these

conditions as a subroutine to construct a persistent partial

labeling for a given energy E(x).
The method is shown in Algorithm 2. Assume we can

find a set of ILM partial labelings X as candidates (we de-

fer a discussion of how to do this until Section 3.3). For

each xS ∈ X , we adopt a shrinking scheme. We will apply

the k-condition test6 or its approximation to check the per-

sistency of xS . The test will either proves xS is persistent or

reports some B’s violating (7); we will shrink S by remov-

ing i ∈ B with the minimum δi(xi) +
∑

(i,j)∈E δiij(xi, .)
value for each violated B. If we apply our approximation to

the k-condition, we will remove the remaining variables in

U from S. We repeat this procedure until xS satisfies the k-

condition. Now we can composite all the persistent partial

labelings we found together. It’s easy to see the composition

of persistent partial labelings is still persistent by definition,

which proves that our algorithm is sound.

Finally, similar to the iterative idea in DEE, after deter-

mining xS to be persistent, we can update E(x) by fixing

xS without changing the minimizer. This in turn can poten-

tially find additional persistent variables. We iteratively run

the procedure described above until it converges or reaches

the pre-defined stopping parameter τ .

Let PDEE be the set of persistent variables DEE found,

and PPR the set of persistent variables our algorithm found

at convergence. Our algorithm always finds at least as many

persistent variables.

Theorem 7. PDEE ⊆ PPR for binary MRFs.

Proof. We prove this by contradiction. Suppose ∃xi ∈
PDEE, xi 6∈ PPR, then xi satisfies the 1-condition at conver-

gence of PR. This contradicts our assumption that PR has

converged, since we should have added xi into PPR. A de-

tailed proof is provided in the supplementary material.

Example We note that DEE is based on such a strong local

condition that it may fail even in extremely simple cases.

Consider a binary Potts MRF with two variables xi, xj

such that θi(0) = θj(0) = 0, θi(1) = θj(1) = a ≥
0, θij(0, 0) = θij(1, 1) = 0, θij(0, 1) = θij(1, 0) = b > a.

DEE cannot determine any of the variables to be persistent

while our approach will easily find that xi = xj = 0 is

a persistent partial labeling. Our experiments demonstrate

that our approach indeed finds significantly more persistent

variables than DEE.

6To be completely precise, for the corner case of a tiny labeling with

|S| < k, we would test the |S|-condition instead of the k-condition.

3.3. ILM labeling construction

In this section, we will show how to construct a candidate

set X of ILM partial labelings. Ideally, we want to start

Algorithm 2 with as large a partial labeling as possible. We

can show that for a wide family of energy functions used in

typical vision problem, we can efficiently find the maximum

ILM partial labeling, and even for an arbitrary MRF we can

guarantee an ILM partial labeling of at least size 2. We

consider three special cases that are widely used in vision:

weakly associative energies, binary submodular, and binary

non-submodular. Finally, we discuss the case of an arbitrary

multi-label MRF.

Definition 8 (Weakly associative energy). E(x) is called

weakly associative if all of its pairwise costs satisfy

θij(xi, xj) ≥ 0 and θij(xi, xj) = 0 when xi = xj .

Weakly associative: It’s easy to see that any constant la-

beling (i.e., all the variables take the same value) is ILM.

So for each label α, we can let S := {i | α ∈ Li} and

xS := ~α then put it into X .

Binary submodular: We use the reparameterization

scheme introduced in [14] to equivalently transform the en-

ergy function into a weakly associative one. Therefore, we

can put the maximum constant partial labeling with label 0

and 1 into our X .

Binary non-submodular: Again, we use the reparameter-

ization scheme introduced in [14]. Now, all the submod-

ular terms will be transformed to be weakly associative.

Meanwhile, all the supmodular terms will be transformed as

θij(0, 0) = θij(1, 1) = 0 and θij(0, 1) = θij(1, 0) = c < 0
with (0, 1) and (1, 0) as the local minimizer. Therefore,

in the ILM partial labeling, we want xi and xj to take the

same value when θij is submodular and to take different

values otherwise. We use a greedy approach7 to find a large

enough ILM partial labeling. After we find the first ILM

partial labeling, we can add it into X and iteratively run the

greedy algorithm on the remaining variables in V \S to find

more ILM partial labelings to be added into X .

Arbitary multilabel: The Potts model and truncated Lp

prior, the two most widely used multilabel pairwise terms

in vision, are weakly associative. Therefore, we can just

construct the maximum constant labeling for each label and

add them into X . For an arbitrary multi-label energy, it’s

hard to find the maximum ILM partial labeling. However,

we can still use the greedy algorithm we used in the binary

non-submodular case as a good heuristics in practice. This

will return multiple ILM partial labelings with size at least

2, which is still better than checking persistency on a single

variable as DEE does.

7Starting from xS = x1 ∈ L1, then for i = 2, 3, . . . , n, when we can

find xi ∈ Li such that compositing xi into xS is still ILM, then do so.
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4. Experiments

Approaches We will focus on three partial optimality

based preprocessing techniques in the experiment section,

namely DEE [20], Kovtun’s approach [16, 17] and our ap-

proach. They will be referred as DEE, KOVTUN and PR

(Persistency Relaxation) respectively. We will use PR-k

to refer our approach using k-conditions and PR-k-APX

when we use its approximation. We experimented with

MQPBO [12], but it was too slow to be competitive. LP-

based approaches [23, 24, 25] are also not considered due

to their computational overhead, which is documented in

[24]. We will apply α-expansion for MRF inference [4],

using the max-flow algorithm of [3]. We will refer to α-

expansion algorithm without any preprocessing technique

as α-EXP, which is the baseline against which we compare

all other approaches.

The α-expansion algorithm, like most move-making

techniques, reduces the multi-label MRF inference problem

to a series of binary MRF inference problems. Therefore,

we can either (1) apply partial optimality based preprocess-

ing techniques to the multi-label MRF directly and use α-

EXP to infer the remaining variables, or (2) in each iteration

of α-EXP, apply the preprocessing technique to the induced

binary MRF.8 We will refer to approach (1) as mDEE and

mPR, and to (2) as iDEE and iPR. As a small optimization,

for iDEE and iPR we only determined which variables do

not switch to the new label, except for on the first iteration

through the label set. Note that KOVTUN can only be used

in approach (1) since it degenerates to QPBO for the in-

duced binary problem, which is equivalent to the max-flow

problem α-EXP needs to solve in each iteration.

Dataset We conducted experiments on a variety of com-

puter vision benchmarks for MRF inference, including

brain-MRI [6], color segmentation [18], inpainting [5],

Middlebury MRF dataset (including stereo, image inpaint-

ing and photomontage tasks) [26] and scene decomposi-

tion [9]. All these datasets are wrapped in OpenGM2 [11]

and are available online. Table 2 briefly summarizes the

scale of each dataset. Note that the first three datasets use

the Potts model, so the binary subproblem is submodular,

while the last two have non-submodular (non-weakly asso-

ciative) subproblems.

Experimental Environment All the experiments were ex-

ecuted on a single machine with dual 3GHz Intel i7 Core

and 16GB 1600 MHz DDR3 memory.

Measurement We will evaluate the different approaches in

two respects. First, we report the improvement in overall

running time for the preprocessing and the inference on the

8We can also combine these two approaches, i.e., applying preprecess-

ing for both the multi-label MRF and each induced binary MRF. Our ex-

periments shows that it will only provide marginal improvement over only

applying preprocessing to each induced binary MRF, so we don’t report

the results in this paper.

Table 2. Dataset Description

Dataset |V | |L| # Instances

Brain MRI 785,540–1,413,972 5 8

Color Seg 76,800–86,400 3–12 9

Inpainting 14400 4 2

Middlebury 21,838–514,080 5–256 7

Scene Decomp 150–208 8 715

remaining undetermined variables. We use α-EXP as the

baseline and report the speedup for other methods compared

to α-EXP. The reported numbers are averaged over all in-

stances for each dataset. Second, we report the size of the

partial optimal labeling found by the various preprocessing

methods. The reported numbers are first averaged for each

iteration of α-EXP in each instance, then averaged over all

instances in one dataset.

Experimental results We summarize the experimental re-

sults on several benchmarks in Figure 3; the raw numbers

behind this figure are provided in the supplementary mate-

rial. Besides the baseline technique α-EXP we also show

results from iDEE and KOVTUN. Our approaches obtain

a 1.5x-12x speedup compared to α-EXP and label signifi-

cantly more variables than all other methods. For some spe-

cific instances, the speedup can be up to 40x; our speedup

numbers, of course, include the cost of pre-processing.

Note that KOVTUN was too slow on the Middlebury dataset

to be competitive, running at least 5x slower than the base-

line algorithm α-EXP. This suggests that when we have a

large label set, it’s very hard to compute partial optimality

on the multi-label MRF directly, which is a major limita-

tion of KOVTUN. We can also see PR-based methods find

significantly more persistent variables than all the baseline

methods. Per instance analysis indicates that our methods

are superior on almost all instances.

Figure 3 also illustrate the power of the relaxation hier-

archy we proposed. For example, on Color-Seg-n4 dataset,

iPR-1 finds 14% more partial persistent variables than

iDEE, iPR-2-APX finds additional 10% more than iPR-

1. The gap between iPR-3-APX and iPR-2-APX are less

significant, but still exists. It indicates that PR-based ap-

proaches significantly outperform the baseline DEE. The

further we utilize the hierarchy, the more variables we can

label, although the marginal gain is diminishing.

We also have run experiments with solving the multi-

label problem directly, described in the supplemental ma-

terial. In the multi-label setting our mPR-based methods

also outperforms mDEE. However, solving the induced bi-

nary problem via expansion moves generally seems to be a

better approach.

Our algorithms have one parameter, the maximum num-

ber of iterations τ . Figure 4 and 5 illustrate running DEE
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Figure 3. Performance of various methods in terms of speedup and percentage of persistent variables. Higher numbers indicate better

performance. Our three methods are at right, with numbers on the chart in bold. KOVTUN was too slow on the Middlebury-MRF dataset.
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and PR-based methods with different τ ’s on the Color-Seg-

n4 dataset. Similar results are achieved on other datasets,

which we report in the supplementary material. We can

see the persistent var ratio converges very quickly with

the growth of τ . In general, the overall running time de-

creases firstly and then increases due to it’s a tradeoff be-

tween the speed and the quality of the preprocessing step.

The proposed approach is not very sensitive to the choice
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Figure 5. Overall running time v.s. stopping parameter τ .

of this stopping parameter, low total running time can be

achieved in a very broad range. PR-based approaches sig-

nificantly outperform DEE and other baseline methods no

matter which τ we choose. Figure 3 was computed with

τ = 5, but other choices produce similar results.
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