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Abstract

Light-field cameras have recently emerged as a powerful

tool for one-shot passive 3D shape capture. However, ob-

taining the shape of glossy objects like metals, plastics or

ceramics remains challenging, since standard Lambertian

cues like photo-consistency cannot be easily applied. In this

paper, we derive a spatially-varying (SV)BRDF-invariant

theory for recovering 3D shape and reflectance from light-

field cameras. Our key theoretical insight is a novel analy-

sis of diffuse plus single-lobe SVBRDFs under a light-field

setup. We show that, although direct shape recovery is not

possible, an equation relating depths and normals can still

be derived. Using this equation, we then propose using

a polynomial (quadratic) shape prior to resolve the shape

ambiguity. Once shape is estimated, we also recover the re-

flectance. We present extensive synthetic data on the entire

MERL BRDF dataset, as well as a number of real exam-

ples to validate the theory, where we simultaneously recover

shape and BRDFs from a single image taken with a Lytro Il-

lum camera.

1 Introduction
Light-fields implicitly capture the 3D geometry and re-

flectance properties of a scene, but until recently, they have

been primarily used in rendering [12, 17]. In recent years,

light-field cameras have become popular (e.g. Lytro [1] and

Raytrix [22]), and their use for shape recovery in a single

shot has been demonstrated. However, most current depth

estimation methods support only Lambertian scenes, mak-

ing them unreliable for glossy surfaces.

In this paper, we present a depth and reflectance es-

timation algorithm that explicitly models spatially vary-

ing BRDFs (SVBRDFs) from light-field cameras (Fig. 1).

Since the problem is under-constrained, we assume a known

distant light source. We think of a light-field camera as

a multi-camera array (of virtual viewpoints), and follow

the shape estimation framework using camera motion pro-

posed by Chandraker [5, 6, 7]. We then show that in the

case of light-fields, shape cannot be directly recovered us-

ing [5, 6, 7] (Sec. 3). However, in many instances where

the BRDF depends on only the half-angle, we derive an

SVBRDF-invariant equation relating depths and normals

(Sec. 4).

(a) Light-field input (b) Our depth (c) PLC [26]

(d) SDC [25] (e) PSSM [13] (f) Lytro Illum

Figure 1: Comparison of depth estimation results of differ-

ent algorithms. We texture map the input image onto the

depth results, so we can clearly see where each method fails.

It can be seen that our method correctly handles the glossy

surface, while other methods generate visible artifacts, es-

pecially around the most specular parts.

After this equation is derived, we recover the shape by

applying a locally polynomial shape prior (Sec. 5.1). To

ease the optimization, we require the normal at one seed

pixel to be specified. Then, we solve for the BRDF deriva-

tives and integrate them to recover the reflectance (Sec. 5.2).

Finally, we demonstrate extensive real-world examples of

shape and reflectance estimation using commercial light-

field cameras (Figs. 1, 7, and 8). Our main contributions

are:

1) A generalization of optical flow to the non-Lambertian

case in light-field cameras (Secs. 3 and 4).

2) A depth estimation algorithm for light-field cameras

that handles diffuse plus specular 1-lobe BRDFs (Sec. 5.1).

3) A reflectance estimation approach that recovers

BRDFs for up to 2-lobes once shape is given (Sec. 5.2).

4) An extensive synthetic evaluation on the entire MERL

BRDF dataset [18] (Sec. 6, Figs. 5 and 6).

5) A practical realization of our algorithm on images

taken with the Lytro Illum camera (Sec. 6).

2 Related Work
Depth from Light-Field Cameras: Many depth estima-

tion methods for light-field cameras have been proposed.

However, most of them rely on the Lambertian assumption

and work poorly on glossy surfaces [9, 13, 15, 25, 29, 30,
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31]. Recently, there are some works that try to deal with

specularity. Tao et al. [27] proposed a clustering method

that eliminates specular pixels when enforcing photo con-

sistency. However, they attempt a binary classification of

pixels into either Lambertian or specular, which cannot han-

dle general glossy surfaces. A follow-up work [26] adopts

the dichromatic model and combines point and line consis-

tency to deal with Lambertian and specular surfaces respec-

tively. However, the dichromatic model fails to hold for

materials like metals [28]. Therefore, their method fails if

the BRDFs in different views do not lie on a line as in the

dichromatic model, which is discussed in Sec. 4.1. More-

over, line consistency is not robust if neighboring pixels

have a similar color. In contrast, our model can work on

general 1-lobe BRDFs, and can also recover reflectance in

addition to shape (Sec. 5.2), which has not been achieved

by previous light-field shape acquisition approaches.

Differential Motion Theory: Our theoretical contribu-

tions are most closely related to the differential theory pro-

posed by Chandraker [5, 6, 7]. He constructs a mathemat-

ical model to recover depth and reflectance using differen-

tial camera motion or object motion. Our work has three

major differences. First, in contrast to the differential mo-

tions he uses, which contain both translations and rotations,

we only have translations in light-field cameras. While this

changes the form of equations obtainable through differen-

tial motions, we show that a BRDF-invariant equation of

similar form as in [5, 6, 7] can still be obtained for half-

angle BRDFs (Sec. 4). Second, the work by Chandraker

then assumes a constant viewing direction (i.e., (0, 0,−1)⊤)

for all pixels to solve for depth directly. In contrast, for

our purely translational light-field setup, we must account

for viewpoint variations. This is necessary because if the

view directions do not differ between cameras, it inherently

implies photo-consistency in the Lambertian case. As we

show, accounting for viewpoint changes results in the in-

feasibility to directly obtain depth, and we try to solve the

BRDF-invariant equation by applying a polynomial shape

prior instead (Sec. 5.1). Finally, to obtain depth directly

Chandraker also assumes a homogeneous BRDF. Since we

are solving the BRDF-invariant equation instead of comput-

ing depth directly, this change also enables us to deal with

spatially-varying BRDFs.

BRDF Estimation: BRDF estimation has been stud-

ied for many years and different models have been pro-

posed [19]. Parametric models [20] can achieve good ac-

curacy by modeling the BRDF as a statistical distribution

on the unit sphere. Non-parametric [23, 24] and data-driven

methods [18] are also popular, but rely on complex esti-

mation or require a large amount of data. Semi-parametric

approaches [8, 16] have also been proposed.

For joint shape and BRDF estimation, the closest to our

work is [5] described above. Alldrin et al. [2] proposed an

alternating approach to recover both shape and BRDF under

light source motion. The work by Oxholm and Nishino [21]

also uses an alternating optimization over shape and re-

flectance under natural illumination. None of these methods

tries to recover shape or reflectance using camera motions,

and the techniques are not intended for light-field cameras.

Shape from Shading: Shape from shading has a long his-

tory. Since it is a very under-constrained problem, most

work assumes a known light source to increase feasibil-

ity [10, 33]. The method by Johnson and Adelson [14]

can estimate shape under natural illumination, but requires

a known reflectance map, which is hard to obtain. Barron

and Malik [3, 4] described a framework to recover shape,

illumination, reflectance, and shading from an image, but

many constraints are needed for both geometry and illumi-

nation. Since shape from shading is usually prone to noise,

recent methods [11, 32] assumed that the shape is locally

polynomial for a small patch, and thus increased robustness.

We adopt this strategy in our final optimization procedure.

However, note that our case is harder, since most shape from

shading methods are limited to Lambertian surfaces. In the

Lambertian case, if both the pixel value and the light source

are given, the normal must be lying on a cone around the

light direction. In our case, since the BRDF is an unknown

function, we do not have this condition.

3 Differential Stereo

Since light-field cameras can be considered as a multi-

camera array corresponding to the set of virtual viewpoints,

we first consider a simple two-camera case in Sec. 3.1. The

idea is then extended to a multi-camera array in Sec. 3.2.

Finally, the BRDF invariant equation is derived in Sec. 4.

3.1 Two-camera System

Consider a camera in the 3D spatial coordinates, where the
origin is the principal point of its image plane. The camera
is centered at p = (0, 0,−f)⊤, where f is the focal length
of the camera. Let β ≡ 1/f . Then for a perspective camera,

a 3D point x = (x, y, z)⊤ is imaged at pixel u = (u, v)⊤,
where

u =
x

1 + βz
, v =

y

1 + βz
. (1)

Let s be the known distant light source direction. Given

a 3D point x, let n be its corresponding normal, and v be its

(unnormalized) viewing direction from the camera center,

v = p − x. Then the image intensity at pixel u for the

camera at position p is

I(u, p) = ρ(x, n, s, v) (2)

where ρ is the BRDF function, and the cosine falloff term

is absorbed into ρ. Note that unlike most previous work,

ρ can be a general spatially-varying BRDF. Practical solu-

tions will require a general diffuse plus 1-lobe specular form

(Sec. 4), but the BRDF can still be spatially-varying.
Now suppose there is another camera centered at p + τ ,

where τ = (τx, τy, 0)
⊤. Also suppose a point at pixel u in

the first camera image has moved to pixel u + δu in the
second camera image. Since the viewpoint has changed,
the brightness constancy constraint in traditional optical
flow no longer holds. Instead, since the view direction
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has changed by a small amount τ and none of x, n, s has
changed, the intensities of these two pixels can be related
by a first-order approximation

I(u + δu, p + τ ) ∼= I(u, p) + (∇vρ)
⊤
τ (3)

We can also model the intensity of the second image by,

I(u + δu, p + τ ) ∼= I(u, p) + (∇uI)
⊤δu + (∇pI)

⊤
τ (4)

Note that (∇pI)
⊤τ is just the difference between the image

intensities of the two cameras, I2 − I1. Let ∆I = I2 − I1.
Combining (3) and (4) then gives

(∇uI)
⊤δu +∆I = (∇vρ)

⊤
τ (5)

Finally, since the second camera has moved by τ , all objects
in the scene can be considered as equivalently moved by
δx = −τ while assuming the camera is fixed. Using (1),
we can write

δu =
δx

1 + βz
=

−τ

1 + βz
(6)

Substituting this term for δu in (5) yields

(∇uI)
⊤ −τ

1 + βz
+∆I = (∇vρ)

⊤
τ (7)

Let Iu, Iv be the spatial derivatives of image I1. Then mul-
tiplying the vector form out in (7) gives

∆I = (∇vρ)xτx + (∇vρ)yτy + Iu
τx

1 + βz
+ Iv

τy
1 + βz

(8)

where (·)x and (·)y mean the x- and y-components of (·),
respectively.

An intuition for the above equation is given in Fig. 2.

Consider the 1D case where two cameras are separated by

distance τx. The 2D case can be derived similarly. First,

an object is imaged at pixel u on camera 1 and u′ on

camera 2. The difference of the two images at pixel u,

∆I(u) = I2(u) − I1(u) in Fig. 2a, will be the differ-

ence caused by the view change (from I1(u) to I2(u
′) in

Fig. 2b), plus the difference caused by the spatial change

(from I2(u
′) to I2(u) in Fig. 2c). The view change is mod-

eled by (∇vρ)x · τx, which is how the BRDF varies with

viewpoint multiplied by the view change amount. The spa-

tial change is modeled by Iu · τx/(1 + βz), which is the

image derivative multiplied by the change in image coordi-

nates. Summing these two terms gives (8) (Fig. 2d).

Compared with the work by Chandraker [5, 6, 7], we

note that since different system setups are considered, the

parameterization of the total intensity change in (3) is dif-

ferent. We believe this parameterization is more intuitive,

since it allows the above physical interpretation of the vari-

ous terms in the total intensity change.

3.2 Multi-camera System

We now move on to consider the case of a light-field
camera, which can be modeled by a multi-camera array.
For a multi-camera array with m + 1 cameras, we can
form m camera pairs using the central camera and each
of the other cameras. Let the translations of each pair be
τ 1, τ 2, ..., τm and the corresponding image differences be

Cam 1 Cam 2

Image
plane

z

f

Object 

u u

τx

τx

(a) Image diff I2(u)− I1(u)

Cam 1 Cam 2

Image
plane

z

f

Object 

u u'

τx

(b) View change

Cam 1 Cam 2

Image
plane

z

f

τx
1+βz

Object 

uu'

τx

τx

(c) Spatial change

Cam 1 Cam 2

Image
plane

z

f

τx
1+βz

Object 

u uu'

τx

τx

(d) Overall change

Figure 2: Optical flow for glossy surfaces. (a) The differ-

ence between two images at the same pixel position, is (b)

the view change plus (c) the spatial change. (d) Summing

these two changes gives the overall change.

∆I1,∆I2, ...,∆Im. Each pair will then have a stereo rela-
tion equation as in (8). We can stack all the equations and
form a linear system as























Iuτ
1

x + Ivτ
1

y τ1

x τ1

y

...

Iuτ
m
x + Ivτ

m
y τm

x τm
y













































1

1 + βz

(∇vρ)x

(∇vρ)y























=























∆I1

...

∆Im























. (9)

Let B be the first matrix in (9). If B is full rank,

given at least three pairs of cameras (four cameras in to-

tal), we would be able to solve for depth by a traditional

least squares approach. Unfortunately, it can easily be seen

that B is rank deficient, since the first column is a linear

combination of the other two columns. This should not be

surprising, since we only have two degrees of freedom for

translations in two directions, so the matrix is at most rank

two. Adding more cameras does not add more degrees of

freedom.1 However, adding more cameras does increase

the robustness of the system, as shown later in Fig. 3a. Fi-

nally, although directly solving for depth is not achievable,

we can still obtain a relation between depth and normals for

a specific form of the BRDF, which we derive next.

1Note that, adding translations in the z direction does not help either,

since moving the camera along the viewing direction of a pixel does not

change its pixel intensity (v/‖v‖ does not change), so ∇vρ · v = 0. Thus,

(∇vρ)z is just a linear combination of (∇vρ)x and (∇vρ)y , and adding it

does not introduce any new degree of freedom.
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4 BRDF-Invariant Derivation

We first briefly discuss the BRDF model we adopt

(Sec. 4.1), and then show how we can derive a BRDF

invariant equation relating depth and normals (Sec. 4.2).

A comparison between our work and the work by Chan-

draker [5, 6, 7] is given in Sec. 4.3.

4.1 BRDF model

It is commonly assumed that a BRDF contains a sum of

“lobes” (certain preferred directions). Thus, the BRDF can

be represented as a sum of univariate functions [8]:

ρ(x, n, s, v) =

K
∑

i=1

fx,i(n̂
⊤
α̂i) · (n̂

⊤
ŝ) (10)

where n̂ is the normalized normal, α̂i are some directions,

fx,i are some functions at position x, and K is the number of

lobes. For the rest of the paper, when we use ŵ to represent

a vector w, it means it is the normalized form of w.

The model we adopted is similar to the Blinn-Phong

BRDF; for each of the RGB channels, the BRDF is 1-lobe

that depends on the half-angle direction ĥ = (ŝ+v̂)/‖ŝ+v̂‖,

plus a diffuse term which is independent of viewpoint,

ρc(x, n, s, v) =
(

ρcd(x, n, s)+ρcs(x, n̂
⊤

ĥ)
)

·(n̂⊤
ŝ), c = r, g, b

(11)

For the work by Tao et al. [26], it is assumed that the

BRDFs of different views will lie on a line not passing the

origin in the RGB space. Taking a look at, e.g., the BRDFs

in Fig. 5, we can see that the BRDFs do not necessarily lie

on a line, and passing the origin is possible for the materials

whose diffuse components are not significant.

4.2 BRDF invariant

To derive the invariant, we first derive two expressions for

∇vρ, one using depth z and the other using normals n.

Combining these two expressions gives an equation which

contains only z and n as unknowns and is invariant to the

BRDF. We then show how to solve it for shape.

a. Expression using depth Continuing from (9), let

γγγ = B+(∆I), where B+ is the Moore-Penrose pseudoin-

verse of B. Then (9) has an infinite number of solutions,







1

1 + βz
(∇vρ)x
(∇vρ)y






= γγγ + λ





1
−Iu
−Iv



 (12)

with λ ∈ R. From the first row λ can be expressed as

λ =
1

1 + βz
− γ1 (13)

Thus, we can express (∇vρ)y/(∇vρ)x, which can be seen

as the direction of the BRDF gradient, as a function of z,

(∇vρ)y
(∇vρ)x

=
γ3 − λIv
γ2 − λIu

=
γ3 − ( 1

1+βz
− γ1)Iv

γ2 − ( 1

1+βz
− γ1)Iu

(14)

b. Expression using normals Next, using the BRDF

model in (11), in Appendix A we show that

∇vρ = ρ′s
n̂
⊤

H

‖ŝ + v̂‖(1 + βz)
√

u2 + v2 + f2
(15)

where ρ′s = ∂ρs/∂(n̂
⊤

ĥ) is an unknown function, and H ≡

(I − ĥĥ
⊤

)(I − v̂v̂
⊤) is a known 3× 3 matrix.

Since ρ′s is unknown, we cannot express ∇vρ as a func-

tion of n and z only. However, if we take the ratio between

the y-component and the x-component of ∇vρ correspond-

ing to the direction of the gradient, all unknowns except n

will disappear,

(∇vρ)y
(∇vρ)x

=
(n̂⊤

H)y

(n̂⊤
H)x

=
nxH12 + nyH22 −H32

nxH11 + nyH21 −H31

(16)

c. Combining expressions Equating the right-hand sides

of (16) and (14) for the direction of the gradient ∇vρ then

gives

γ3 − ( 1

1+βz
− γ1)Iv

γ2 − ( 1

1+βz
− γ1)Iu

=
nxH12 + nyH22 −H32

nxH11 + nyH21 −H31

(17)

which is an equation of z and n only, since γγγ is known and

H is known if s is known. Note that the spatially-varying

BRDF dependent terms have been eliminated, and it is only

possible for a single-lobe BRDF. Expanding (17) leads to

solving a quasi-linear partial differential equation (PDE)

(κ1 + κ2z)nx + (κ3 + κ4z)ny + (κ5 + κ6z) = 0 (18)

where κ1 to κ6 are constants specified in Appendix A. We

call this the BRDF invariant relating depths and normals.

Note that, in the case that ∇vρ is zero, γ2 and γ3 will be

zero for most solvers (e.g., mldivide in Matlab). Us-

ing the formulas for κ in Appendix A, (18) just reduces

to (γ1 − 1) + (βγ1)z = 0, and z can be directly solved.

This corresponds to the Lambertian case; the equation just

stands for the photo-consistency, where the left hand side

can be thought of as the intensity difference between differ-

ent views. In the specular case, the same point in different

views does not have the same intensity anymore; they differ

by (∇vρ)
⊤τ (3), which can be written as a function of n.

That is where the first two normal terms in (18) come from.

4.3 Discussion

Compared to the work of Chandraker [5, 6, 7], we note that

a similar BRDF invariant equation is derived. However, our

derivation is in the light field setup and lends better physi-

cal intuition (Fig. 2). Moreover, our resolution of the shape

ambiguity is distinct and offers several advantages. To be

specific, the work of Chandraker assumes a constant view-

ing direction over the image, which can generate one more

equation when solving the linear system (9), so directly

recovering depth is possible. However, we cannot adopt

5454



it under the light-field setup. Instead, we directly solve

the PDE, using a polynomial shape prior introduced next

(Sec. 5.1). Furthermore, a homogeneous BRDF is also as-

sumed in [5, 6, 7] to obtain depth directly. Our solution, on

the other hand, is capable of dealing with spatially-varying

BRDFs since we solve the PDE instead, as shown in the

following section. Finally, while [5, 6, 7] are very sensi-

tive to noise, we achieve robustness through multiple vir-

tual viewpoints provided by the light field (Fig. 3a) and the

polynomial regularization, as shown in the next section.

5 Shape and Reflectance Estimation

Given the BRDF invariant equation derived in Sec. 4,

we utilize it to solve for shape (Sec. 5.1) and reflectance

(Sec. 5.2) in this section.

5.1 Shape estimation

As shown in Appendix A, solving (18) mathematically re-

quires initial conditions, so directly solving for depth is not

possible. Several possible solutions can be used to address

this problem. We adopt a polynomial regularization, similar

to the approach proposed in [11, 32]. The basic idea is to

represent z and nx,ny as some shape parameters, so solv-

ing (18) can be reduced to solving a system of quadratic

equations in these parameters. Specifically, for an r × r
image patch, we assume the depth can be represented by a

quadratic function of the pixel coordinates u and v,

z(u, v) = a1u
2 + a2v

2 + a3uv + a4u+ a5v + a6 (19)

where a1, a2, ..., a6 are unknown parameters.
We now want to express normals using these parame-

ters as well. However, to compute nx = ∂z/∂x, we need
to know the x-distance between the 3D points imaged on
those two pixels, which is not given. Therefore, we cannot
directly compute nx and ny . Instead, we first compute the
normals in the image coordinate,

nu(u, v) =
∂z

∂u
= 2a1u+ a3v + a4

nv(u, v) =
∂z

∂v
= 2a2v + a3u+ a5

(20)

In Appendix B we show that normals in the world coor-
dinate nx are related to normals in the image coordinate nu

by

nx =
∂z

∂x
=

nu

1 + β(3z − 2a6 − a4u− a5v)
(21)

and ny is computed similarly. Thus, (18) can be rewritten
as
(κ1 + κ2z)nu + (κ3 + κ4z)nv

+ (κ5 + κ6z)
(

1 + β(3z − 2a6 − a4u− a5v)
)

= 0
(22)

Plugging (19)-(20) into (22) results in r2 quadratic equa-
tions in a1, ..., a6, one for each pixel in the patch,

[

a⊤ 1
]

Mi

[

a

1

]

= 0 i = 1, 2, ..., r2 (23)

where a =
[

a1 a2 a3 a4 a5 a6
]⊤

and Mi is a

7× 7 matrix.We then apply standard Levenberg-Marquardt
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(b) camera baseline (cm)

Figure 3: (a) Depth error vs. number of cameras (virtual

viewpoints) used. We add Gaussian noise of variance 10−4

on a synthetic sphere and test the performance when differ-

ent numbers of cameras are used. As the number of cameras

increases, the system becomes more robust. (b) Depth error

vs. camera baseline. Our method performs the best when

the baseline is between 0.01 cm to about 0.5 cm.

method to solve for the parameters. To avoid ambiguity we

require the normal at one seed pixel to be specified; in prac-

tice we specify the nearest point and assume its normal is

the −z direction. The shape parameters for other pixels in

the image are then estimated accordingly. For spatial coher-

ence we enforce neighboring pixels to have similar depths

and normals. Our final optimization thus consists of a data

term D that ensures the image patch satisfies the PDE, and

a smoothness term S that ensures neighboring normals and

depths (a4 to a6) are similar,

a = argmin
a

∑

i

D2

i + η
∑

j

S2

j (24)

where Di is computed by the left hand side of (23), and

Sj = aj − a0

j j = 4, 5, 6 (25)

where a0j is the average aj of its 4-neighbors that have al-

ready been computed, and η is the weight, which is 103 in

our experiment.

Finally, note that although theoretically, three cameras

are enough to solve for depth, in practice more cameras will

increase the robustness against noise, as shown in Fig. 3a.

Indeed, the multiple views provided by light-field cam-

eras are essential to obtaining high-quality results. More

cameras, along with the polynomial regularizer introduced

above, helps to increase the system robustness compared to

previous work [5, 6, 7]. Next, in Fig. 3b, we further test

the effect of different camera baselines. We vary the base-

line from 10−3 to 1 cm, and report their depth errors on a

synthetic sphere. As can be seen, our method achieves best

performance when the baseline is between 0.01 cm to 0.5

cm. When the baseline is too small, there is little difference

between adjacent images; when the baseline is too large, the

differential motion assumption fails. Note that the effective

baseline for Lytro Illum changes with focal length and fo-

cus distance, and is in the order of 0.01 to 0.1 cm, so our

method is well suited to the practical range of its baselines.
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5.2 Reflectance estimation

After the shape is recovered, reflectance can also be recov-

ered, similar to [5]. First, (∇vρ)x and (∇vρ)y can be ob-

tained using (12). Then (15) can be used to recover ρ′s.

Specifically, let k ≡ ‖ŝ + v̂‖(1 + βz)
√

u2 + v2 + f2, then

ρ′s = k(∇vρ)x/(n̂
⊤

H)x

= k(∇vρ)y/(n̂
⊤

H)y
(26)

In practice we just take the average of the two expressions

to obtain ρ′s. A final integration over n̂
⊤

ĥ then suffices to

generate ρs. Finally, subtracting ρs from the original image

gives the diffuse component (11). Note that although we

assumed a 1-lobe BRDF to obtain the depth information, if

shape is already known, then ρ can actually be 2-lobe since

two equations are given by the x- and y-component of (15).

Specifically, from (15) we have

(∇vρ)x = ρ′s,1mx + ρ′s,2qx

(∇vρ)y = ρ′s,1my + ρ′s,2qy
(27)

where ρ′s,1, ρ
′

s,2 are (unknown) derivatives of the two BRDF

lobes, and other variables are constants. Since we have two

unknowns and two equations, we can solve for the BRDFs.

6 Results

We validate our algorithm using extensive synthetic scenes

as well as real-world scenes. We compare our results with

two methods by Tao et al., one using point and line consis-

tency to deal with specularity (PLC) [26] and one that han-

dles diffuse only but includes the shading cue (SDC) [25].

We also compare with the phase-shift method by Jeon et

al. (PSSM) [13] and results by Lytro Illum. Since the pixel

clustering method by Tao et al. [27] has been superseded

by [26], we only include the comparison with [26] here.

Synthetic scenes For synthetic scenes, we use a 7 × 7
camera array of 30 mm focal length. We test on a sphere of

radius 10 cm positioned at 30 cm away from the cameras.

Figure 5 shows example results on materials in the MERL

BRDF dataset [18] on the sphere. Note that spheres are not

a polynomial shape (z =
√

r2 − x2 − y2). We provide a

summarized figure showing depth errors on different mate-

rial types in Fig. 4. It can be seen that our method achieves

good results on most material types except fabric, which

does not follow the half-angle assumption. However, for

all the material types, we still outperform the other state-of-

the-art methods. For PLC [26], although it tries to handle

glossy surfaces, the line consistency they adopted is not able

to handle general BRDFs. For SDC [25] and PSSM [13],

they are designed for Lambertian scenes and perform poorly

on glossy objects. Finally, to evaluate our reflectance recon-

struction we compute the ground truth BRDF curves by av-

eraging BRDFs for all given half-angles. It can be seen that

our curves look very similar to the ground truth BRDFs.

Next, we test our method on a sphere with a spatially-

varying BRDF, where we linearly blend two materials (alum
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Figure 4: Depth errors on different material types. Our

method achieves good results on all materials except fabric.

For all material types, we outperform the other methods.

bronze and green metal) from left to right (Fig. 6). In ad-

dition to recovering depth, we also compute the BRDFs for

each column in the image, and show results for two sam-

ple columns and a relighting example, where we accurately

produce results similar to the ground truth.

Real-world results We show results taken with the Lytro

Illum in Figs. 1, 7 and 8. In Fig. 7 we show reconstructed

shapes and BRDFs of objects with homogeneous BRDFs.

For objects that are symmetric, we obtain the ground truth

by surface of revolution using the outline curve in the im-

age, and compute the RMSE for each method. It can be

seen that our method realistically reconstructs the shape,

and achieves the lowest RMSE when ground truth is avail-

able. The recovered BRDFs also seem qualitatively correct,

e.g., for the bowling pin its BRDF has a very sharp spec-

ularity. In Figs. 1 and 8 we show results of objects with

spatially-varying BRDFs. Again, it can be seen that other

methods have artifacts or produce distorted shapes around

the specular regions, while our method realistically repro-

duces the shape.

7 Conclusions and Future Work

In this paper, we propose a novel BRDF-invariant shape

and reflectance estimation method for glossy surfaces from

light-field cameras. By utilizing the differential motion the-

ory, we show that direct shape recovery is not possible for

general BRDFs. However, for a 1-lobe BRDF that depends

only on half-angle, we derive an SVBRDF-invariant equa-

tion relating depth and normals. Using a locally polynomial

prior on the surface, shape can be estimated using this equa-

tion. Reflectance is then also recovered using our frame-

work. Experiments validate our algorithm on most mate-

rial types in the MERL dataset, as well as real-world data

taken with the Lytro Illum. Spatially-varying BRDFs can

also be handled by our method, while this is not possible

using [5, 6, 7]. Finally, since we showed that there is ac-

tually inherent ambiguity in light-fields for unknown shape

and general multi-lobe reflectance, future work includes de-

riving its ambiguity-space, i.e., what is the precise set of

shapes and reflectances that generates the same light-field.
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Figure 5: Shape and reflectance estimation results on example materials in the MERL dataset. For shape estimation, the

upper-left shows the recovered depth, while the lower-right shows the error percentage (hotter color means larger error).

For reflectance estimation, we show the recovered BRDF compared to ground truth curves.
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Figure 6: Shape and reflectance estimation results on a spatially-varying example in the MERL dataset. (a) Two materials,

alum bronze and green metal, are blended linearly from left to right. We reconstruct (b) the depth and (c)(d) the BRDFs

for each column, where two examples are shown at the red and green points specified in (a). Finally, we show a relighting

example in (e). The error percentage compared to (f) the ground truth is 3.20%.
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A Derivation of ∇vρ

Suppose ρ = (ρd(x, n, s)+ ρs(x, n̂⊤ĥ)) · (n̂⊤ŝ), where n̂⊤ŝ is the

cosine falloff term. Since n̂⊤ŝ is independent of v, it just carries
over the entire derivation and will be omitted in what follows. By
the chain rule we have

∇vρ =
∂ρs

∂(n̂⊤ĥ)

∂(n̂⊤ĥ)

∂v
= ρ′s

∂(n̂⊤ĥ)

∂v
= ρ′s

∂(n̂⊤ĥ)

∂ĥ

∂ĥ

∂v

= ρ′sn̂⊤
∂ĥ

∂v
= ρ′sn̂⊤

∂ĥ

∂h

∂h

∂v̂

∂v̂

∂v

(28)

Recall that for a vector w, ∂ŵ/∂w = (I − ŵŵ⊤)/‖w‖. Then

∂ĥ

∂h
=

I − ĥĥ
⊤

‖ŝ + v̂‖
,

∂v̂

∂v
=

I − v̂v̂⊤

‖v‖
(29)

And
∂h

∂v̂
=

∂(ŝ+v̂)

∂v̂
= I (30)

So (28) can be simplified as

∇vρ = ρ′sn̂
⊤ I − ĥĥ

⊤

‖ŝ + v̂‖
· I ·

I − v̂v̂⊤

‖v‖
(31)

Let H ≡ (I − ĥĥ
⊤

)(I − v̂v̂⊤), and note that

‖v‖ = ‖(0, 0,−f)⊤ − (x, y, z)⊤‖ =
√

x2 + y2 + (z + f)2

= (1 + βz)
√

u2 + v2 + f2

(32)

then (31) becomes

∇vρ = ρ′sn̂⊤
H

‖ŝ + v̂‖‖v‖
= ρ′sn̂⊤

H

‖ŝ + v̂‖(1 + βz)
√

u2 + v2 + f2

(33)
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Figure 7: Shape and reflectance estimation results on real data with homogeneous BRDFs. The intensities of the input images

are adjusted for better contrast. It can be seen that our method realistically reconstructs the shapes, and also achieves the

lowest RMSE when ground truth is available. The recovered BRDFs also look qualitatively correct, e.g., the bowling pin has

a very sharp specularity.
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Figure 8: Shape estimation results on real data with spatially-varying BRDFs. It can be seen that our method realistically

reconstructs the shapes, while other methods generate artifacts around the specular regions.

which is the equation we used in (15). The following procedure is
described in the main text. Finally, after expanding (17), the κ’s in
(18) are

κ1 = (γ2 + γ1Iu − Iu)H12 − (γ3 + γ1Iv − Iv)H11

κ2 = β(γ2 + γ1Iu)H12 − β(γ3 + γ1Iv)H11

κ3 = (γ2 + γ1Iu − Iu)H22 − (γ3 + γ1Iv − Iv)H21

κ4 = β(γ2 + γ1Iu)H22 − β(γ3 + γ1Iv)H21

κ5 = −(γ2 + γ1Iu − Iu)H32 + (γ3 + γ1Iv − Iv)H31

κ6 = −β(γ2 + γ1Iu)H32 + β(γ3 + γ1Iv)H31

(34)

The mathematical solution to the PDE (18) is a parametric curve
defined by

z(s) = −κ5/κ6 + c1e
−κ6s

x(s) = κ1s+ κ2

(

− (c1/κ6)e
−κ6s − (κ5/κ6)s

)

+ c2

y(s) = κ3s+ κ4

(

− (c1/κ6)e
−κ6s − (κ5/κ6)s

)

+ c3

(35)

where c1, c2, c3 are constants, and require some initial condition

to be uniquely identified. Note that κ’s are different for each pixel,

which makes the problem even harder. Therefore, directly obtain-

ing shape is not possible, and we refer to a polynomial shape prior,

as introduced in the main text.

B Derivation of nx

Since u = x/(1 + βz) by (1), we can multiply both sides in (19)

by (1 + βz)2 and get

z(1 + βz)2 = a1x
2 + a2y

2 + a3xy + a4x(1 + βz)

+ a5y(1 + βz) + a6(1 + βz)2
(36)

Taking derivatives of both sides and after some rearrangement, we
can write the normal nx as,

∂z

∂x
=

2a1x+ a3y + a4(1 + βz)

(1 + βz)2 + 2βz(1 + βz)− a4βx− a5βy − 2βa6(1 + βz)

=
2a1u+ a3v + a4

1 + 3βz − a4βu− a5βv − 2βa6

=
nu

1 + 3βz − a4βu− a5βv − 2βa6
(37)
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