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Abstract

Dense 3D shape correspondence is an important prob-

lem in computer vision and computer graphics. Recently,

the local shape descriptor based 3D shape correspondence

approaches have been widely studied, where the local shape

descriptor is a real-valued vector to characterize the geo-

metrical structure of the shape. Different from these real-

valued local shape descriptors, in this paper, we propose

to learn a novel binary spectral shape descriptor with the

deep neural network for 3D shape correspondence. The

binary spectral shape descriptor can require less storage

space and enable fast matching. First, based on the eigen-

vectors of the Laplace-Beltrami operator, we construct a

neural network to form a nonlinear spectral representation

to characterize the shape. Then, for the defined positive and

negative points on the shapes, we train the constructed neu-

ral network by minimizing the errors between the outputs

and their corresponding binary descriptors, minimizing the

variations of the outputs of the positive points and maxi-

mizing the variations of the outputs of the negative points,

simultaneously. Finally, we binarize the output of the neu-

ral network to form the binary spectral shape descriptor for

shape correspondence. The proposed binary spectral shape

descriptor is evaluated on the SCAPE and TOSCA 3D shape

datasets for shape correspondence. The experimental re-

sults demonstrate the effectiveness of the proposed binary

shape descriptor for the shape correspondence task.

1. Introduction

3D shape feature extraction and matching is an important

topic in the community of computer vision and computer

graphics. With the recent developments of the 3D scan-

ning technology such as the Microsoft Kinect scanner, 3D

shape correspondence has been receiving much more atten-

tion in many fields (e.g., molecular biology, mechanical en-

gineering, and medical image analysis). Finding the intrin-

sic correspondences between 3D shapes can be applied to

3D scan alignment, texture mapping, shape morphing and

animation, etc. Due to the large nonrigid deformations of

the shapes, the shape correspondence task is usually very

challenging.

Extensive research efforts have been dedicated to 3D

shape correspondence in the past decades. Early shape cor-

respondence approaches focused on the rigid shapes. The

transformation between the rigid shapes can be parame-

terized by a few parameters such as the translation, rota-

tion and scale factors. Thus, these parameters can be es-

timated by the optimization methods such as the iterative

closest point (ICP) method [6] and graph matching meth-

ods [10, 12]. For example, the traditional ICP method first

calculates the transformation between the rigid shapes with

the least-square solution. Then, the points on one shape

are transformed by the estimated rigid transformation. The

correspondence-register cycle is iterated until the stopping

criterion is satisfied. In addition, for the 3D point set match-

ing problem, Jian et al. [13] proposed to represent the input

point sets using the Gaussian mixture models. The corre-

spondence problem is then converted into the problem of

aligning two Gaussian mixture models such that the statis-

tical discrepancy measure between the two models is mini-

mized.

Compared to the rigid shape correspondence, establish-

ing correspondence between two shapes with the nonrigid

deformations is much more challenging. Nonrigid shape

matching can be formulated as the graph matching problem

[15, 18, 20, 25], where the point-to-point correspondence,

i.e., the permutation matrix, can be obtained by minimiz-

ing the structural distortions such as the point-wise costs

[3, 8, 22] and pairwise costs [3, 12]. By incorporating the

point-wise costs and the pairwise costs, the graph match-
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ing problem can be converted into the quadratic assignment

problem. Since the quadratic assignment problem is NP-

hard, many relaxation techniques have been proposed to

solve this problem. In [14], the spectral graph matching

algorithm was proposed by relaxing the constraint on the

permutation matrix such that the Frobenius norm of the ma-

trix is 1. In [23], by assuming the permutation matrix is

an orthogonal matrix, the spectral embedding approach was

proposed for shape correspondence.

Different from the aforementioned graph matching based

shape correspondence methods, the local spectral shape de-

scriptors have been proposed for 3D shape matching. Based

on the fundamental solution of the heat diffusion equation,

Sun et al. [21] developed heat kernel signature (HKS) as

a point signature to describe the shape. In [4], based on

the evolution of a quantum particle on the surface of the

shape, the wave kernel signature (WKS) was proposed to

characterize the shape. Due to the discriminative power of

HKS and WKS, they can be used for shape correspondence.

Based on the Laplace-Beltrami operator, Litman et al. [16]

employed the classical metric learning method to learn the

local spectral descriptor for shape correspondence. In [19],

the authors converted the shape matching problem into the

classification problem by employing the random forest clas-

sifier. The constructed random forest can vary the parame-

ters of WKS to form a discriminative local shape descriptor

for shape matching.

However, these local shape descriptors are real-valued.

Recent advancement in the 3D shape acquisition technol-

ogy has led to capturing large amounts of 3D shape data.

It is desirable to develop the local binary shape descrip-

tor for shape correspondence because the binary shape de-

scriptor requires less storage and enables fast matching. In

this paper, based on the Laplace-beltrami operator, we pro-

pose to learn the local binary spectral shape descriptor for

shape correspondence. First, we construct a neural net-

work to compute the responses of the eigenvectors of the

Laplace-beltrami operator of each point to characterize the

shape. For each point on the shape, we define the posi-

tive/negative points that are in/out of the neighborhoods of

the point on the shape and the corresponding point on the

deformed shape, respectively. We then train the constructed

neural network such that the errors between the real-valued

outputs of the network and their binary outputs are as small

as possible. Moreover, we encourage that the variations of

the outputs associated with the pairs of positive points are

as small as possible and the variations of the outputs associ-

ated with the pairs of negative points are as large as possible.

Finally, we binarize the outputs of the network to form a bi-

nary spectral shape descriptor for correspondence. Experi-

mental results demonstrate that the learned binary spectral

shape descriptor can yield good performance.

The main contribution of our work is that we construct

a neural network to form a parametric spectral representa-

tion to characterize the shape, and propose a learning based

binary spectral shape descriptor for shape correspondence.

It can be comparable to the real-valued local shape descrip-

tors while it requires less storage and enables fast matching

for correspondence. To the best of our knowledge, in the

community of 3D shape analysis, this is the first work on

developing the learning based binary 3D shape descriptor

for correspondence.

The rest of the paper is organized as follows. Section

2 introduces the background of the local spectral shape de-

scriptors. In Section 3, we present the proposed binary spec-

tral shape descriptor for shape correspondence. Section 4

presents the experimental results and Section 5 concludes

the paper.

2. Background

In this section, we briefly review the two local spectral

shape descriptors. One is heat kernel signature (HKS) and

the other is the learned spectral shape descriptor.

2.1. Heat kernel signature

Heat diffusion on the meshed surface X can be defined

as :
∂Kt

∂t
= −LKt (1)

where Kt denotes the heat kernel at diffusion time t, L is the

Laplace-Beltrami operator. Given an initial Dirac delta dis-

tribution defined on X at time t = 0, based on the spectral

decomposition theorem, the fundamental solution of Eq. (1)

on vertices x and y, Kt(x, y), can be obtained as:

Kt(x, y) =
∑

i

e−vitφi(x)φi(y) (2)

where vi and φi are the ith eigenvalue and eigenvector of

the Laplace-Beltrami operator L, respectively.

The fundamental solution Kt(x, y) is also called the heat

kernel. The heat kernel signature (HKS) [21] of vertex x at

time t, pt(x), is defined as:

pt(x) =
∑

i

e−vitφi(x)
2. (3)

Since HKS is highly related to the eigenvalue and eigen-

vector of the Laplace-Beltrami operator, it can capture the

geometric structure of the neighborhood of point x on the

shape.

2.2. Learned spectral descriptor

In HKS, from Eq. (3), one can see that the weight e−vit

is obtained from the eigenvalue of the Laplace-Beltrami op-

erator L. Litman et al. [16] proposed to learn the weight to
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form a parametric spectral descriptor in a supervised learn-

ing way. For each point xi on the shape, the learned para-

metric spectral descriptor p(xi) ∈ R
n×1 can be defined as:

p(xi) = A(b(v1), b(v2), · · · , b(vs))φ(xi) (4)

where b(vj) ∈ R
m×1 is the basis function such as the

cubic B-spine function, vj is the frequency component,

j = 1, 2, · · · , s, φ(xi) = [φ2
1(xi), φ

2
2(xi), · · · , φ

2
s(xi)]

T ,

A is the n × m matrix of representation coefficients using

the basis function. For each point xi, by selecting the simi-

lar points on the pair of shapes as the positive samples and

the dissimilar points on the pair of shapes as the negative

samples, matrix A can be learned by minimizing the Ma-

halanobis distances between the spectral descriptors of the

set of the positive sample pairs and maximizing the Maha-

lanobis distances between the spectral descriptors of the set

of the negative sample pairs, simultaneously.

From Eqs. (3) and (4), one can see that HKS can be

viewed as a special case of the learned spectral descriptor.

Nonetheless, different from HKS, matrix A is learned from

the training samples. Compared to HKS, the learned spec-

tral descriptor is much more discriminative for the point-to-

point correspondence.

3. Proposed Approach

In this section, we present our learned binary spectral

shape descriptor for shape correspondence. Fig. 1 illus-

trates the shape matching framework with the proposed bi-

nary spectral shape descriptor. In subsection 3.1, based on

the eigenvectors of the Laplace-Beltrami operator on the

shape, we construct a metric network to compute the non-

linear representation of the eigenvectors to characterize the

shape. In subsection 3.2, we present to learn the binary

spectral descriptor with the deep metric learning method for

shape correspondence.

3.1. Nonlinear parametric spectral representation

For each point xi on the shape, i = 1, 2, · · · , N , we

define the geometry vector g(xi) as:

g(xi) = (b(v1), b(v2), · · · , b(vs))φ(xi) (5)

where b(vj) ∈ R
m×1 is the cubic B-spine basis function,

vj is the frequency component, j = 1, 2, · · · , s, φ(xi) =
[φ2

1(xi), φ
2
2(xi), · · · , φ

2
s(xi)]

T . The geometry vector g(xi)
can effectively capture the geometric structure of the neigh-

borhood of point xi. Based on the defined geometry vector

g(xi), we can construct a neural network to compute the

representation of geometry vector g(xi) by multiple layers

of the nonlinear transformations. The constructed neural

network architecture is shown in Fig. 2. The key advantage

of employing the neural network [11, 5] is that we can map

the geometry vector g(xi) to the nonlinear feature space to

form a nonlinear spectral representation.

The constructed neural network can map the geometry

vector g(xi) ∈ R
m×1 to the output hK

i ∈ R
r×1, where

m and r are the dimensions of the geometry vector and the

output, respectively, K is the number of the layers. And

each neuron in layer k is connected to all neurons in layer

k + 1. The output of layer k + 1 can be represented as:

hk+1
i = fk+1(h

k
i ) = ϕ(W khk

i + bk) (6)

where fk+1(h
k
i ) is the nonlinear mapping function in layer

k + 1, hk
i is the neuron in layer k, ϕ(x) is the nonlinear

activation function. The nonlinear representation of the ge-

ometry vector g(xi) across K layers, FK(g(xi)), is:

FK(g(xi)) = fK(fK−1(· · · , f2(g(xi)))). (7)

The matrices W and b are the weights and biases of all lay-

ers in the neural network, W = [W 1,W 2, · · · ,WK−1]
and b = [b1, b2, · · · , bk−1], where W k and bk are the

weight and bias associated with the connection between

layer k and layer k + 1, respectively.

In [16], for each point xi on the shape, matrix A linearly

maps the geometry vector g(xi) to the linear feature space.

Nonetheless, since there are usually large deformations with

the shape, the linear mapping function cannot discrimina-

tively characterize the shape well. From Eq. (6), one can

see that in our work we employ the neural network to non-

linearly map the geometry vector to the nonlinear feature

space. Compared to the linear mapping function in [16],

the nonlinear mapping function FK(g(xi)) can better char-

acterize the manifold that the geometry vector g(xi) of the

shape lies on.

3.2. Learned binary spectral shape descriptor

Before learning the binary spectral shape descriptor, we

first construct the training samples to train the constructed

neural network. Let Br(xi) be the ball of radius r cen-

tered at point xi, where r is set to 2% of the average intrin-

sic shape diameter. For point xi, the point in the geodesic

metric ball Br(xi) is defined as the positive sample xi+.

Also, the point in Br(η(xi)) is defined as the positive sam-

ple of point xi, where η is the transform between a pair

of matched shapes. The point out of the ball is defined as

the negative sample xi−. We use the farthest point sam-

pling (FPS) method [9] with the geodesic distance to se-

lect some reference points on the shape. For each selected

point, we randomly chose 50 positive and negative points

to form the pairs of positive and negative points, respec-

tively. Then we can use the pairs of positive geometry vec-

tors (g(xi), g(xi+)) and the pairs of negative geometry vec-

tors (g(xi), g(xi−)) as the inputs to the constructed neural

network.
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Figure 1. The shape matching framework with the proposed binary spectral shape descriptor. The geometry vectors of the points on a pair

of shapes are used as the inputs to the metric network to form a nonlinear spectral representation. In the constructed metric network, the

outputs of the pairs of positive points are required to be as similar as possible, the outputs of the pairs of negative points are required to be

as dissimilar as possible, and the errors between the real-valued outputs of the network and their binary outputs are encouraged to be as

small as possible.
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Figure 2. The network used in our method. The input to the net-

work is the geometry vector, the hidden layer and the output are

h
2

i and h
3

i , respectively. Here W 1, W 2, b1 and b
2 are the param-

eters to be learned in our constructed network.

The binary spectral shape descriptor can be obtained by

binarizing the outputs of the neural network as follows:

bi = sgn(hK
i ) (8)

where bi is the binary vector associated with point xi on the

shape, sgn(v) is 1 if v > 0 and 0 otherwise. We formulate

the following objective function to learn the parameters of

the neural network:

J(W , b) = argminW ,b

α

M

N∑

i=1

∑

j∈xi+

1

2
‖hK

i − hK
j ‖22−

1− α

M

N∑

i=1

∑

j∈xi−

1

2
‖hK

i − hK
j ‖22 +

λ

N

N∑

i=1

1

2
‖bi − hK

i ‖22

+
1

2
γ‖W ‖2F

(9)

where M is the number of all positive/negative training

pairs, bi and hK
i are the binary and real-valued outputs, re-

spectively, 0 ≤ α ≤ 1 controls the tradeoff between the

distances from the positive samples and the negative sam-

ples, parameters λ and γ are the positive scalars.

In the proposed learning model in Eq. (9), the first two

terms minimize the distances between the outputs associ-

ated with the positive samples and simultaneously maxi-

mize the distances between the outputs associated with the

negative samples so that the spectral shape descriptor of xi

is as close as possible to the descriptor of xi+ and is as

far as possible to the descriptor of xi−. In order to learn

the binary descriptor, we furthermore enforce the the binary

outputs of the network to be as close as possible to the real-

valued outputs of the network such that the quantization loss

is minimized.

It is noted that for each pair of positive/negative samples

xi and xj , the distance between the outputs of the network,

hK
i and hK

j , can be re-written as:

‖hK
i − hK

j ‖2 = ‖FK(g(xi))− FK(g(xj))‖2. (10)

From Eq. (10), one can see that the nonlinear mapping func-

tion FK in our constructed neural network can transfer the

Euclidean distance between the geometry vectors g(xi) and

g(xj) to the Euclidean distance between outputs of the net-

work. In [16], with the linear mapping matrix A, the Eu-

clidean distance between the spectral descriptors is equal

to the Mahalanobis distance between the corresponding ge-

ometry vectors. Thus, learning the linear mapping matrix

can be converted into the linear Mahalanobis metric learn-

ing problem [24]. Compared to the linear Mahalanobis met-

ric learning method in [16] that linearly maps the geometry

vectors to the linear feature space, our constructed neural

network can seek a nonlinear mapping function to charac-

terize the high dimensional geometry vector space better.

To solve the optimization problem in Eq. (9), we employ

the back-propagation method to learn parameters W and b

in the constructed neural network. Since each term in Eq.

(9) can be optimized separately, we first define the following
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functions:

J1(h
K
i ,hK

j ) =
1

2
‖hK

i − hK
j ‖22

J2(bi,h
K
i ) =

1

2
‖bi − hK

i ‖22.

(11)

The partial derivatives of the objective function J(W , b)
with respect to W k and bk can be computed as:

∂J(W , b)

∂W k
=

α

M

N∑

i=1

∑

j∈xi+

∂J1(h
K
i ,hK

j )

∂W k
−

1− α

M

N∑

i=1

∑

j∈xi−

∂J1(h
K
i ,hK

j )

∂W k
+

λ

N

N∑

i=1

∂J2(bi,h
K
i )

∂W k

+ γW k

(12)

∂J(W , b)

∂bk
=

α

M

N∑

i=1

∑

j∈xi+

∂J1(h
K
i ,hK

j )

∂bk
−

1− α

M

N∑

i=1

∑

j∈xi−

∂J1(h
K
i ,hK

j )

∂bk
+

λ

N

N∑

i=1

∂J2(bi,h
K
i )

∂bk
.

(13)

Based on the chain rule of the partial derivative,
∂J1(h

K
i ,hK

j )

∂W k

can be re-written as:

∂J1(h
K
i ,hK

j )

∂W k
=

∂J1(h
K
i ,hK

j )

∂sk+1
i

∂sk+1
i

∂W k

+
∂J1(h

K
i ,hK

j )

∂sk+1
j

∂sk+1
j

∂W k

(14)

where sk+1
i = W khk

i +bki , k = 1, 2, · · · ,K−1. Similarly,

the partial derivative of J2(bi,h
K
i ) with respect to W k can

be represented as:

∂J2(bi,h
K
i )

∂W k
=

∂J2(bi,h
K
i )

∂sk+1
i

∂sk+1
i

∂W k
. (15)

We denote
∂J1(h

K
i ,hK

j )

∂s
k+1

i

,
∂J1(h

K
i ,hK

j )

∂s
k+1

j

and
∂J2(bi,h

K
i )

∂s
k+1

i

by

the errors δ
1,K
k+1,i, δ

1,K
k+1,j and δ

2,K
k+1,i , respectively. For

k = K − 1, the errors δ
1,K
k+1,i, δ

1,K
k+1,j and δ

2,K
k+1,i can be

represented as:

δ
1,K
K,i = (hK

i − hK
j ) • ϕ′(sKi )

δ
1,K
K,j = (−hK

i + hK
j ) • ϕ′(sKj )

δ
2,K
K,i = (−bi + hK

i ) • ϕ′(sKi )

(16)

where ϕ′(sKi ) is the derivative of the activation function in

the output layer and • denotes the element-wise multiplica-

tion. For layer k = K − 2,K − 3, · · · , 1, with the back-

propagation method, the errors δ
1,K
k+1,i, δ

1,K
k+1,j and δ

2,K
k+1,i

can be represented as:

δ
1,K
k+1,i = ((W k+1)T δ1,Kk+2,i) • ϕ

′(sk+1
i )

δ
1,K
k+1,j = ((W k+1)T δ1,Kk+2,j) • ϕ

′(sk+1
j )

δ
2,K
k+1,i = ((W k+1)T δ2,Kk+2,i) • ϕ

′(sk+1
i ).

(17)

Thus,
∂J1(h

K
i ,hK

j )

∂W k and
∂J2(bi,h

K
i )

∂W k can be calculated as:

∂J1(h
K
i ,hK

j )

∂W k
= δ

1,K
k+1,i(h

k
i )

T + δ
1,K
k+1,j(h

k
j )

T

∂J2(bi,h
K
i )

∂W k
= δ

2,K
k+1,i(h

k
i )

T .

(18)

Similarly,
∂J1(h

K
i ,hK

j )

∂bk and
∂J2(bi,h

K
i )

∂bk can be represented

as:

∂J1(h
K
i ,hK

j )

∂bk
= δ

1,K
k+1,i + δ

1,K
k+1,j

∂J2(bi,h
K
i )

∂bk
= δ

2,K
k+1,i.

(19)

By substituting Eqs. (18) and (19) into Eqs. (12) and (13),

we can calculate
∂J(W ,b)
∂W k and

∂J(W ,b)
∂bk . Then W k and bk

can be updated with the gradient descent algorithm. The

optimization algorithm of the objective function (9) is sum-

marized in Algorithm 1.

Once the weight W and the bias b are learned, we can

use Eqs. (7) and (8) to obtain the binary spectral shape

descriptor bi. Then the Hamming distance between the

learned binary spectral shape descriptors can be computed

for shape matching. Since the calculation of the Hamming

distance between the binary vectors can be implemented by

the bitwise XOR operator, the matching process is very fast.

4. Experimental Results

4.1. Experimental settings

We test our proposed method on the SCAPE [2] and

TOSCA [7] datasets. The SCAPE dataset only consists of

3D human shapes, each shape with the 70 pose changes.

Following the setting in [16], the shapes are also re-scaled

to have about 10000 vertices and the vertex-wise correspon-

dences are kept. In the TOSCA dataset, 3D shapes with de-

formations are from 7 classes: centaur, david, dog, horse,

michael, cat and victoria. For each class of shapes there are

different nearly iso-metric deformations. In order to reduce

computational complexity and storage space, all shapes are

downsampled to have 10000 vertices with the compatible

triangulations and the same vertex-wise correspondences.

We compute the first 300 eigenvalues and the corre-

sponding eigenvectors of the Laplace-Beltrame operator on

each shape for a fair comparison to the learned spectral
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Algorithm 1 Training algorithm of the proposed binary spectral

shape descriptor learning model .

Input:training sample xi; the set of positive samples xi+;

the set of negative samples xi−; layer K of the neural net-

work; weight α; regularization parameters λ and γ; learning

rate β.

Output: W and b.

For z = 1, 2, · · · , Z:

1. Compute the outputs of the neural network with for-

ward propagation for all input geometry vectors g(xi);

2. For k = K − 1,K − 2, · · · , 1

Compute
∂J(W ,b)
∂W k with Eqs. (18) and (12);

Compute
∂J(W ,b)

∂bk with Eqs. (19) and (13);

3. Update W k and bk for k = 1, 2, · · · ,K − 1:

W k = W k − β
∂J(W ,b)
∂W k ;

bk = bk − β
∂J(W ,b)

∂bk .

Output W k and bk until the values of J(W , b) in the adja-

cent iterations are smaller than the setting threshold.

shape descriptor in [16]. The discretization of the Laplace-

Beltrami operator is implemented by employing the cotan-

gent scheme in [17]. And 150 segments are used in the cu-

bic B-spline basis function to compute the geometry vector,

i.e., m = 150. In the proposed method, the neural networks

are empirically set as 150-100-80-16, 150-100-80-32 and

150-100-80-64 to form the corresponding 16, 32 and 64-bit

binary shape descriptors. Moreover, in Eq. (9), parameters

α, λ and γ are set to 0.25, 0.06 and 0.001, respectively.

4.2. Comparison evaluation

In this subsection, we evaluate our proposed learned bi-

nary spectral shape descriptor in terms of matching perfor-

mance and computational time. The shape correspondence

experiments are conducted on two benchmark datasets, i.e.,

SCAPE dataset [2] and TOSCA dataset [7].

4.2.1 Matching performance evaluation

We denote our proposed learned binary spectral shape de-

scriptor by LBSSD. For HKS [21], WKS [4] and the learned

optimal spectral shape descriptor [16], we employ the local

sensitive hashing method [1] to form the binary shape de-

scriptors for shape correspondence. We denote the binary

HKS, WKS and optimal spectral shape descriptor with the

local sensitive hashing method by HKS-LSH [21, 1], WKS-

LSH [4, 1] and OSSD-LSH [16, 1], respectively. Following

the evaluation criteria in [16], the cumulative match charac-

teristic (CMC) is used to evaluate the performance of these

binary local shape descriptors for the shape correspondence

task. The CMC is the probability of the correct matches that

occurs in the top c matches. Given the top c matches, the

hit rate calculates the percentage of the positive points as-

sociated with the ground truth in the top c matching points.

The hit rate is a monotonically increasing function of the

top match number c.

For the SCAPE dataset [2], we sample the points as de-

scribed in Section 3.2 to form 99550 positive/negative pairs

to train the neural network. The remaining shapes are used

for testing. With the trained neural network, we form the

16, 32 and 64-bit binary shape descriptors. The proposed

learned binary spectral shape descriptors with 16, 32, and

64 bits are compared to the three binary shape descriptors

for shape correspondence. The CMC curves in the cases of

16, 32 and 64 bits are plotted in Fig. 3. It is noted that in Fig.

3 the X-axis represents the percentage of the top matches in

the whole matches. From this figure, one can see that the

proposed binary shape descriptor LBSSD is superior to the

three binary shape descriptors. Since the dimension of the

64-bit binary shape descriptor is discriminative enough to

describe the local geometric structure of the shape, one can

see that the hit rate of our proposed binary shape descrip-

tor is slightly higher than that of OSSD-LSH. Nonetheless,

the hit rate at the first matching of our proposed LBSSD is

much higher than that of OSSD-LSH. Moreover, the hit rate

of our proposed binary shape descriptor LBSSD is higher

than those of HKS-LSH and WKS-LSH.

For the TOSCA dataset [7], 98750 pairs of the posi-

tive/negative geometry vectors are used to train the neural

network. With the learned parameters W and b, we can

obtain the 16, 32 and 64-bit binary outputs of the neural

network, i.e., LBSSD, for shape correspondence. The CMC

curves for the binary 3D shape descriptors are plotted in Fig.

4 . From this figure, one can see that our proposed LBSSD

is also superior to the three 3D shape descriptors in terms

of the hit rate. We also demonstrate the correctly matching

points within 10% of the shape diameter among the sampled

100 points on a pair of human shapes with the four binary

local shape descriptors in Fig. 5. Due to the discriminative

power of our proposed LBSSD, the number of the correctly

matching points with the LBSSD is greater than those with

the HKS-LSH, WKS-LSH and OSSD-LSH methods. The

number of the correctly matching points with our proposed

LBSSD are 28 while the numbers of the correctly matching

points with HKS-LSH, WKS-LSH and OSSD-LSH are 8, 5

and 11, respectively.

In the OSSD-LSH method, the learned linear mapping

function maps the geometry vectors to the linear feature

space, which cannot discriminatively characterize the ge-

ometric structures of the neighborhoods of the points on

the shape. Due to the quantization loss with the LSH

method, the formed binary descriptor OSSD-LSH further-

more weakens the discriminative power of the descriptor.
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Figure 3. The CMC curves for HKS-LSH, WKS-LSH, OSSD-LSH and the proposed LBSSD on the SCAPE shape dataset: from left to

right, 16 bits, 32 bits and 64 bits.

Figure 4. The CMC curves for HKS-LSH, WKS-LSH, OSSD-LSH and the proposed LBSSD on the TOSCA shape dataset: from left to

right, 16 bits, 32 bits and 64 bits.

In our proposed method, we employ the neural network to

form the spectral representation of the shape and learn the

binary descriptor with the nonlinear metric learning method

simultaneously. The trained neural network can learn a

nonlinear mapping function that can not only represent the

shape well but also reduce the quantization loss between

the binary outputs and real-valued outputs of the network.

Thus, the learned binary shape descriptor is discriminative

to describe the local geometric structure for the point-wise

correspondence. As shown in Figs. 3 and 4, compared to

the OSSD-LSH method, the proposed LBSSD can obtain

better performance.

4.2.2 Computational time evaluation

The proposed method was implemented in Matlab and

tested on a Dell mobile workstation with an Intel Core i7

and 8GB memory. We evaluate computational time of our

proposed LBSSD on the SCAPE dataset. For choosing

99550 positive/negative pairs to train the constructed neu-

ral network, the learning process on this dataset takes about

4.5 min. Average time of forming the LBSSD is about

8.75s. For HKS-LSH, WKS-LSH and OSSD-LSH, each

costs about 8.13s, 8.13s and 9.75s, respectively. In terms

of the matching accuracy and computational time, our pro-

posed LBSSD is superior to OSSD-LSH. Although our pro-

posed LBSSD is slightly slower than HKS-LSH and WKS-

LSH, our proposed LBSSD can obtain better matching per-

formance.

5. Conclusions

In this paper, we proposed a binary 3D shape descriptor

for shape correspondence. We first constructed a neural net-

work to form a parametric spectral representation. We then

developed a nonlinear metric learning technique to train the

constructed neural network to form a binary spectral shape

descriptor. Finally, the Hamming distance between the pro-

posed binary spectral shape descriptors is used for shape

correspondence. The proposed binary spectral shape de-

scriptor requires less storage space and enables matching

fast. We conducted the shape correspondence experiments

on the two benchmark SCAPE and TOSCA shape datasets

to demonstrate its correspondence performance.
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