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Abstract

Label Distribution Learning (LDL) is a general learning

framework which includes both single label and multi-label

learning as its special cases. One of the main assumptions

made in traditional LDL algorithms is the derivation of the

parametric model as the maximum entropy model. While it

is a reasonable assumption without additional information,

there is no particular evidence supporting it in the problem

of LDL. Alternatively, using a general LDL model family to

approximate this parametric model can avoid the potential

influence of the specific model. In order to learn this gen-

eral model family, this paper uses a method called Logis-

tic Boosting Regression (LogitBoost) which can be seen as

an additive weighted function regression from the statisti-

cal viewpoint. For each step, we can fit individual weighted

regression function (base learner) to realize the optimiza-

tion gradually. The base learners are chosen as weighted

regression tree and vector tree, which constitute two algo-

rithms named LDLogitBoost and AOSO-LDLogitBoost in

this paper. Experiments on facial expression recognition,

crowd opinion prediction on movies and apparent age esti-

mation show that LDLogitBoost and AOSO-LDLogitBoost

can achieve better performance than traditional LDL algo-

rithms as well as other LogitBoost algorithms.

1. Introduction

Learning with ambiguity is a hot topic in recent machine

learning and computer vision research. A learning method

is essentially building a mapping from the instances to the

label space. We can use a description degree dyx as a numer-

ical indicator to measure the relationship of the label y to

the instance x and indicate the relative label intensity. As

can be seen from Fig.1, there are mainly three ways to label

an instance in existing learning paradigms: For the single-
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label case (a), the label y2 fully describes the instance, so

dy2

x = 1. For the multi-label case (b), each of the two

positive labels y2 and y4 by default describes 50% of the

instance, so dy2

x = dy4

x = 0.5. Finally, (c) represents a gen-

eral case of label distribution, which satisfies the constraints

dyx ∈ [0, 1] and
∑

y d
y
x = 1. dyx of the label distribution is

neither the label confidence nor label population. It actu-

ally represents the description degree that the correspond-

ing label y describes the instance x. In other words, label

distribution can not only model the ambiguity of “what de-

scribes the instance”, but also deal with the more general

ambiguity of “how to describe the instance”. This example

illustrates that label distribution is more general than both

the single-label and multi-label cases, and thus can provide

more flexibility in the learning process. Inspired by this

observation, Geng and Ji [9, 7] proposed a general method

named Label Distribution Learning (LDL) which learning a

mapping from the instance to its label distribution.
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Figure 1. Three ways to label an instance

There are a lot of LDL algorithms which can fit some

real applications well. For example, Geng et al. [12] pro-

posed two algorithms named IIS-LDL and CPNN to deal

with facial age estimation problems by constructing the age

distribution, because the faces at close ages look quite sim-

ilar. Geng and Ji [9, 7] proposed BFGS-LDL algorithm by

using the effective quasi-Newton optimization to further im-

prove IIS-LDL. Geng et al. [14, 13] proposed the AGES

algorithm based on the subspace trained on a data structure

called aging pattern vector. This algorithm was further ex-

tended to Adaptive Label Distribution Learning (ALDL) by

Geng et al. [10]. Yang et al. [22] tried to combine the LDL

with deep learning methods called Deeply Label Distribu-
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tion Learning (DLDL) to deal with the apparent age estima-

tion problem. Zhang et al. [23] proposed a LDL method for

crowd counting in public video surveillance. As for expres-

sion recognition, LDL can also be adapted to the emotion

distribution learning [24], because an expression rarely ex-

presses pure emotion, but often a mixture of different emo-

tions, and each emotion has its own intensity. Geng and Xia

[11] extended label distribution to multivariate label distri-

butions and proposed two algorithms to learn from the mul-

tivariate label distributions based on the Jeffery divergence.

Futher more, LDL can also be combined with SVR named

LDSVR [8]. This algorithm was used for pre-release pre-

diction of crowd opinion on movies. Note that the usage

of LDL algorithms is not limited to the prediction of label

distribution, but includes marketing strategy, the design of

computer vision system, interests recommendation, etc.

One of the main assumptions made in traditional LDL

algorithms is that the description degree dyx can be repre-

sented by the form of maximum entropy model [2]. In the

exponential part of this model, it uses a linear combina-

tion of the input space assigned to the instance. Such an

approach is limited for the following reasons: firstly, the

linear combination of the exponential part has limited de-

scription which is not applicable to all LDL problems. Sec-

ondly, for particular application, in order to improve the per-

formance with this specific model, we need to improve the

loss function. This will make the loss function more com-

plex with the complicate optimization strategies and may

lead to over-fitting. Alternatively, replacing this exponential

part with a general function to approximate this paramet-

ric model can avoid the potential influence of the specific

model. This general function is variable such as decision

tree or the linear combination. So we can use this general

function to represent any specific function which constitutes

a LDL model family. Thus in order to find a unified learning

framework for these various models of LDL model family

with the same optimization strategy, we can assume that the

model is the additive. Therefore a unique method called

Logistic Boosting Regression (LogitBoost) [6] can be used

to learn this general model family all together. On the one

hand, LogitBoost is a combination of the boosting method

and the logistic regression [4]. It uses the coordinate de-

scent optimization method over the function space based on

the second derivative Hessian matrix. On the other hand,

LogitBoost can be seen as an additive weighted function re-

gression from a statistical viewpoint. We can fit individual

weighted regression function (base learner) to realize the

optimization step by step. Although any regression function

of the model family can be used for LDL, it has been re-

ported in the literature [20] that traditional LogitBoost turns

out to have some drawbacks because of the over approx-

imation such as using a second-order (diagonal) approxi-

mation to fit individual regression function. Therefore, Li

[17, 16] proposed robust LogitBoost and ABC-LogitBoost

which choose the ‘base class’ for improving single-label

classification accuracy adaptively. Sun et al. [20] proposed

a base learner named vector tree which can fit an united

regression function of each class at the same time. This

model used by LogitBoost is called AOSO-LogitBoost. To

some extent, ABC-LogitBoost is a special case of AOSO-

LogitBoost with a less flexible tree model.

In this paper, we extend the maximum entropy model of

traditional LDL to a more general LDL model family. Then

we use LogitBoost method to learn this model. In this way,

the boosting method can also be applied to LDL which can

“boost” the accuracy of any given learning algorithm es-

pecially simple learning algorithms and avoid over fitting

[19]. Next, two base learners are chosen for LDL model

family, namely weighted regression tree [3] and vector tree

[20], to constitute two algorithms called LDLogitBoost as

well as AOSO-LDLogitBoost. The rest of the paper is or-

ganized as follows. Section 2 introduces the LogitBoost for

the LDL and proposes two LDL algorithms named LDLog-

itBoost and AOSO-LDLogitBoost. In Section 3, the experi-

mental results are reported. Finally, several conclusions are

drawn in Section 4.

2. Proposed Algorithms

2.1. LDL model family

We begin with the basic settings for the LDL Problems.

First of all, all the labels Y = {y1, . . . , yj , . . . , yC} with a

non-zero description degree are actually the “correct” labels

to describe the instance x ∈ X but just with the different

importance measured by dyx, where X represents the input

space X = R
q . C is the number of the labels. Secondly, we

can normalize the description degree to make dyx ∈ [0, 1]
and

∑

y d
y
x = 1 to constitute the label distribution. Mea-

suring the description degree is very important, as one can

know how much each label description degree is and how

many labels are related to the particular instance. Conse-

quently, the LDL can be formulated that given a training

set S = {(x1, D1), . . . , (xi, Di), . . . , (xN , DN )}, where

xi ∈ X and Di = {d
y1

xi
, . . . , d

yj
xi , . . . , d

yC
xi
} is the label dis-

tribution associated with the instance xi. N is the number

of the instances. The goal of LDL is to learn a conditional

probability mass function from S:

p(yj |xi) =
1

Z
exp(Fj(xi)) (1)

where Z =
∑C

s=1 exp(Fs(xi)) is the normalization factor.

Here Fj(x) is an element of C-dimensional function vector

F(x) = {F1(x), . . . , Fj(x), . . . , FC(x)}. It is any function

which constitutes a LDL model family. From a viewpoint

of LogitBoost, F(x) of this LDL model family can also be

called base (weak) learner. For example, we can assume
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that

Fj(xi) = βT
j xi (2)

Substituting Eq. (2) to Eq. (1), we can get traditional LDL

model:

p(yj |xi) =
1

Z
exp(βT

j xi) (3)

where Z =
∑C

s=1 exp(β
T
s xi). This model is maximum

entropy model which can be learned by traditional LDL al-

gorithms such as IIS-LDL and BFGS-LDL [9, 7]. On the

one hand, traditional LDL model may have a potential lim-

itation on the performance of the algorithm. On the other

hand, traditional LDL model could not be adapted to var-

ious applications. Therefore, this LDL model family can

avoid the potential influence of the specific model and dif-

ferent function model can be selected for different applica-

tions.

There are different criteria that can be used to measure

the distance or similarity between two distributions. For

example, if the Kullback-Leibler divergence (K-L) is used

as the distance measure between the true label distributions

and the predicted label distributions, then the loss of this

model is determined by:

L =

N
∑

i=1

loss(xi) (4)

loss(x) =

C
∑

j=1

dyj
x log

d
yj
x

p(yj |x)
(5)

Minimizing Eq. (5) is equivalent to minimizing the negative

log-likelihood loss:

loss(x) = −

C
∑

j=1

dyj
x log p(yj |x) (6)

Substituting Eq. (1) to Eq. (6), we can get:

loss(x;F) = −
C
∑

j=1

dyj
x log

1

Z
exp(Fj(xi)) (7)

Eq. (7) is the target function for the optimization. However,

different models or loss functions may lead to different op-

timization strategies. Thus in order to find a unified learn-

ing framework for these various models or loss functions

with the same optimization strategy, we can use Logistic

Boosting Regression (LogitBoost) [6] to avoid this prob-

lem, which assume F is a flexible additive function:

F
(T )(x) =

T
∑

t=1

vtf
(t)(x, at) (8)

where vt is the shrinkage and T is the total steps of

the additive model. f
(t)(x, at) are the t-th C-dimensional

base(weak) function learners which correspond with the

function F(x). Owing to its iterative nature of Eq. (8), in

each step of the optimization, the best f (t)(x) is added only

based on F
(t−1)(x) =

∑(t−1)
s=1 vsf

(s)(x). Formally:

f
(t)(x) = argmin

f

N
∑

i=1

loss(xi;F
(t−1) + f

(t)) (9)

The function of f
(t)(x) can be obtained by using a

strategy similar to the greedy stage wise algorithm [6],

which is a well-know algorithm for LogitBoost. This al-

gorithm suggests to a second-order (diagonal) approxima-

tion, which needs to calculate the first two derivatives of the

log-likelihood loss function Eq. (6) with respective to the

function Fj(x). We can derive:

gj(x) =
∂loss(x)

∂Fj

= −(dyj
x − p(yj |x)) (10)

hjj(x) =
∂2loss(x)

∂F 2
j

= p(yj |x)(1− p(yj |x)) (11)

hjs(x) =
∂2loss(x)

∂Fj∂Fs

= −p(yj |x)p(ys|x) (12)

In this way, we can fit an individual regression function:

N
∑

i=1

fj(xi)← −

∑N

i=1 gj(xi)
∑N

i=1 hjj(xi)

← −

∑N

i=1

(

gj(xi)
hjj(xi)

hjj(xi)
)

∑N

i=1 hjj(xi)

← −Ew(
gj(x)

hjj(x)
)

(13)

where Ew(·) indicates a weighted expectation of x with

the weight w. Equivalently, the Newton update f(x) solves

the weighted least-squares approximation about F(x) to the

log-likelihood:

min
fj(x)

Ewj(x)

(

fj(x)− (−
gj(x)

hjj(x)
)

)2

(14)

Thus it can be summarized as: At the each step, we can

fit a weighted regression function on the training instances

xi for the j-th label class, with the target:

zi,j = −
gj(xi)

hjj(xi)
(15)

and the weight:

wi,j = hjj(xi) (16)
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For identifiability,
∑C

j=1 Fj(x) = 0, i.e., the sum-to-

zero constraint, is usually adopted in [6, 20, 16, 17]. There-

fore, in order to satisfy the sum-to-zero constraint, we need

to change the updated form:

F
(t)
j (x)← F

(t−1)
j (x)

+ vt
C − 1

C

(

f
(t)
j (x)−

1

C

C
∑

s=1

f (t)
s (x)

)

(17)

2.2. LDLogitBoost

We can choose any function of LDL model family for

this individual regression function. The weighted regression

tree is very common in LogitBoost [3]. It can be concluded:

At the each step, we can fit individual weighted regression

function on the training instances xi for the j-th label class,

with the target zi,j and the weight wi,j . This method can be

called LDLogitBoost and its pseudo code is given in Algo-

rithm 1.

Algorithm 1 LDLogitBoost

1: Fj(x) = 0, pi,j =
1
C

, j = 0 to C and i = 1 to N
2: for t = 1 to T do

3: for j = 1 to C do

4: for i = 1 to N do

5: Compute wi,j by Eq. (16)

6: Compute zi,j by Eq. (15)

7: end for

8: Fit a weighted regression tree f
(t)
j (x) on the train-

ing instances xi with targets zi,j and weights wi,j .

9: Update F
(t)
j (x) by Eq. (17)

10: end for

11: Calculate p(yj |xi) by Eq. (1)

12: end for

2.3. AOSO-LDLogitBoost

Although any regression function of the model family

can be used for LDL, it has been reported in the literature

[20] that vector tree model may lead a better performance

than other regression functions. Each node in the vector

tree model is the vector where the unique classifier output

is guaranteed by adding a sum-to-zero constraint. Fig. 2

gives us a vector tree model for a 3-class problem. A class

pair is selected for each tree node adaptively.

For each internal node (filled), the pair is for com-

puting split gain; For terminal nodes (unfilled), it is for

node vector update. That is, at each step t, we can con-

struct a vector tree model {am, Rm}
M
m=1, where am =

{am1, . . . , amj , . . . , amC} is a vector value with the sum

of 0 and M is the number of terminal nodes. It updates the

values of F(x) all together by first computing a rectangular

R1

R2 R3

t1 = (0,  t1 ,-t1)

t2 = (t2, -t2, 0) t3 = (0, -t3, t3)

Figure 2. vector tree model

partition of the feature space {Rt
m}

M
m=1 and corresponding

node vector value {at
m
}Mm=1 at the same time, then incre-

menting Fi by a
t

m
where m is the index of the region Rt

m

such that xi ∈ Rt
m:

F
(t)
j (x)← F

(t−1)
j (x) + vt

M
∑

m=1

atm,jI(xi ∈ Rt
m) (18)

where I(·) is the indication function and vt is the shrinkage

factor. So the loss function of the node becomes:

NodeLoss(a;Rm) =
∑

xi∈Rm

loss(xi;F) (19)

As we can see, Eq. (19) is equivalent to Eq. (4) if the

vector tree only has the root node. Minimizing the Eq. (19)

allows us to obtain a set of nodes {am, Rm}
M
m=1 using the

following procedures:

In the first step, to obtain the values am from a given

Rm, we can simply take the minimization of Eq. (19):

am = argmin
a

NodeLoss(a;Rm) (20)

where am is the vector value of the related terminal node as

am,k =











+(−ḡ/h̄) if k=r

−(−ḡ/h̄) if k=s

0 otherwise

(21)

with

ḡ = −
∑

xi∈Rm

(gr(xi)− gs(xi)); (22)

h̄ =
∑

xi∈Rm

(hrr(xi) + hss(xi) + 2hrs(xi)); (23)

as well as the class pair r and s can be selected by:

r = argmax
j
{−gj} (24)

s = argmax
j
{

gr − gj
hrr + hjj − 2hrj

} (25)
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In the second step, to obtain the partition {Rm}
M
m=1,

we recursively perform binary splitting until there are M-

terminal nodes. Suppose an internal node with n training

instances, we fix on some feature and re-index all the n in-

stances to their sorted feature values. Now we need to find

the index n′ with 1 < n′ < n that maximizes the node

gain defined as loss reduction after a division between the

n′-th and (n′ + 1)-th instances. At the same time, we can

calculate the NodeLoss as:

NodeLoss(a∗;Rm) =
−ḡ2

2h̄
(26)

which contributes to the biggest node gain approximately

as:

NodeGain(n′) =
−ḡ2L
2h̄L

+
−ḡ2R
2h̄R

−
−ḡ2

2h̄
(27)

The selection of a class pair (r, s) for a vector tree is

adaptive. And the vector tree is a binary tree with the vector

value. By using this model as the base (weak) learner, we

can generate a new algorithm called AOSO-LDLogitBoost

and its pseudo code is given in Algorithm 2, where “AOSO”

means “Adaptive one vs one”.

Algorithm 2 AOSO-LDLogitBoost

1: Fj = 0, pi,j =
1
C

, j = 0 to C and i = 1 to N
2: for t = 1 to T do

3: Obtain {Rt,m}
M
m=1 by recursive region partition.

Node split gain is computed as Eq. (27), where the

class pair (r,s) is selected using Eq. (24) and Eq. (25).

4: Compute {at,m}
M
m=1 by Eq. (21), where the class

pair (r,s) is selected using Eq. (24) and Eq. (25).

5: Update F
(t)
j (x) by Eq. (18)

6: Calculate p(yj |xi) by Eq. (1)

7: end for

3. Experiment

To demonstrate the effectiveness of the proposed LD-

LogitBoost and AOSO-LDLogitBoost algorithms, we per-

form experiments on three different databases: s-BU 3DFE

(scores-Binghamton University 3D Facial Expression) [24],

COPM (Crowd Opinion Prediction on Movies) [8] and

ChaLearn Age Estimation Competition Data Set (CAECD)

[5]. The first two data sets are popular label distribution

data sets, and the last one is a single label data set. The

additional prior knowledge of mean value and the standard

deviation of the label distribution is given in the last data

set.

3.1. Facial Expression Recognition

Most existing facial expression recognition methods as-

sume the availability of a single emotion for each expres-

sion in training set. However, in practical applications, an

expression rarely expresses pure emotion, but often a mix-

ture of different emotions, and each emotion has its own

intensity. Facial expression recognition is a LDL problem

which can be seen from Fig. 3. The emotion distribution

is represented by a curve. There are six values at the hor-

izontal axis labeled by the six basic emotions: happiness

(HAP), sadness (SAD), surprise (SUR), anger (ANG), dis-

gust (DIS) and fear (FER). The values at the vertical axis

represent the description degrees of each emotion. We need

to learn a mapping from the facial expression image to its

emotion distribution.

9.13%

15.30%
13.51%

27.64%

21.10%

13.33%

0.00%

5.00%

10.00%
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Emotion Distribution
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Figure 3. LDL of Expression Recognition

Here we use s-BU 3DFE data set which has 2500 in-

stances. 23 students are asked to score the s-BU 3DFE

database on 6 basic emotions (i.e., happiness, sadness, sur-

prise, fear, anger and disgust) with a 5 level scale (5 repre-

sents the highest emotion intensity, while 1 represents the

lowest emotion intensity). The average score of each emo-

tion is used to represent the specific emotion intensity. The

images are cropped manually so that the eyes are at the

same positions, and then the cropped images are resized to

110*140 pixels. Features are extracted by the method of

Local Binary Patterns (LBP) [1].

A nature choice of evaluation measures is the average

similarity or difference between the real label distributions

Pj and the predicted distributions Qj . There are many

measures for similarity/distance between two distributions,
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Name Formula

Kullback-Leibler(K-L) Dis1 =
∑C

j=1 Pj ln
Pj

Qj

Euclidean Dis2 =
√

∑C

j=1(Pj −Qj)2

Sørensen Dis3 =
∑C

j=1
|Pj−Qj |

∑
C
j=1

(Pj+Qj)

SquaredX2 Dis4 =
∑C

j=1
(Pj−Qj)

2

Pj+Qj

Fidelity Sim1 =
∑C

j=1 min(Pj , Qj)

Intersection Sim2 =
∑C

j=1

√

PjQj

Table 1. Evaluation Measure for LDL Algorithms

which are summarized in Table 1. For the four distance

measures, “↓” indicates “the smaller is the better” and for

the two similarity measures, “↑” indicates “the larger the

better”.

LDLogitBoost and AOSO-LDLogitBoost are compared

with seven existing LDL methods. For each compared

method, several parameter configurations are tested and

the best performance is reported by 10-fold cross valida-

tion. AOSO-LDLogitBoost uses maximum 5000 steps with

v = 0.05, while LDLogitBoost uses maximum 2000 steps

with vt = 0.05(when t > 500, we changed vt = 0.01). For

the traditional LDL methods, K in AA-KNN is set to 6. Lin-

ear kernel is used in PT-SVM. The number of hidden-layer

neurons for AA-BP is set to 60. The insensitivity parameter

ε is set to 0.1 of LDSVR. At the same time, the maximum

steps in BFGS-LDL is 300 and IIS-LDL is 5000.

Table 2 reports the experimental results of LDLogit-

Boost, AOSO-LDLogitBoost and other LDL methods. The

best performance on each measure is highlighted by bold-

face. The two-tailed T-tests with 0.05 significance level are

performed to see whether the differences are statistically

significant. As can be seen, AOSO-LDLogitBoost performs

best on all criteria followed by LDLogitBoost. This implies

that vector tree model is more competitive than weighted

regression tree as well as maximum entropy model on this

data set.

3.2. Crowd Opinion Prediction on Movies

The prediction of crowd opinion on movies is an inter-

esting problem. Thousands of new movies are produced

and shown in movie theaters each year, among which some

are successful, many are not. On the one hand, the increas-

ing cost and competition boosts the investment risk of the

movie producers. On the other hand, the prevalent immod-

est advertisement and promotion makes it hard for movie

audiences to choose a movie worth watching. Therefore,

both sides demand a reliable prediction of what people will

think about a particular movie before it is actually released

or even during its planning phase.

Fig. 4 gives a typical example of such case. The movies

Twilight (a) and I, Frankenstein (b) both have the same

average rating 5.2/10. But the top two popular ratings

in the rating distribution of Twilight are the lowest rat-

ing 1 (15.7%) and the highest rating 10 (15.3%), respec-

tively, while those of I, Frankenstein concentrate at the

medium ratings 6 (21.4%) and 5 (20.1%). As a result, the

budget/gross ratio of Twilight is $37M/$191M and that

of I, Frankenstein is $65M/$19M. Obviously, the former

movie is more worthy to invest and watch. This example

illustrates that the average rating is not a good indicator of

the crowd opinion. Therefore, the prediction of the rating

distribution is more useful which is not limited to a gross

prediction, but includes marketing strategy, advertising de-

sign, movie recommendation, etc.

(a)

(b)
Figure 4. LDL of Crowd Opinions on movies Twilight (a) and

I, Frankenstein (b)

Here we use the database named COPM (Crowd Opin-

ion Prediction on Movies) which has 7755 movies and

54,242,292 ratings from 478,656 different users. The rat-

ings come from Netflix, which are on a scale from 1 to 5

integral stars. Each movie has, on average, 6,994 ratings.

The rating distribution is calculated for each movie as an

indicator for the crowd opinion on that movie. The pre-

release metadata is crawled from IMDB according to the

unique movie IDs. There are both numeric and categori-

cal attributes in this data set. Finally, all the attributes are

normalized to the same scale through the min-max normal-

ization.

To solve this problem, LDLogitBoost and AOSO-
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Method K-L ↓ Euclidean ↓ Sørensen ↓ SquaredX2 ↓ Fidelity ↑ Intersectioin ↑

AOSO-LDLogitBoost .0491±.0023 .1263±.0033 .1200±.0031 .0467±.0020 .9881±.0005 .8800±.0031

LDLogitBoost .0515±.0027 .1297±.0039 .1236±.0036 .0493±.0024 .9874±.0006 .8764±.0036

BFGS-LDL .0542±.0027 .1341±.0035 .1289±.0033 .0521±.0024 .9867±.0006 .8711±.0033

IIS-LDL .0653±.0025 .1501±.0036 .1445±.0032 .0619±.0023 .9842±.0006 .8555±.0032

LDSVR .0667±.0021 .1512±.0031 .1450±.0028 .0628±.0018 .9839±.0004 .8550±.0028

AA-KNN .0743±.0031 .1549±.0036 .1464±.0042 .0697±.0036 .9821±.0004 .8536±.0008

AA-BP .0808±.0063 .1648±.0076 .1595±.0065 .0760±.0061 .9804±.0006 .8405±.0017

PT-Bayes .0830±.0037 .1659±.0044 .1606±.0049 .0766±.0039 .9803±.0004 .8394±.0010

PT-SVM .0877±.0029 .1701±.0032 .1638±.0047 .0799±.0044 .9794±.0004 .8362±.0007

Table 2. Results on Facial Expression Recognition. AOSO-LDLogitBoost is better.

LDLogitBoost are compared with six existing LDL meth-

ods. For each compared method, several parameter config-

urations are tested and the best performance is reported by

10-fold cross validation. AOSO-LDLogitBoost uses max-

imum 500 steps with v = 0.05, while LDLogitBoost uses

maximum 200 steps with vt = 0.3. For the LDL methods,

K in AA-KNN is set to 10 and the number of hidden-layer

neurons for CPNN is set to 80. The insensitivity parameter ε
is set to 1 of LDSVR. The number of hidden-layer neurons

for AA-BP is set to 60. At the same time, the maximum

steps in BFGS-LLD and IIS-LLD is 50.

Table 3 reports the experimental results of LDLogit-

Boost, AOSO-LDLogitBoost and other LDL methods. As

can be seen, AOSO-LDLogitBoost performs best on all of

other algorithms. But LDLogitBoost has the same per-

forms with LDSVR. The reason might be two-fold. Firstly,

LDSVR takes advantage of the large margin regression by

a support vector machine. Secondly, the application of the

kernel trick makes it possible for LDSVR to solve this prob-

lem in a higher-dimensional.

3.3. ChaLearn Age Estimation

In the age estimation competition organized by

ChaLearn [5], apparent ages of images are provided. Uncer-

tainty of each apparent age is induced because each image

is labeled by multiple individuals. Such uncertainty makes

this age estimation task be different from common chrono-

logical age estimation tasks. The age of each image in the

data set is labeled by multiple individuals rather than its

chronological age. For each image, its mean age µ and the

standard deviation σ are given. As can be seen from Fig.5,

the horizontal axis shows the apparent ages and the verti-

cal axis represents the description degree dyx of each age y
assigned with the facial image x. In this data set, totally

3,615 facial images (2,479 in the training data set and 1,136

in the validation data set), with their apparent ages and stan-

dard deviations, are provided. There are three steps of pre-

processing of images. The facial region of each image is

detected by the DPM model described in [18]. Then the de-

tected face is fed to a public available facial point detector

software [21] to detect five facial key points including the

left/right eye centers, nose tip and left/right mouth corners.

Finally, based on these facial points, we employed facial

alignment for these facial images and resized to 256*256

pixels. The features are extracted by the method of Biolog-

ically Inspired Features (BIF) [15].

1 4 7 10 13 16 19 22 25 28 31 34 37 40

Age

1 4 7 10 13 16 19 22 25 28 31 34 37 40

Age

Figure 5. LDL of Apparent Age Estimation

In this competition, on the one hand, traditional single-

label method can be used to learn a mapping from the ap-

parent image to the given mean age µ. Thus, we can use

traditional LogitBoost [6] and AOSO-LogitBoost [20] algo-

rithms. On the other hand, we can use the mean age µ and

the standard deviation σ to generate an age distribution as-

signed with each image. AOSO-LDLogitBoost, LDLogit-

Boost and BFGS-LDL can be used to learn a mapping from

the apparent age image to its age distribution.

The performance of the age estimation is evaluated by

Mean Absolute Error (MAE) and the formula provided by

competition organization (named ǫ-Error), which is:

ǫ = 1− exp(−
(t− µ)2

2σ2
) (28)

where t is the predicted age, µ is the mean apparent age and

σ is the standard deviation. Each prediction is evaluated

using the above formula, getting an error value between 0
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Method K-L ↓ Euclidean ↓ Sørensen ↓ SquaredX2 ↓ Fidelity ↑ Intersectioin ↑

AOSO-LDLogitBoost .0855±.0037 .1547±.0030 .1521±.0032 .0837±.0034 .9778±.0009 .8478±.0031

LDLogitBoost .0900±.0038 .1585±.0032 .1552±.0031 .0875±.0034 .9767±.0009 .8448±.0031

LDSVR .0918±.0047 .1583±.0035 .1559±.0035 .0884±.0042 .9765±.0011 .8440±.0035

BFGS-LDL .0989±.0040 .1666±.0036 .1639±.0034 .0960±.0037 .9744±.0011 .8360±.0034

AA-KNN .1274±.0069 .1917±.0045 .1899±.0047 .1246±.0062 .9664±.0018 .8101±.0047

AA-BP .1276±.0038 .2026±.0038 .1990±.0039 .1285±.0040 .9653±.0011 .8010±.0039

IIS-LDL .1288±.0070 .1866±.0041 .1828±.0044 .1195±.0054 .9676±.0014 .8172±.0044

CPNN .1826±.0274 .2209±.0148 .2153±.0150 .1625±.0206 .9551±.0061 .7847±.0150

Table 3. Results on COPM. AOSO-LDLogitBoost is better.

(correct) and 1 (far from age). Not predicted images are

evaluated with 1.

Table 4 reports the experimental results of LDLogit-

Boost, AOSO-LDLogitBoost, BFGS-LDL and LogitBoost

as well as AOSO-LogitBoost. AOSO-LDLogitBoost and

AOSO-LogitBoost use maximum 5000 steps with v = 0.05,

while LDLogitBoost uses maximum 800 steps with vt =
0.1. For the LDL method, BFGS uses maximum 200 steps.

As can be seen, AOSO-LDLogitBoost and LDLogitBoost

perform better than all of other algorithms. It implies LD-

LogitBoost and AOSO-LDLogitBoost can make full use of

the standard deviation among the labels which can lead to a

better performances than traditional LogitBoost and AOSO-

LogitBoost algorithms.

Method MAE ↓ ǫ-Error ↓

AOSO-LDLogitBoost 7.2949 0.5483

LDLogitBoost 7.3449 0.5507

BFGS-LDL 7.4243 0.5518

AOSO-LogitBoost 8.0361 0.5758

LogitBoost 9.0458 0.6044

Table 4. Results on Charlearn Age Estimation. AOSO-

LDLogitBoost is better.

4. Conclusion

In this paper, we propose a LDL model family which

extends the traditional maximum entropy model of LDL

as this special case. Logistic Boosting Regression can be

used to learn this general model which uses the coordi-

nate descent optimization method over the function space

based on the second derivative Hessian matrix. The base

(weak) learners can be chosen as weighted regression tree

and vector tree, which constitute two algorithms named LD-

LogitBoost and AOSO-LDLogitBoost, respectively. On the

one hand, experiments on expression recognition and crowd

opinion prediction on movies show that LDLogitBoost and

AOSO-LDLogitBoost are more effective than traditional

LDL algorithms. On the other hand, experiment on appar-

ent age estimation shows that LDLogitBoost and AOSO-

LDLogitBoost can lead to a better performances than tra-

ditional LogitBoost and AOSO-LogitBoost algorithms by

making full use of the prior knowledge such as the standard

deviation among the labels.
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