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Abstract

In real world applications, more and more data, for ex-

ample, image/video data, are high dimensional and repre-

sented by multiple views which describe different perspec-

tives of the data. Efficiently clustering such data is a chal-

lenge. To address this problem, this paper proposes a novel

multi-view clustering method called Discriminatively Em-

bedded K-Means (DEKM), which embeds the synchronous

learning of multiple discriminative subspaces into multi-

view K-Means clustering to construct a unified framework,

and adaptively control the intercoordinations between these

subspaces simultaneously. In this framework, we firstly

design a weighted multi-view Linear Discriminant Analy-

sis (LDA), and then develop an unsupervised optimization

scheme to alternatively learn the common clustering indi-

cator, multiple discriminative subspaces and weights for

heterogeneous features with convergence. Comprehensive

evaluations on three benchmark datasets and comparison-

s with several state-of-the-art multi-view clustering algo-

rithms demonstrate the superiority of the proposed work.

1. Introduction

As a fundamental technique in machine learning, pat-

tern recognition and computer vision fields, clustering is to

assign data of similar patterns into the same cluster and re-

flect the intrinsic structure of the data. In past decades, a

variety of classical clustering algorithms such as K-Means

Clustering [15] and Spectral Clustering [24, 25] have been

invented.

In recent years, due to the rapid development of infor-

mation technology, we are often confrontedwith data repre-

sented by heterogeneous features. These features are gener-

ated by using various feature construction ways. One good

example is image/video data. A large number of different

visual descriptors, such as SIFT [20], HOG [7], LBP [22],

GIST [23], CMT [30] and CENT [29], have been proposed

to characterize the rich content of image/video data from

different perspectives. Each type of features may capture

the specific information about the visual data. To cluster

these data, one challenge is how to integrate the strengths

of various heterogeneous features by exploring the rich in-

formation among them, which certainly can lead to more

accurate and robust clustering performance than by using

each individual type of features.

Nowadays, the data is often represented by very high di-

mensional features, which renders another challenge for the

clustering. A number of earlier efforts have been devoted

to addressing these two challenges. Focusing on one chal-

lenge that data is very high dimensional, many dimension-

ality reduction-based clustering methods [12, 10, 26, 16]

have been developed, which mostly concern simultaneous

subspace selection by LDA and clustering. These methods

generally are more appropriate for single-view data clus-

tering. Although they may be extended to multi-view data

clustering task by simply concatenating different views as

input or integrating each view of clustering results to the fi-

nal results, these extended methods still cannot achieve the

satisfactory performance due to the lack of intercoordina-

tion and complementation between different views during

clustering.

Focusing on another challenge that data is represented by

multi-view, a school of unsupervised multi-view clustering

methods have been presented. Although these methods can

achieve interactions among heterogeneous features, there

still exist some problems regarding heavy computational

complexity or curse of dimensionality. Most of these meth-

ods can be roughly classified into two categories: Multi-

View K-Means Clustering (MVKM) and Multi-View Spec-

tral Clustering (MVSC). Many MVSC approaches essen-

tially extend the Spectral Clustering from single view to

multiple views and are mainly based on similarity graph-

s or matrices. Although this kind of multi-view clustering

algorithms [8, 32, 21, 18, 19, 4, 14, 27, 5] can achieve en-

couraging performance, they still have two main drawback-

s. On the one hand, the construction of the similarity graph

for high dimensional data is a heavy work because many
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factors must be considered, such as the choice of similarity

function and the type of similarity graph. This heavy work

may greatly affect the final clustering performance. On the

other hand, MVSC algorithms generally need to build prop-

er similarity graph for each view. The more the number of

different views, the more complex constructing similarity

graphs will be. Thus, MVSC algorithms cannot effectively

tackle high-dimensional multi-view data clustering.

Different from MVSC algorithms, MVKM approaches

are more superior to deal with high-dimensional data be-

cause they do not need to construct a similarity graph for

each view. This kind of methods is originally derived from

the G-orthogonal non-negative matrix factorization (NMF)

which is equivalent to relaxed K-Means clustering (RKM)

[9]. Recently, Cai et al. [3] proposed the robust multi-view

K-Means clustering (RMVKM) by using ℓ2,1-norm [11] to

replace the ℓ2-norm and learning individual weight for each

view. However, RMVKM was performed in the original

feature space without any discriminative subspace learning

mechanism that may render curse of dimensionality when

dealing with multi-view and high dimensional data. In ad-

dition, although the work in [31] also extended the model

from [10] to the multi-view case, they sum the scatter ma-

trices and produce a separate cluster assignment for each

view, which is quite different from the proposed method.

According to abovementioned analysis, both directly ex-

tending single-view to multi-view and existing multi-view

algorithms are far from thoroughly addressing the multi-

view clustering issue. In this paper, we propose a novel un-

supervised multi-view scheme aiming to address above two

challenges. The proposed method DEKM embeds the syn-

chronous learning of multiple discriminative subspaces into

multi-viewK-Means clustering to construct a unified frame-

work, and adaptively control the intercoordinations between

different views simultaneously.

The highlights of DEKM method are in two aspects.

Firstly, learning multiple discriminative subspaces is ful-

filled synchronously. Under this unified and embedded

framework, DEKM realizes the intercoordination of these

subspaces and further makes them complement each oth-

er. Secondly, DEKM develops an intertwined and iterative

optimization instead of just applying existing methods in

an iterative manner, which not only maintains the relative

independency on different discriminative subspaces, but al-

so keeps the consistency of clustering results of multiple

views. This multi-view extension is the first work among

the earliest efforts to sum the clustering objectives via a

weighted way. These are quite different from several recent

works. Comprehensive evaluations on several benchmark

image datasets and comparisons with some state-of-the-art

multi-view clustering approaches demonstrate the efficien-

cy and superiority of DEKM.

2. The proposed framework

2.1. Formulation

According to [17], the trace ratio LDA for single-view

was defined as follows:

W=argmax
WTW=Im

Tr(WTSBW)

Tr(WTSWW)
(1)

whereW ∈ R
d×m denotes the projection matrix which is

a set of orthogonal and normalized vectors. It enables to

reduce the dimensionality from d to m. SB and SW denote

the between-class scatter matrix and the within-class scatter

matrix, respectively.

Suppose that X∈R
d×N is the data matrix with N sam-

ples and d-dimension after centralization and G∈R
N×C is

the clustering indicator matrix where each row ofG denotes

the clustering indicator vector for each sample, and C is the

number of clusters. Gic=1(i=1, ..., N ; c=1, ..., C) if the
i-th sample belongs to the c-th class and Gic=0 otherwise.
Using G, SB and SW can be rewritten as:

SB=XG(GTG)−1GTXT

SW =XXT −XG(GTG)−1GTXT
(2)

Because of ST = SB+SW , (1) is equivalent to the fol-

lowing problem:

W=argmax
WTW=Im

Tr(WTSBW)

Tr(WTSTW)
(3)

We know that (3), as a supervised method, can seek a dis-

criminative subspace to separate different classes maximal-

ly. Recently, the combination of dimensionality reduction

and clustering has become a hot issue [12, 10, 26, 16]. How-

ever, those methods are only designed for single-view issue.

In this paper, we firstly design a weighted multi-view LDA

and then develop an unsupervised optimization scheme to

solve this multi-view framework.

Given M types of heterogeneous features, k =
1, 2, ...,M , we supposeXk ∈R

dk×N as the data matrix for

the k-th view. Referring to the definition of trace ratio LDA,
we propose that, for two dk×dk positive semi-definite ma-

trices SkB and SkT , the weighted multi-view trace ratio LDA

can be defined as finding M differen projection matrices

Wk|
M
k=1 respectively:

Wk|
M
k=1= argmax

WT
k
Wk=Imk

|M
k=1

M
∑

k=1

(αk)
γ Tr(W

T
k S

k
BWk)

Tr(WT
k S

k
TWk)

(4)

where Wk denotes the projection matrix which reduces the

dimensionality from dk to mk in the k-th view. αk is the

weight for each view and γ is the parameter to control the
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weights distribution. SkB and SkT denote the SB and ST in

the k-th view, respectively:

SkB=XkG(GTG)−1GTXT
k , S

k
T =XkX

T
k (5)

It is apparent that the weighted multi-view LDA, i.e. (4),

is still supervised. However, in the real applications, label-

ing data is very expensive. Without any label information,

we know neither projection matrices Wk|
M
k=1 nor cluster-

ing indicator matrix G of (4), which is adverse for doing

high-dimensional clustering. Thus, we propose an unsuper-

vised optimization scheme to solve the following weighted

multi-view LDA:

max
Wk|M

k=1
,

αk|M
k=1

,G

M
∑

k=1

(αk)
γ

[

Tr(WT
k XkG(GTG)−1GTXT

k Wk)

Tr(WT
k S

k
TWk)

−1

]

s.t.WT
kWk=Imk

|Mk=1,G∈Ind,

M
∑

k=1

αk=1, αk≥0

(6)

where Ind is a set of clustering indicator matrices.

2.2. Optimization

The key difficulty of solving (6) is that (6) has become an

unsupervised complex matter. In other words, the numera-

tor of (6), XkG(GTG)−1GTXT
k , actually Sk

B , is closely re-

lated to G. However,Wk|
M
k=1, αk|

M
k=1 and G are unknown.

To simultaneously obtain these variables in a better way, we

offer the Theorem 1 to transform (6) into a more tractable

framework (7) which is the proposed method DEKM. Ac-

tually, Wk|
M
k=1 are not decoupled in (7) since G is also a

variable to be optimized.

Theorem 1. Solving (6) is equivalent to solving the follow-

ing objective function:

min
Wk|M

k=1
,

αk|M
k=1

,G

M
∑

k=1

(αk)
γ ||W

T
kXk − FkG

T ||2F
Tr(WT

k S
k
TWk)

s.t.WT
kWk=Imk

|Mk=1,G∈Ind,

M
∑

k=1

αk=1, αk≥0

(7)

Proof. Obviously, using the properties of matrix trace, (7)

can be rewritten as the following formula:

min
Wk|M

k=1
,

αk|M
k=1

,G

M
∑

k=1

(αk)
γTr

[

(WT
kXk−FkG

T )T(WT
k Xk−FkG

T )
]

Tr(WT
k S

k
TWk)

= min
Wk|M

k=1
,

αk|M
k=1

,G

M
∑

k=1

(αk)
γ

[

Tr(XT
kWkW

T
kXk)−2Tr(FT

kW
T
kXkG)

+Tr(FkG
TGFT

k )

]

Tr(WT
k S

k
TWk)

(8)

Due to solving the minimum, we get its derivative with re-

spect to Fk. Ignoring irrelevant terms and using the rules of

matrix derivative, we can obtain:

Fk = WT
k XkG(GTG)−1 (9)

Excitingly, Fk ∈R
mk×C is the cluster centroid in discrimi-

native subspace for the k-th view. Substituting (9) into (8),

there is:

min
Wk|M

k=1
,

αk|M
k=1

,G

M
∑

k=1

(αk)
γ

[

1−
Tr(WT

kXkG(GTG)−1GTXT
kWk)

Tr(WT
kS

k
TWk)

]

⇔ max
Wk|M

k=1
,

αk|M
k=1

,G

M
∑

k=1

(αk)
γ

[

Tr(WT
kXkG(GTG)−1GTXT

kWk)

Tr(WT
kS

k
TWk)

−1

]

(10)

Therefore, solving (6) is equivalent to solving (7).

Further, we decompose (7) into three subproblems and

solve them via alternate iteration method.

Step1: Solving G when Wk|
M
k=1, Fk|

M
k=1 and αk|

M
k=1

are fixed.

Obtaining G via a weighted multi-view K-Means clus-

tering is an unsupervised learning stage. The clustering in-

dicator matrix G is unknown and we search the optimal so-

lution ofG among multiple low-dimensional discriminative

subspaces.

We separate Xk and G into independent vectors respec-

tively. Then (7) can be replaced by the following problem:

min
G

M
∑

k=1

(αk)
γ ||WT

kXk−FkG
T ||2F

= min
G

N
∑

i=1

M
∑

k=1

(αk)
γ ||WT

k x
i
k−Fkgi||

2
2

s.t.G∈Ind, gi∈G, gic∈{0, 1},

C
∑

c=1

gic=1

(11)

where xik is the i-th column of Xk, which corresponds to

the i-th sample in the k-th view and gi is the i-th row of

G, which denotes the clustering indicator vector for the i-th
sample. Assigning G into (11) one by one is equivalent to

tackling the following problem for the i-th sample:

c∗=argmin
c

M
∑

k=1

(αk)
γ ||WT

k x
i
k−Fkec||

2
2 (12)

where ec is the c-th row of identity matrix IC and c∗ means

that the c∗-th element of gi is 1 and others are 0. There are
only C kinds of candidate clustering indicator vectors, so

we can easily find out the solution of (12).
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Step2: Solving Wk|
M
k=1 and Fk|

M
k=1 when G and

αk|
M
k=1 are fixed.

Calculating Wk|
M
k=1 and Fk|

M
k=1 via a weighted multi-

view LDA is a supervised learning stage. Moreover, the

discriminative subspaceWk for each view is closely related

to the clustering indicator matrix G and its weight αk.

From (9), we know that Fk is a function of Wk and G.

When G and αk|
M
k=1 are fixed, substituting (9) into (7) and

omitting constant terms, the objective function becomes:

min
Wk|Mk=1

M
∑

k=1

Tr(WT
k S̃

k

WWk)

Tr(WT
k S

k
TWk)

, s.t.WT
kWk = Imk

|Mk=1 (13)

where S̃
k

W = (αk)
γ [XkX

T
k −XkG(GTG)−1GTXT

k ] denotes
the weighted within-class scatter matrix for the k-th view.

Thus, solving (13) equals to solving the following formula:

max
Wk|Mk=1

M
∑

k=1

Tr(WT
k S̃

k

BWk)

Tr(WT
k S

k
TWk)

, s.t.WT
k Wk = Imk

|Mk=1 (14)

where S̃
k

B=(αk)
γXkG(GTG)−1GTXT

k denotes the weight-

ed between-class scatter matrix for the k-th view. (14) joint-
ly optimizes M distinct discriminative subspaces in paral-

lel. The solutionWk for each view is solved by a trace ratio

LDA when G and αk|
M
k=1 are fixed.

Step3: Solving αk|
M
k=1 when Wk|

M
k=1 and G are fixed.

Learning the non-negative normalized weight αk for

each view assigns the more discriminative image feature

with higher weight. To derive the solution of αk|
M
k=1, we

rewrite (7) as:

min
αk|Mk=1

M
∑

k=1

(αk)
γHk, s.t.

M
∑

k=1

αk=1, αk ≥ 0 (15)

where

Hk=
‖WT

k Xk−FkG
T‖2F

Tr(WT
k S

k
TWk)

(16)

Thus, the Lagrange function of (15) is:

M
∑

k=1

(αk)
γHk − λ(

M
∑

k=1

αk − 1) (17)

where λ is the Lagrange multiplier. In order to get the op-

timal solution, we set the derivative of (17) with respect to

αk to zero and then substitute the result into the constraint
∑M

k=1αk=1. There is:

αk =
(γHk)

1
1−γ

∑M
v=1(γHv)

1
1−γ

(18)

Algorithm 1 The algorithm of DEKM method

Input:

Data for M views {Xk|k=1, 2, ...,M}, Xk ∈R
dk×N . The number of

clusters C. The reduced dimensionmk for each view and the parameter

γ.

Output:

The projection matrix Wk , cluster centroid matrix Fk and weight αk

for the k-th view. The common clustering indicator matrix G.

Initialization:

Set t = 0. Initialize G ∈ Ind. InitializeWk by WT
kWk = Imk

and

initialize the weight αk=1/M for the k-th view.

While not converge do

1: Calculate G by :

c∗=argmin
c

M∑

k=1

(αk)
γ ||WT

k xik−Fkec||
2

2

2: Calculate Fk by Fk = WT
k XkG(GTG)−1 and update Wk|

M
k=1

by

max
Wk|

M
k=1

M∑

k=1

Tr(WT
k S̃

k
BWk)

Tr(WT
k
SkTWk)

3: Update αk |
M
k=1

by:

αk =
(γHk)

1
1−γ

∑M
v=1

(γHv)
1

1−γ

End While, return Wk|
M
k=1

, G and αk|
M
k=1

To sum up, in Algorithm 1, we can obtain G via Step1,

which is equivalent to the Discriminative K-Means includ-

ing the interrelations among multi-view features. Updating

Wk|
M
k=1 via Step2 is the dimensionality reduction for each

view. Updating αk|
M
k=1 via Step3 fulfills the learning of

multiple weights simultaneously. Then we repeat this pro-

cess iteratively until the objective function value becomes

converged.

3. Convergence analysis

As mentioned above, DEKM is a unified and embedded

multi-view framework solved by an unsupervised optimiza-

tion scheme. It is obvious that when we transform (6) into

(7), it can be divided into three subproblems. Here we show

the following proof to verify the convergence of Discrimi-

natively Embedded K-Means (DEKM) algorithm.

Theorem 2. In each iteration, no matter the objective func-

tion value of (6) or that of its variant (7), which all decrease

until the algorithm converges.

Proof. Supposing after the t-th iteration, we have obtained

W
(t)
k |Mk=1, G

(t) and α
(t)
k |Mk=1. In the t+1-th iteration, we

firstly fix G and αk|
M
k=1 as G(t) and α

(t)
k |Mk=1 respectively,

and then solve W
(t+1)
k for each view. Thus, when G(t) and

α
(t)
k |Mk=1 are fixed, according to (6), W

(t+1)
k can be solved
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by the following equation:

W
(t+1)
k =argmax

Wk

(α
(t)
k )γ · · ·

· · ·

{

Tr[W
(t)T
k XkG

(t)(G(t)TG(t))−1G(t)TXT
kW

(t)
k ]

Tr(W
(t)T
k SkTW

(t)
k )

−1

}

=argmin
Wk

(α
(t)
k )γ · · ·

· · ·

{

Tr[W
(t)T
k (SkT −XkG

(t)(G(t)TG(t))−1G(t)TXT
k )W

(t)
k ]

Tr(W
(t)T
k SkTW

(t)
k )

}

(19)

Referring to the way of argumentation for [6], through

rewriting (19) we have:

Tr
(

W
(t+1)T
k S̃

k(t)

W W
(t+1)
k

)

Tr
(

W
(t+1)T
k SkTW

(t+1)
k

)

≤
Tr

(

W
(t)T
k S̃

k(t)

W W
(t)
k

)

Tr
(

W
(t)T
k SkTW

(t)
k

)

(20)

where

S̃
k(t)

W = (α
(t)
k )γ [SkT − XkG

(t)(G(t)TG(t))−1G(t)TXT
k ]

= (α
(t)
k )γS

k(t)
W

and it denotes the weighted within-class scatter matrix for

the k-th view at the t-th iteration.
In the same way, we fixWk|

M
k=1 and αk|

M
k=1 asW

(t)
k |Mk=1

and α
(t)
k |Mk=1 respectively, and solve for G(t+1). According

to (6), we can obtain:

G(t+1)=argmax
G

M
∑

k=1

(α
(t)
k )γ · · ·

· · ·

{

Tr[W
(t)T
k XkG

(t)(G(t)TG(t))−1G(t)TXT
kW

(t)
k ]

Tr(W
(t)T
k SkTW

(t)
k )

−1

}

=argmin
G

M
∑

k=1

(α
(t)
k )γ · · ·

· · ·

{

Tr[W
(t)T
k (SkT −XkG

(t)(G(t)TG(t))−1G(t)TXT
k )W

(t)
k ]

Tr(W
(t)T
k SkTW

(t)
k )

}

(21)

By rewriting (21), there is:

M
∑

k=1

Tr
(

W
(t)T
k S̃

k(t+1)

W W
(t)
k

)

Tr
(

W
(t)T
k SkTW

(t)
k

)

≤

M
∑

k=1

Tr
(

W
(t)T
k S̃

k(t)

W W
(t)
k

)

Tr
(

W
(t)T
k SkTW

(t)
k

)

(22)

where

S̃
k(t+1)

W =(α
(t)
k )γ

[

SkT −XkG
(t+1)(G(t+1)TG(t+1))−1

G(t+1)TXT
k

]

= (α
(t)
k )γS

k(t+1)
W

and it is the weighted within-class scatter matrix for the k-th
view at the t+1-th iteration.

Similarly, we fix Wk|
M
k=1 and G as W

(t)
k |Mk=1 and G(t)

respectively, and solve for α
(t+1)
k |Mk=1. According to (6),

for each view, α
(t+1)
k can be calculated by:

α
(t+1)
k =argmax

αk

(α
(t)
k )γ · · ·

· · ·

{

Tr[W
(t)T
k XkG

(t)(G(t)TG(t))−1G(t)TXT
kW

(t)
k ]

Tr(W
(t)T
k SkTW

(t)
k )

−1

}

=argmin
αk

(α
(t)
k )γ · · ·

· · ·

{

Tr[W
(t)T
k (Sk

T−XkG
(t)(G(t)TG(t))−1G(t)TXT

k )W
(t)
k ]

Tr(W
(t)T
k Sk

TW
(t)
k )

}

(23)

Thus, (23) can be further rewritten as follows:

(α
(t+1)
k )γ

Tr
(

W
(t)T
k S

k(t)
W W

(t)
k

)

Tr
(

W
(t)T
k SkTW

(t)
k

)

≤(α
(t)
k )γ

Tr
(

W
(t)T
k S

k(t)
W W

(t)
k

)

Tr
(

W
(t)T
k SkTW

(t)
k

)

(24)

Integrating (20), (22) and (24), we arrive at:

M
∑

k=1

Tr
(

W
(t+1)T
k (α

(t+1)
k )γS

k(t+1)
W W

(t+1)
k

)

Tr
(

W
(t+1)T
k SkTW

(t+1)
k

)

≤
M
∑

k=1

Tr
(

W
(t)T
k (α

(t+1)
k )γS

k(t+1)
W W

(t)
k

)

Tr
(

W
(t)T
k SkTW

(t)
k

)

≤

M
∑

k=1

Tr
(

W
(t)T
k (α

(t+1)
k )γS

k(t)
W W

(t)
k

)

Tr
(

W
(t)T
k SkTW

(t)
k

)

≤

M
∑

k=1

Tr
(

W
(t)T
k (α

(t)
k )γS

k(t)
W W

(t)
k

)

Tr
(

W
(t)T
k SkTW

(t)
k

)

(25)

Thus, (25) proves that (6) and its variant (7) are lower

bounded and their objective function value decreases after

each iteration.

4. Experiments

In this section, we evaluate the performance of DEK-

M on three benchmark datasets in terms of two standard

clustering evaluation metrics, namely Accuracy (ACC) [2]

and Normalized Mutual Information (NMI) [2]. Before do

anything, we need to centralize the data and normalize all

values in the range of [−1, 1].

4.1. Datasets

In our experiments, by following [3], three benchmark

image datasets including Caltech101 [13], MSRC [28] and
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Table 1. Descriptions of testing datasets.

View MSRCv1 Caltech101-7 Handwritten

1 CMT (48) CMT (48) FAC (216)
2 HOG (100) HOG (100) PIX (240)
3 LBP (256) LBP (256) ZER (47)
4 SIFT (210) SIFT (441) MOR (6)
5 GIST (512) GIST (512) KAR (64)
6 CENT (1302) CENT (1302) FOU (76)

Images 210 441 2000
Classes 7 7 10

Handwritten [1] were adopted for evaluations. Figure 1

shows some image examples from above three datasets. Ta-

ble 1 summarizes the information of each dataset including

the number of images and classes, heterogeneous features

and the dimensionality of each type of feature.

4.2. Toy example

In this section, we conducted a toy experiment to veri-

fy the effectiveness of DEKM. For simplicity, we worked

on the two-view case given by [19]. We show the projec-

tion directions (green solid lines) with different numbers of

iterations Initialization, Iteration = 3, Iteration = 5
and Iteration = 7 in Figure 2. Performing our method

with γ > 1 on this synthetic data, ACC is 0.9950 and N-

MI is 0.9590. It is observed that DEKM can exactly ob-

tain projection directions which separate different clusters

maximally and achieve better and stable accuracy with few

iteration steps.

In contrast, if we performed LDA on each individu-

al view, the results are decreased significantly. It further

demonstrates that DEKM method has no trivial solution

when γ>1 and incorporates multiple views effectively.

4.3. Performance evaluation

Comparison methods. Firstly, we compared the per-

formance of DEKM with Embedded K-Means clustering

[26] (EKM) for single-view to simply explain the advan-

tage of multi-view. Secondly, to emphasize the importance

of intercoordination among multiple views, we compared

the results of DEKM with AEKM which concatenates all

views together directly and then performs EKM clustering.

Thirdly, we compared DEKM with some baseline method-

s naive Multi-view K-Means clustering (NMVKM), its ro-

bust version LMVKM (NMVKM with ℓ2,1-norm) and R-

MVKM [3] to demonstrate the significant advantage of dis-

criminative subspace learning. Finally, when we ignore the

weight of each view, DEKM can degenerate to a simple ver-

sion DEKM (SDEKM), which verifies the necessity of the

weight learning.

Comparison results. From comparison results shown in

Tables 2 and 3, we have the following observations.

In Table 2, DEKM performs significantly better than EK-

M. It is straightforward to demonstrate the superiority of

multi-view. In Table 3, compared with AEKM without any

mutual information among multiple views, it is clear that

DEKM can boost the clustering performance due to the

intercoordinations of different views. In addition, DEKM

outperforms other methods (NMVKM, LMVKM, RMVK-

M and SDEKM). On the one hand, compared with NMVK-

M, LMVKM and RMVKM, DEKM simultaneously obtain-

s multiple discriminative subspaces which has great effects

on the performance of algorithms. On the other hand, un-

like SDEKM, DEKM adaptively learns the weight for each

view to better integrate heterogeneous image features and

then improve the performance of clustering.

Furthermore, we tested the convergence speed of DEKM

on three datasets which is shown in Figure 3. It is observed

that DEKM algorithm can convergewith few iteration steps.

4.4. Evaluation of key components of the proposed
method

There are three key components in DEKM algorithm:

the initialization ofG, the dimensionality of embedded sub-

spacemk for the k-th view and the parameter γ.
Initialization. According to [3], it can be seen that

NMVKM and RMVKM always simply use general ran-

dom method to initialize G. However, random initialization

greatly affects the results of clustering. Like in [3], the ACC

of NMVKM is 0.7002± 0.085, and the ACC of RMVKM

is 0.8142± 0.087. We can see that the precision level, i.e.

8.5% or 8.7%, is not high, such that it is hard to always

remain high performance. In addition, unstable initializa-

tion is difficult to control parameters and obtain ideal re-

sults. Thus, we initialize G in a new way to substantially

reduce the dependence of clustering result on initialization

and conveniently tune parameters.

We first sort the rows of identity matrix IC randomly and

get the matrix ĨC , and then we use direct product of vector

1 and matrix ĨC to produce the initial G:

G = 1⊗ ĨC

s.t.IC ∈ R
C×C , ĨC ∈ R

C×C , 1 ∈ R
floor(N/C)×1

(26)

where 1 denotes a column vector with all elements being

1. Sometimes the number of samples N cannot be divisi-

ble by the number of clusters C, so we need to extra select

r = N −C ×floor(N/C) rows from ĨC randomly to fill

the indivisible part. In other words, this new initialization

makes the number of samples for each label equally as far

as possible. Note that we do not care whether these labels

are correct or not as long as the numbers of different kinds

of labels are equal. As the mapping relationships between

the labels of different clusters are nearly invariable, we can

obtain more stable initialization.

Dimension of views. In above discussions, we assume

that the total scatter matrix is always invertible. However, in
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(a) Caltech101-7 Dataset images from 7 classes: Face, Motorbike, Dollabill, Garfield, Snoopy, Stop-sign and Windsor-chair

Face Motorbike Dollabill Garfield Snoopy Stop-sign Windor-chair

(b) MSRC Dataset images from 7 classes: Cow, Tree, Building, Airplane, Face, Car, and Bicycle

Cow Tree Building Airplane Face Bicycle Car 

(c) Handwritten numerals Dataset images from 10 digit classes: 0 to 9

Figure 1. Some example images from (a) Caltech101, (b) MSRC and (c) Handwritten numerals data sets.

(b) Iteration=3
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Figure 2. Projection directions of synthetic data with different iterations.

real applications, high-dimensional complex data may lead

total scatter matrix to be singular. If so, we can adopt P-

CA as a preprocessing step to ensure the total scatter matrix

invertible.

In this paper, dimensionalitymk is an important param-

eter because the curse of dimensionality may occur if mk

is large and otherwise there exists overlap of different clus-

ters. We determined mk heuristically by grid search and

choosed the one with the best clustering accuracy. Tables 2

and 3 show that DEKM outperforms other methods great-

ly, when we find suitable parameter mk. For example, we

have performed the test on Caltech101-7 dataset whose to-

tal dimensionality of all views reaches up to 2659. Through
DEKM algorithm, we not only reduce the total dimension-

ality of all views from 2659 to 1194, but also learn multiple

discriminative subspaces to significantly improve the per-

formance of clustering.

Parameter γ. In DEKM method, we use one param-

eter γ to control the distribution of weights for different

views. According to (18) and the characteristic of the func-

tion 1
1−γ , two extreme cases are produced. When γ → ∞,

DEKM can get equal weights 1
M . When γ → 1+, suppos-
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Table 2. Comparison of DEKM and EKM on MSRCv1, Caltech101-7 and Handwritten datasets.

Method
MSRCv1 Caltech101-7 Handwritten

ACC NMI ACC NMI ACC NMI

EKM(view1) 0.5048 ± 0.00 0.4365 ± 0.00 0.3243 ± 0.00 0.1666 ± 0.00 0.6340 ± 0.00 0.6253 ± 0.00
EKM(view2) 0.6286 ± 0.00 0.5436 ± 0.00 0.5578 ± 0.00 0.4080 ± 0.00 0.7680 ± 0.00 0.7313 ± 0.00
EKM(view3) 0.5048 ± 0.00 0.4734 ± 0.00 0.3738 ± 0.00 0.2948 ± 0.00 0.5745 ± 0.00 0.5361 ± 0.00
EKM(view4) 0.4238 ± 0.00 0.3277 ± 0.00 0.6961 ± 0.00 0.6276 ± 0.00 0.4280 ± 0.00 0.4995 ± 0.00
EKM(view5) 0.6714 ± 0.00 0.6275 ± 0.00 0.7007 ± 0.00 0.6235 ± 0.00 0.6455 ± 0.00 0.5462 ± 0.00
EKM(view6) 0.5476 ± 0.00 0.5527 ± 0.00 0.6667 ± 0.00 0.5635 ± 0.00 0.6975 ± 0.00 0.6429 ± 0.00

DEKM 0.9238± 0.00 0.8649 ± 0.00 0.8503± 0.00 0.8231± 0.00 0.9530 ± 0.00 0.9098± 0.00

Table 3. Clustering Performances of the compared methods on MSRCv1, Caltech101-7 and Handwritten datasets.

Method
MSRCv1 Caltech101-7 Handwritten

ACC NMI ACC NMI ACC NMI

NMVKM 0.7810 ± 0.00 0.7122 ± 0.00 0.7143 ± 0.00 0.7337 ± 0.00 0.7810 ± 0.00 0.7661 ± 0.00
LMVKM 0.7762 ± 0.00 0.7190 ± 0.00 0.7664 ± 0.00 0.7208 ± 0.00 0.8030 ± 0.00 0.7853 ± 0.00
RMVKM 0.9048 ± 0.00 0.8463 ± 0.00 0.7846 ± 0.00 0.7145 ± 0.00 0.9125 ± 0.00 0.8539 ± 0.00
AEKM 0.7810 ± 0.00 0.7293 ± 0.00 0.7302 ± 0.00 0.7299 ± 0.00 0.8950 ± 0.00 0.8152 ± 0.00
SDEKM 0.8810 ± 0.00 0.8002 ± 0.00 0.8254 ± 0.00 0.7465 ± 0.00 0.9355 ± 0.00 0.8753 ± 0.00
DEKM 0.9238 ± 0.00 0.8649 ± 0.00 0.8503± 0.00 0.8231 ± 0.00 0.9530 ± 0.00 0.9098± 0.00
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SRCv1 and Caltech101-7 dataset, respectively.
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and Caltech101-7 datasets, respectively.

ing Hp = min{Hk|k = 1, ..., p, ...,M}, we substitute Hp

into (18) and solve its weight:

lim
γ→1+

αp= lim
γ→1+

1

1+
∑

v 6=p

(Hv/Hp)
1

1−γ

=1 (27)

It can be seen that DEKM assigns 1 to the weight of the

view whose Hp value is the smallest and assign 0 to the

weights of other views.

Using such kind of strategy,we not only assure DEK-

M has no trivial solution when γ > 1, but also reduce the

parameters of the model greatly. In our experiments, we

searched log10γ in the range from 0 to 1 with incremental

step 0.1 to obtain the best parameter γ. In Figure 4, we show
that γ dominates the performance of DEKM algorithm on

three datasets.

5. Conclusion

In this paper, we have proposed an unsupervised clus-

tering framework which embeds multiple discriminative

subspaces learning into multi-view K-Means clustering to

construct an unified framework, and adaptively control the

intercoordinations between multiple views via the weight

learning. Besides, our optimization scheme efficiently

solved the proposed objective function with global optimal-

ity and convergence. Comprehensive evaluations on widely

used image benchmarks have demonstratedDEKM is effec-

tive for clustering high-dimensional multi-view data.
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