
Automatic Fence Segmentation in Videos of Dynamic Scenes

Renjiao Yi1,2, Jue Wang3, and Ping Tan1

1Simon Fraser University
2National University of Defence Technology

3Adobe Research

Abstract

We present a fully automatic approach to detect and seg-

ment fence-like occluders from a video clip. Unlike previ-

ous approaches that usually assume either static scenes or

cameras, our method is capable of handling both dynam-

ic scenes and moving cameras. Under a bottom-up frame-

work, it first clusters pixels into coherent groups using color

and motion features. These pixel groups are then analyzed

in a fully connected graph, and labeled as either fence or

non-fence using graph-cut optimization. Finally, we solve

a dense Conditional Random Filed (CRF) constructed from

multiple frames to enhance both spatial accuracy and tem-

poral coherence of the segmentation. Once segmented, one

can use existing hole-filling methods to generate a fence-

free output. Extensive evaluation suggests that our method

outperforms previous automatic and interactive approaches

on complex examples captured by mobile devices.

1. Introduction

It is a common case that one has to shoot an interesting

scene through fences or wires. For instance, capturing a

video of a walking tiger behind an enclosing fence in a zoo,

or a building through wires or tree branches. Such videos

are usually unpleasant to watch due to the strong distraction

caused by the occluders. A common photography trick to

alleviate this problem is to adjust the focus length and aper-

ture of the camera to make the fence out-of-focus, thus less

distracting when watching the video. However its effective-

ness is limited and is only applicable to relatively advanced

cameras, excluding most mobile phone cameras. Removing

fence from videos at the postprocessing stage is thus highly

desirable.

Despite a few recent attempts [22, 14, 7], removing fence

from videos with unconstrained scene dynamics and cam-

era movement is largely an open problem. In particular, it

is hard to automatically detect and segment fence in videos.

Fences contain very thin structures, which are difficult to

segment even for interactive tools such as GrabCut[19] or

Rotobrush[1]. Furthermore, there is usually no distinctive

colors or strong textures on a fence, making it hard to track,

Their repetitive structure patterns often lead to tracking and

motion estimation errors. A recent work [21] successful-

ly removes fence from videos, but only for static scenes.

For videos capturing dynamic scenes, the commonly used

two-layer motion model breaks out due to the existence of

large dynamic objects, rendering methods that rely on stat-

ic scene reconstruction insufficient, as we will show in the

experimental section.

In this paper, we present a new method for automatic

fence segmentation from casual videos capturing dynamic

scenes or objects. By allowing dynamic scenes, our ap-

proach has a much wider application range than previous

work that are constrained to static ones. Our approach can

also deal with videos shot with a moving camera, which

is quite common for novice users capturing with hand-held

mobile devices. We show that, while introducing object and

camera motion brings new challenges to the task, they in

turn provide additional information that can facilitate fence

detection and segmentation. Specifically, the camera mo-

tion gives the fence a rigid motion in the video that is usual-

ly quite distinctive from the object motion behind it, allow-

ing better segmentation using local motion contrast.

Our method takes a bottom-up approach. It begins by

computing optical flow between neighboring frames, and

grouping pixels in each frame according to color and mo-

tion. In the first round, we treat each group as a super-pixel

and consider labeling each one as either fence or non-fence.

Each group’s probability of being fence is evaluated accord-

ing to its structural and appearance features. The compati-

bility between two neighboring groups are computed from

their color, motion, and structural similarities. We then

solve a graph-cut optimization to produce initial labeling.

The initial labeling, done on a per-frame basis, suffers from

imprecise fence localization and poor temporal coherence.

1705

It is further refined by a spatio-temporal dense Condition-

al Random Field (CRF) optimization[9], which improves

fence segmentation in both spatial accuracy and temporal

coherence.

We evaluate the proposed approach on various videos,

including mobile phone videos captured by ourselves, and

Youtube video clips with completely unknown camera set-

ting. Our segmentation results are quantitatively evaluated

on a new dataset with manually labeled ground truth. The

results show that our method achieves much better precision

and recall than previous approaches. Finally, we demon-

strate simple hole-filling with existing inpainting techniques

[5] to remove detected fences.

2. Related work

Hays et al. [6, 13] detect fence structures from a single

image by extracting near regular repetitive texture patterns.

Park et al. [17] enhance the repetitive structure detection to

deal with deformations due to perspective camera projec-

tion and non-planar underlying shapes. Online learning and

classification are adopted to further enhance the detection

[16]. Generally speaking, these methods rely on the suc-

cess of the challenging task of repetitive structure detection,

which is difficult to handle certain types of fence structures

such as window blinds. Although our method uses image

gradients to measure local fence structure compatibility, it

does not explicitly assume any particular fence pattern.

Fence detection and removal can be easier when multi-

ple input images or a video clip is available. Yamashita et

al. [22] use flash and non-flash images together with multi-

focus images to detect and remove fence. Khasare et al. [7]

manually label fence pixels with existing interactive seg-

mentation tools. Mu et al. [14] detect and remove fence us-

ing parallax cues from video clips under the assumption of

a static scene. Xue et al. [21] separate fence from the back-

ground using motion cues through an optimization process.

This approach achieves high quality results, but is limited

to static scenes.

Image inpainting [3] [5] [2] techniques can fill-in s-

mall image regions given their masks. Video inpainting

[15][20] can recover missing structures on the current frame

by transferring pixels from neighboring frames. The suc-

cess of these methods rely on accurate segmentation masks

as input, which are hard to achieve for fences even with

advanced interactive segmentation tools [10, 19, 1]. Our

segmentation approach provides such masks automatically.

The video compass work[8] used histograms to describe

orientations of lines, which is similar to our gradient-based

term in initial fence segmentation described in later section-

s.

In the spirit of creating an enhanced image from a video

clip, our work is relevant to TrackCam[12] and super-

resolution [18], while we target on a completely different

Figure 1. (a) One frame in input video; (b) initial fence segmenta-

tion by graph-cut; (c) final fence segmentation by dense CRF.

problem.

3. Fence segmentation

Our fence segmentation includes three major steps.

Firstly, pixels in each frame are clustered into a fixed num-

ber of groups based on color and motion information. Sec-

ondly, each of these groups is labeled as fence or non-fence

by a graph-cut optimization applied to each video frame in-

dividually. Finally, a dense condition random field (CRF) is

optimized over all frames simultaneously to label each pix-

el as fence or non-fence to improve the temporal coherence

and spatial accuracy of fence segmentation. As an exam-

ple, the fence segmentation results after per-frame graph-

cut and multi-frame CRF is shown in Figure 1 (b) and (c)

respectively, where the input frame is in Figure 1 (a).

3.1. Pixel Grouping

Fences have distinctive structural features, e.g. they typi-

cally (but not necessarily) have two sets of thin wires point-

ing at two nearly perpendicular directions. This inspires

us to form pixel groups to exploit spatial structural features

for fence detection. We apply K-means clustering to pixels

at each frame according to color and motion information.

This clustering is based on the observation that fences pix-

els often have similar colors, and distinctive motion from

the background due to their short distances to the camera.

Even in dynamic scenes, the moving objects in background

tend to have quite different motion from the fence.

We apply the optical flow algorithm in [11] to compute

local motion between neighboring frames. One example of

computed flow field is showed in Figure 2 (b). The flow

vectors in each frame are normalized by subtracting the

minimum value and then divided by their value range (i.e.

the difference between the maximum and minimum values).

For each pixel, we concatenate its RGB color (in [0, 1]) and

the normalized flow vector to form a 5D feature. K-means

is applied to generate 50 groups for each frame: examples

are shown in Figure 2 (c) – (f). Typically, fence pixels and

background pixels are separated into different groups due to

their difference in either color or motion. In the following,

we seek to identify fence pixel groups according to fence

structural features.

706

(a) (b) (c)

(d) (e) (f)
Figure 2. (a) input frame; (b) optical flow filed; (c)–(f) some repre-

sentative pixel groups. Note that fence and background pixels are

largely separated into different groups due to color and/or motion

difference.

(a) (b) (c) (d)
Figure 3. (a)–(b) gradient orientation histograms of two back-

ground clusters (see Figure 2 (c) and (d)); (c)–(d) gradient orien-

tation histograms of two fence clusters (see Figure 2 (e) and (f)).

3.2. Initial Fence Segmentation

On each frame, we form a fully-connected graph where

each pixel group is a vertex. We optimize a fence or non-

fence label at each vertex by graph-cut, which minimizes

the following objective function:

E =
∑

i

D(ci, li) +
∑

(i,j)

S(ci, li; cj , lj). (1)

Here, ci, cj indicates the i-th and j-th pixel group, li, lj are

the binary fence labels on ci, cj respectively. The data term

D(·) measures the probability of a pixel group being fence,

define as:

D(ci, li) = li · (1− P (ci)) + (1− li) · P (ci), (2)

where P (ci) is the probability that ci being fence. It in-

cludes a gradient-based term and a geometry-based term:

P (ci) = (1−D1(ci)) · (1−D2(ci)). (3)

The gradient-based term D1(·) exploits the fact that fences

typically contain two sets of nearly perpendicular wires.

We build a gradient orientation histogram for all pixels in

a group. The histogram of a fence group should have t-

wo dominant peaks in two nearly perpendicular orienta-

tions. In contrast, a non-fence group tends to have a flat

histogram. Some example are showed in Figure 3, where

Figure 3 (a), (b) and (c), (d) are histograms of non-fence

(a) (b) (c)
Figure 4. A fence and non-fence pixel group after (a) initial K-

means grouping, (b) ‘close operator’, and (c) erosion.

and fence groups, respectively. Their corresponding pixel

groups are shown in Figure 2 (c), (d) and (e), (f), respec-

tively. To exploit this observation, for each histogram, we

firstly search the global highest peak c, and then search an-

other local peak in an interval centered at c+π/2 with width

π/5. We then take the histogram value at the middle point

of these two peaks. For fence groups, this middle point is

often associated with a low histogram value, e.g. in the val-

ley between two histogram peaks in Figure 3 (c)–(d). D1 is

computed as the ratio of the histogram value at the middle

point over that at the two peaks. Sometimes, the occluder

contains multiple wires of similar orientations, which leads

to a single dominant peak in the gradient orientation his-

togram. Our definition of D1(·) can deal with such cases.

The geometry-based term D2 exploits the fact that fences

are usually thin structures. A morphological erosion should

remove most of pixels in a fence group. In contrast, a non-

fence group usually has many more remaining pixels after

this operation. To be robust to noisy grouping results, we

first apply a ‘close operator’ to connect nearby isolated pix-

els. Figure 4 (a), (b), and (c) show results for a fence and

non-fence group by initial K-means grouping, ‘close oper-

ator’, and erosion respectively, where morphological masks

are 10× 10. D2 is computed as the percentage of pixels re-

mained after the erosion. Both D1 and D2 are then linearly

normalized to [0, 1].
The smoothness term S(·; ·) in Equation (1) measures

similarities between pixel groups based on their color, gra-

dients orientation histogram, and dominant gradient orien-

tations (the two histogram peaks selected when evaluating

D1). It is defined as:

S(ci, li; cj , lj) = µ(li, lj) ·

(1− S1(ci, cj)) · (1− S2(ci, cj)) · (1− S3(ci, cj)). (4)

Here, µ(li, lj) is the Pott model: 1 when li 6= lj , and 0
otherwise. S1 is the L1 color histogram distance of two

groups, computed in ab channels only in Lab space in or-

der to be roust to illumination variations. S2 is the L1 dis-

tance between two gradient orientation histograms. S3 is

the difference of dominant gradient orientations. Suppose

707

Figure 5. Initial segmentation by graph-cut optimization.

Figure 6. Fence segmentation by the multi-frame dense CRF optimization on same frames in Figure 5.

g1(·), g2(·) are the two dominant gradient orientations of a

pixel group, we measure S3 as:

min(disg1 , π − disg1) + min(disg2 , π − disg2).

Here, min(disg1 , π−disg1) and min(disg2 , π−disg2) com-

pute the closest peak in cj to the first and second peaks in ci
respectively. Specifically, we compute them as the follow-

ing:

disg1 = min {|g1(ci)− g1(cj)|, |g1(ci)− g2(cj)|} , (5)

disg2 = min {|g2(ci)− g1(cj)|, |g2(ci)− g2(cj)|} . (6)

S1, S2, and S3 are all linearly normalized to be in [0, 1].
We use graph-cut [4] to solve for a fence or non-fence

label at each group. Some results are showed in Figure 5.

Note that fence segmentation at this stage is roughly cor-

rect but inaccurate, i.e. fence boundaries do not align well

with image edges. There are also occasional frames with

poor segmentation results. This is because K-means clus-

tering fails to produce correct low-level clustering results

for frames with very little motion. Next, we build a dense

CRF over all video frames to further improve the segmen-

tation result.

3.3. Spatiotemporal Segmentation Refinement

In our dense CRF, each pixel on each frame is a vertex,

and it connects to all other vertices. This spatio-temporal

graph construction gives us a chance to enhance both tem-

poral coherence and spatial accuracy of the segmentation.

The total energy is defined in the same way as Equation (1)

with data and smoothness terms defined differently. The

data term is defined as:

D(x, lx) = lx · (1− P(x)) + (1− lx) · P(x).

where P(x) is evaluated as:

P(x) = P1(x) · P2(x). (7)

Here, the term P1(x) encourages the result from CRF opti-

mization to be consistent with the initial graph-cut labeling

result, defined as:

P1(x) =

{

1− α, L0(x) = 0
α, L0(x) = 1

(8)

where α is a parameter determining the confidence of ini-

tial graph-cut segmentation. In our system we simply use a

constant probability at 0.8, although one could further make

it adaptive according to the features of each pixel group.

L0(x) is the initial label of pixel x, which is 1 or 0 for fence

and non-fence pixels, respectively. The term P2(x) is de-

fined as

P2(x) = P (ci), x ∈ ci. (9)

Here, P (ci) is the probability evaluated in Equation (3) in

the previous step. x ∈ ci means that pixel x is in the i-th
group.

The smoothness term S ensures similar pixels to have

similar label. It is defined as:

S(x, lx; y, ly) = µ(lx, ly) · k(x, y). (10)

Here, µ is again the Pott model. Following [9], the similar-

ity function k(x, y) is defined as:

k(x, y) = w1exp
(

− jDis(x,y)j
2θ2

1
−

jIx � Iy j
2θ2

2

)

+w2exp
(

− jDis(x,y)j
2θ2

3

)

.
(11)

which describes the similarities between x and y in their

spatial position and color. Here, Ix, Iy are the RGB colors

at x, y. In all our experiments,we set θ1 = 6, θ2 = 2, θ3 =
1.7, the weights of two kernels are w1 = 10, w2 = 3.

The color difference between two pixels is computed as

the L1 distance between two color vectors. The spatial d-

ifference Dis(x, y) for pixels in different frames requires

some special handling. For a pixel x in the tx-th frame and

708

