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Abstract

We aim to understand the dynamics of social interactions

between two people by recognizing their actions and reac-

tions using a head-mounted camera. Our work will impact

several first-person vision tasks that need the detailed un-

derstanding of social interactions, such as automatic video

summarization of group events and assistive systems. To

recognize micro-level actions and reactions, such as slight

shifts in attention, subtle nodding, or small hand actions,

where only subtle body motion is apparent, we propose to

use paired egocentric videos recorded by two interacting

people. We show that the first-person and second-person

points-of-view features of two people, enabled by paired

egocentric videos, are complementary and essential for re-

liably recognizing micro-actions and reactions. We also

build a new dataset of dyadic (two-persons) interactions

that comprises more than 1000 pairs of egocentric videos

to enable systematic evaluations on the task of micro-action

and reaction recognition.

1. Introduction

The dynamics of social interactions between two people

can be decomposed into a sequence of action and reaction

pairs (such as pointing and sharing a point of attention, ges-

turing and nodding in agreement, or laughing and gesturing

disagreement) to convey to each other a sense of their in-

ternal states. Our everyday interactions even include micro-

actions and micro-reactions in which only subtle body mo-

tion is apparent, such as slight changes in focus of attention

(small movement of the head in response to pointing), sub-

tle nodding, or small hand actions. The ability to understand

interaction dynamics with such micro-behaviors is impor-

tant for human-to-human communications, as this mode of

non-verbal communication is perhaps our primary means

of understanding and expressing our internal state. Towards

understanding the deeper complexities of social interaction

dynamics, this work attempts to take the first step by devel-

oping a method to recognize micro-actions and reactions.

Person A’s points-of-view Person B’s points-of-view

(3) Passing and receiving an item

(2) Gesture and positive response

(1) Pointing and shift in attention

Person B

Person A

Person A

Person B

Person B

Person A

Figure 1. Challenges of recognizing micro-actions. Slight head

motion of person B induces only slight local motion in the person

A’s points-of-view in (1) and (2). Hand motion by person A is

difficult to observe from the A’s points-of-view in (2) and (3).

To enable such recognition ability, we show in this work

that it is critical to have access to a pair of egocentric

videos taken by two interacting parties. Particularly, we

focus exclusively on dyadic (i.e., two-person) interactions

and assume that both people are equipped with a head-

mounted camera. In this setting, each person always has

a first-person point-of-view (POV) observation of one’s self

in one’s own video and a second-person POV observation

of the self in another video. For example, Figure 1(1)

shows person A pointing from both his own POV (left)

and the POV of person B (right). In this way, egocentric

videos are advantageous from a sensing perspective since

the head motion and hand motion of camera wearers are

often observed clearly in such videos, making it possible

to perform various forms of first-person action recognition

[7, 9, 13, 18, 25, 27, 30]. They can also be used to see the

behavior of other people up-close from the second-person

POV [1, 2, 3, 8, 29, 44, 45].

One key observation to use a pair of egocentric videos

is that a head-worn camera naturally amplifies subtle head

motion and hand motion needed to recognize micro-actions
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Egocentric video of person A

Egocentric video of person B

fA: First-person POV feature of A fB <-A : Second-person POV feature of B

fA<-B: Second-person POV feature of A fB: First-person POV feature of B

Multiple POV features of A Multiple POV features of BInput: paired egocentric videos

Figure 2. Our approach. Paired egocentric videos recorded by persons A and B are used to provide first-person and second-person POV

features of both A and B, which are complementary and essential for recognizing micro-actions and reactions. Cumulative displacement

patterns [27] and improved dense trajectories [39] are respectively visualized as examples of the first-person and second-person features.

and micro-reactions. For example, slight changes in focus

of attention or subtle nodding cannot be adequately recog-

nized from a second-person POV because they only induce

slight variations in local motion (e.g., person B seen in A’s

POV videos in the left of Figure 1(1)(2)). However, if we

can gain access to the first-person POV of B, a small change

in head pose translates to a large change in optical flows (the

right of (1)(2)), making it possible to detect such micro-

reactions. By contrast in Figure 1(2)(3), while hand motion

of person A is not always large enough to be observed in the

first-person POV (the left of (2)(3)), it is often more visible

in the second-person POV including that person up-close

(the right of (2)(3)).

Another key observation that motivates our work is that

micro-actions and reactions are often correlated and best

recognized when one has access to egocentric videos of

both interacting parties. For example, in Figure 1(1), per-

son A performs the action of pointing, which induces a

micro-reaction of a shift in attention by person B. In other

words, the context of pointing allows us to expect a re-

sponsive change in attention. Figure 1(2)(3) show other

action-reaction pairs: hand gesture and positive response,

and passing and receiving of an item. In fact our results

show that such micro-actions and reactions cannot be reli-

ably recognized without both sources of information.

Based on these two observations, we address the task us-

ing paired egocentric videos recorded by persons A and B

to recognize micro-actions or reactions done by person A.

Our proposed method works as follows. For each video, we

first extract features of first-person POV observations of the

self and second-person observations of his/her partner per-

son (each row in Figure 2). Features for each person are

then collected across videos to provide multiple POV fea-

tures of the behavior (each column in the figure). These

features are finally trained individually for A and B and

fused to recognize A’s micro-actions and reactions.

The main contributions of this work are as follows:

(1) we propose the concept of micro-actions and micro-

reactions, which are crucial for understanding the dynam-

ics of social interactions; (2) we show that first-person and

second-person POV features of two interacting parties are

complementary and essential for recognizing micro-actions

and reactions; and (3) we construct a new dataset of dyadic

interactions comprising more than 1000 pairs of egocentric

videos to enable systematic evaluations on micro-action and

reaction recognition.

Related Work. First-person vision is one of the emerg-

ing topics in computer vision, which greatly affects sev-

eral applications such as automatic activity summariza-

tion [4, 15, 20, 43] and assistive systems [16, 34, 35, 36].

Many studies have used egocentric videos to recognize be-

haviors of camera wearers, such as action/activity recog-

nition [7, 9, 13, 18, 25, 27, 30], object recognition [10],

and gaze estimation [17], where all the visual events in

input videos are implicitly assumed to be relevant to the

wearer’s behaviors. More recently, there has been an inter-

est in understanding group activities recorded in the ego-

centric videos: e.g., social relationships [2, 3], eye con-

tacts [44, 45], or joint attention [8]. Particularly, Ryoo and

Matthies have addressed the problem of recognizing inter-

actions from egocentric videos [29]. They, however, relied

on a single video and recognized what a person in the video

was doing to a stationary observer. In short, how we can use

egocentric videos of two interacting people for recognizing

micro-actions and reactions is still unexplored.

Similar to this work, there have been some attempts to

use multiple videos but for other purposes. Temporally-

aligned egocentric videos can be used for identifying wear-

ers [46] and estimating joint focus of attention [21, 22, 23].

Other work has associated egocentric videos with third-

person POV videos (e.g., surveillance videos) for wearer

identification [26] and localization [5]. Another relevant

task in which multiple videos are used is cross-view action

recognition [12, 19, 41], where they focus on the variations

in appearances of actions in accordance with the changes in
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the pose and position of third-person cameras.

To the best of our knowledge, this work is the first to

focus on micro-actions and reactions in human-to-human

interactions. It is also unlike previous studies that recognize

interactions from a third-person POV [6, 11, 28, 37]. We

will show that the combination of first-person and second-

person POV information enabled by the egocentric videos

allows us to recognize various micro-actions and reactions

that cannot be well observed in the third-person videos.

2. Our Approach

Suppose that we are given a pair of egocentric videos

captured synchronously by person A and his/her partner

person B during a dyadic interaction. In each video pair,

we assume that person A performs one of several micro-

actions and reactions. The goal of this work is to classify

these micro-actions/reactions of A from the paired videos.

2.1. Recognition from Paired Egocentric Videos

Our recognition method relies on the multiple POV ob-

servations of both persons A and B presented in Figure 2.

To this end, we first consider first-person POV features de-

noted by fA,fB ∈ R
Nfirst (Nfirst is the number of fea-

ture dimensions). These features are extracted from videos

recorded by the self to describe a holistic change in the

videos such as global motion patterns induced by head mo-

tion. We also introduce second-person POV features of

each person obtained from the video taken by the other

person (i.e., A observed from B’s POV and vice versa),

fA←B ,fB←A ∈ R
Nsecond (Nsecond is the number of fea-

ture dimensions). These features should be useful for cap-

turing whole body appearance and motion of the person.

The first-person POV feature fA and second-person

POV feature fA←B are then combined to provide multi-

ple POV features of person A. To recognize A’s actions

and reactions, we define a standard linear decision function

to describe the relative importance of the first-person and

second-person features:

cA = (w
(A)
first)

TfA + (w
(A)
second)

TfA←B + u(A), (1)

where cA ∈ R is a decision score indicating how likely A

is to perform a certain action or reaction. w
(A)
first ∈ R

Nfirst ,

w
(A)
second ∈ R

Nsecond , and uA ∈ R are model parameters

describing the importance of each feature; they can be opti-

mized by training any classifiers such as a linear SVM.

Likewise, the multiple POV features for person B are

obtained by combining the first-person feature fB and

second-person one fB←A. We observe that actions or reac-

tions taken by B are often affected by those of A, and thus

the features extracted from B’s behaviors can be a salient

cue to recognize A’s actions/reactions. For example, ac-

tions of passing an item by A can come with reactions of B

receiving the item. Horizontal head rotations of A can stand

for a negative response when B is talking to A, while they

mean a shift in attention if B is pointing somewhere.

Our proposed method takes advantage of this relation-

ship between A and B by refining A’s decision score cA
with B’s multiple POV features. Specifically, we introduce

another decision function that classifies A’s actions and re-

actions but is learned from fB and fB←A:

cB = (w
(B)
first)

TfB + (w
(B)
second)

TfB←A + u(B). (2)

Finally, cA is biased by the score cB :

c′A = cA + cB . (3)

This bias can work as follows. To enable classification, we

learn functions in Eqs. (1) and (2) for each of several actions

and reactions. Even if two micro-reactions (e.g., a negative

response and an attention orientation with slight head mo-

tion) have similar scores in cA, the difference in actions by

B appears in the score cB so that we can correct classifica-

tion results in c′
A

.

2.2. First­Person POV Features

In this section, we discuss how various features for first-

person action recognition can be used as a first-person POV

feature to enable micro-action and reaction recognition.

2.2.1 Egocentric and Object Features

Li et al. have focused on actions during hand-manipulation

activities (e.g., cooking) [18]. They revealed that effective

features included head motion (homography between con-

secutive frames), hand manipulation points, and object fea-

tures aligned with dense trajectories [39] around points of

gaze and manipulation points, where these features are in-

dividually encoded by the Fisher vector (FV) [24].

We expect head motion and object features to work ro-

bustly in our dyadic interaction scenarios. Although there

may be fewer hand manipulations, the object features could

be helpful when large hand motion is apparent from the

first-person POV. We therefore adopt the FVs from head

motion (E) and the combination of the FVs from head mo-

tion and object features (E+O).

2.2.2 Cumulative Displacement Patterns

Poleg et al. have proposed egocentric motion descriptors to

enable temporal segmentation of egocentric videos based on

activity classes [27]. They rely on cumulative displacement

(CD) patterns of motion vectors uniformly sampled in video

frames, in which we can see long-term trends of egocentric

motion in videos. In this work, we aim to use various per-

frame features extracted from the CD patterns (such as their
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slope, motion magnitudes, and radial projection responses

that Poleg et al. presented [27]) to indicate gradual changes

of attentional directions.

2.2.3 Pooled Time-Series Encoding

Since the CD features are designed to deal with long-term

activities by smoothing motion patterns over time, it may

not be optimal to describe short-term cyclic patterns such as

head nodding and shaking. We therefore propose to encode

the features with the pooled time series (PoT) recently pre-

sented by Ryoo et al. [30], which we refer to as PoTCD. In

the encoder, per-frame CD features are first segmented tem-

porally and hierarchically into several shorter patterns. Fea-

tures in each segment are then encoded by a set of temporal

pooling operators such as max/sum pooling and histograms

of the positive/negative gradients. This way, our PoTCD

features can deal with head motion patterns in detail as well

as the gradual changes of attentional directions.

2.3. Second­Person POV Features

We introduce several generic action descriptors for

second-person POV features that do not particularly require

human detection. These features allow us to capture de-

tailed appearances and motion of people observed from

other people and work robustly against significant global

motion induced by the head motion of camera wearers.

2.3.1 Improved Dense Trajectory

The improved dense trajectory (IDT) [38, 39] is a stan-

dard feature descriptor for action recognition used in third-

person POV videos [42] as well as egocentric videos [18].

In the IDT, feature points are densely sampled based on the

good-feature-to-track [31] and tracked over a short time pe-

riod (e.g., 15 frames) in accordance with dense optical flow

fields. Features such as the histogram of oriented gradients

(HOG), the histogram of oriented flows (HOF), and motion

boundary histograms (MBH) are then extracted along tra-

jectories and encoded by the FV.

We believe that the IDT is well suited to describe peo-

ple from a second-person POV since it can extract relevant

motion of the people without tracking them explicitly.

2.3.2 Two-Stream Convolutional Networks

Instead of hand-crafted features like the dense trajectory,

Simonyan and Zisserman [32] learned feature representa-

tions and action classifiers in a convolutional neural net-

work (CNN). Particularly, they introduced two-stream CNN

(TCNN) where two CNNs individually learned the appear-

ances and motions over a short period (e.g., 20 frames).

A CNN trained on a relevant dataset (e.g., action recog-

nition datasets such as UCF101 [33] and HMDB51 [14])

can also be used as a feature descriptor. In this study, we

use some mid-level convolution outputs drawn from the two

CNNs and encoded them by the FV to serve as second-

person POV features. For input motion sequences, we com-

pute local motion vectors by subtracting global motion dis-

placements from original optical flow fields.

2.3.3 Trajectory-Pooled Convolutional Descriptors

While the TCNN can provide rich information on both of

the appearances and motion of people in videos, it encodes

all the events occurring in the videos regardless of whether

they belong to foregrounds (people) or backgrounds. To

resolve this problem, we further pool TCNN features along

dense trajectories as proposed by Wang et al. [40] (which

they refer to as TDD). Features extracted in this way can be

limited to relevant events where trajectories appear.

3. Experiments

We first systematically evaluate how the features intro-

duced in the previous section can work on the task of de-

tecting specific micro-actions and reactions observed dur-

ing dyadic interactions in Sections 3.3 and 3.4. We also

investigate how our method can classify micro-actions and

reactions in Sections 3.5 and 3.6. Implementation details

are described in the appendix.

3.1. Paired Egocentric Video Dataset

Among the datasets of egocentric videos released to

date, only a few include interaction scenes. JPL interaction

dataset [29] and EGO-GROUP dataset [2, 3] comprise only

one POV video for each interaction scene. While the first-

person social interactions dataset [8], CMU first-person

video dataset [21, 22], and ego-surfing dataset [46] provide

egocentric videos of multiple people, none has enough in-

teraction sequences to enable supervised learning of micro-

actions and reactions from multiple POV observations.

In this work, we present a new video dataset named

Paired Egocentric Video (PEV) dataset, a large collection

of paired egocentric videos recorded during dyadic human-

to-human interactions. The dataset contains 1226 pairs of

videos in total, each of which includes a single micro-action

or reaction pattern of a person regarded as target person A

(see Figure 4 for examples). All video pairs were selected

from several continuous recordings of face-to-face conver-

sations. There were six subjects wearing different clothes

in eight different everyday environments such as a cafete-

ria and an office. Actions and reactions in the data have

variability in motion and appearance since we did not par-

ticularly instruct subjects on how and when to perform ac-

tions or reactions during the recordings. We did however

inform each subject of the following seven action/reaction

types that we aimed to collect.
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1. Pointing (154 samples): Pointing to a certain loca-

tion, an item, or person B to initiate interaction, which

is followed by B’s reactions such as orienting of atten-

tion and positive or negative responses.

2. Attention (97 samples): Orienting attention with

slight head motion to what is pointed to by B.

3. Positive (159 samples): Responding positively by

widely or subtly nodding and/or by laughing with body

motion to B’s pointing or gesture.

4. Negative (40 samples): Responding negatively by

shaking or slightly cocking one’s head and/or crossing

arms to B’s pointing or gesture.

5. Passing (150 samples): Initiating or finishing passing

an item to B in order to exchange it.

6. Receiving (143 samples): Initiating or finishing re-

ceiving what B is trying to pass.

7. Gesture (168 samples): Doing head and/or hand ges-

tures to converse with B, which can be followed by

B’s gesture and positive or negative responses.

Note that the remaining 315 pairs in the dataset contain non-

interaction patterns where person A is just moving that are

irrelevant to the current context of interactions: e.g., plac-

ing an item on a table or looking at a certain location to

which person B did not particularly point. Each video has

90 frames (1.5 seconds at 60 fps) and the spatial resolution

of 320x180, where the 30th frame of each video was ad-

justed to the onset of actions and reactions of A.

3.2. Evaluation Scheme

Since the six subjects formed three pairs in the dataset,

we conducted a three-fold cross validation by splitting the

data into subsets on based on the pairs. We trained the de-

cision functions in Eq. (1) and Eq. (2) by using two training

subsets and evaluated performance with one testing subset.

In Sections 3.3 and 3.4, we evaluate detection perfor-

mance by the area under the receiver-operating characteris-

tic curve (AUC score) computed from decision scores (e.g.,

cA, c
′

A
) and binary ground-truth labels (1 for the correct

actions/reactions and 0 otherwise) collected from all three

tests. In the classification task in Sections 3.5 and 3.6, we

further normalize the decision scores to have zero-mean and

unit-variance for each action/reaction and compare them for

each sample to find the most probable one. Average accura-

cies over all the actions and reactions are calculated for the

classification performance.

3.3. Comparison among First­Person and Second­
Person POV Features

We first focused on the use of single egocentric videos

and compared detection performance for first-person POV

features (E [18], E+O [18], CD [27], PoTCD [27, 30]) and

second-person ones (IDT [39], TCNN [32] and TDD [40])

of target person A. To this end, we performed detection

based on A’s decision score cA where the function in Eq. (1)

was learned from either fA or fA←B .

Table 1(1) shows AUC scores using first-person features.

Overall, these features worked well for detecting reactions

with head motion such as attention, positive, and negative.

CD had a limited performance as it was not well suited to

cyclic motion such as nodding. E+O performed better on

receiving when large hand motion was made at the center

of first-person POV clearly and captured by object features.

Among the second-person POV features described in Ta-

ble 1(2), IDT performed better when the actions and reac-

tions involved hand motion such as pointing, passing, re-

ceiving, and gesture. It worked particularly well on receiv-

ing since people often received items in front of their body

that were clearly visible from the second-person POV. On

the other hand, TCNN and TDD provided inferior scores.

We found that the location where people appeared in ego-

centric videos often changed drastically over time due to

significant head motion of camera wearers. As CNNs used

in these two methods encoded appearances and motion at

every fixed location at predefined intervals (20 frames), re-

sultant features often became irrelevant when the location

of people changed in a time shorter than the interval.

3.4. Combining Multiple POV Features

We then investigated how the performance was improved

by combining multiple POV features. In what follows, we

pick out the four features producing AUC scores over 0.7 in

the previous section: E, E+O, PoTCD, and IDT.

Table 1(3) shows results from the combination of first-

person POV and second-person POV features of target per-

son A. Specifically, we evaluated A’s decision score cA
learned from both fA and fA←B . All the combined meth-

ods performed well regardless of whether actions and re-

actions came with head and/or hand motion, meaning that

first-person and second-person features worked comple-

mentarily in the methods. Furthermore, Table 1(4) con-

firms that the combination of multiple POV features of per-

son A and those of B performed the best. In the Pro-

posed method, we evaluated decision score c′
A

in Eq. (2)

where the feature PoTCD was used for fA,fB and IDT

for fA←B ,fB←A. These results indicate that first-person

and second-person POV observations of two people are es-

sential for recognizing micro-actions and reactions.

To analyze the effect of using paired egocentric videos

in more detail, we implemented some degraded versions of
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Table 1. AUC scores on the detection task. (1) First-person POV features of target person A. (2) Second-person POV features of A. (3)

Combinations of first-person and second-person POV features of A. (4) Combinations of multiple POV features of persons A and B.
Pointing Attention Positive Negative Passing Receiving Gesture Average

(1) First-person POV features of A

E [18] 0.65 0.77 0.91 0.88 0.64 0.78 0.73 0.76

E+O [18] 0.74 0.77 0.94 0.73 0.71 0.85 0.69 0.77

CD [27] 0.64 0.62 0.58 0.56 0.71 0.71 0.56 0.63

PoTCD [27, 30] 0.70 0.66 0.94 0.84 0.69 0.74 0.63 0.74

(2) Second-person POV features of A

IDT [39] 0.74 0.71 0.67 0.59 0.81 0.93 0.78 0.75

TCNN [32] 0.59 0.58 0.55 0.58 0.54 0.67 0.60 0.59

TDD [40] 0.63 0.70 0.61 0.51 0.68 0.79 0.63 0.65

(3) Multiple POV features of A

E+IDT 0.77 0.73 0.86 0.81 0.82 0.92 0.79 0.81

E+O+IDT 0.80 0.78 0.95 0.77 0.83 0.95 0.78 0.84

PoTCD+IDT 0.79 0.78 0.96 0.89 0.84 0.93 0.80 0.86

(4) Multiple POV features of A and B

Degraded-A 0.82 0.76 0.96 0.86 0.56 0.95 0.69 0.84

Degraded-B 0.73 0.72 0.67 0.61 0.82 0.94 0.78 0.75

Proposed 0.85 0.83 0.96 0.91 0.89 0.97 0.82 0.89

Proposed given only one of the two videos. In Degraded-

A, we used the video recorded by person A to learn cA
from only fA and cB from fB←A. On the other hand,

Degraded-B accepted the video recorded by B and adopted

fA←B in cA and fB in cB . Note that Degraded-B has the

same conditions as the work of Ryoo and Matthies [29]:

only videos including a target person from the second-

person POV were available. The decreased performance of

these methods in Table 1(4) indicates the necessity of ob-

serving both videos.

3.5. Classifying Micro­Actions and Reactions

We finally investigated how our method could clas-

sify different micro-actions and reactions. We picked out

PoTCD in Table 1(1), IDT in (2), PoTCD in (3), and Pro-

posed in (4) as they provided good detection performance.

Figure 3 describes confusion matrices. As passing, re-

ceiving, and gesture often appeared subtly in front of one’s

body, they were difficult to classify where only the first-

person feature PoTCD was given. On the other hand,

IDT could classify them while it was less discriminative on

micro-reactions with subtle head motion such as attention,

positive, and negative. We confirmed that PoTCD+IDT

inherited the advantages of first-person and second-person

features. Proposed further improved the performance on

attention, positive, and receiving even when they came with

small motions because these actions/reactions of A often

induced different behavior of B.

Figure 4 presents some visual examples of classification

results together with dense trajectories [39] and cumulative

displacement patterns [27]. When hand motion was distinct

in both of the first-person and second-person POVs (e.g.,

the pointing action annotated by the arrows in example (1)),

all the methods were able to predict a correct action. Some

micro-actions and reactions were observed with the com-

bination of head and hand motions. These motions were

not always large enough, as the pointing by person A could

not be seen well in his/her first-person POV in example (2),

Table 2. Classification accuracies on the JPL dataset [29].

fB fA←B Degraded-B

0.61 0.70 0.75

or the nodding was very slight in the second-person POV

in (3). Even for such cases, these two POV sources com-

plementarily worked in PoTCD+IDT and Proposed. Peo-

ple seen in the second-person POV were often partially oc-

cluded especially when they were focusing on objects of

interest as annotated in example (4). As the second-person

features in Section 2.3 did not rely on human detection, our

approach was robust against such cases.

We also found some temporal structures between the

head motion of two people. For instance, the cumulative

displacement patterns in example (5) illustrate that the head

motion of A induced by the shift in attention was followed

by the head motion of B to share attention. Similarly, mu-

tual head motion was found when responding negatively as

annotated in example (6). Proposed could classify such

micro-reactions successfully by exploiting both actions and

reactions of the two persons.

Gesture was the most difficult class to recognize even

for our method (examples (7) and (8)). As annotated in

the examples, gesture required both first-person and second-

person features since it often came with head and hand mo-

tion. This motion was however sometimes similar to other

actions or reactions such as pointing, positive, and negative.

3.6. Evaluation on the JPL Dataset

We also evaluated the classification performance of our

method on the JPL dataset [29]1. It includes seven activities

of a target person such as handshakes, hugs, and punches,

some of which lasted longer (several seconds) than ours. As

this dataset is composed of only the egocentric videos of a

stationary observer (standing for person B), we compared

Degraded-B against its degraded versions using either first-

person feature fB or second-person one fA←B to see the

1http://michaelryoo.com/jpl-interaction.html
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First-person POV feature of person A (PoTCD; acc: 0.41) Second-person POV feature of person A (IDT ; acc: 0.41)

Multiple POV features of A (PoTCD+IDT ; acc: 0.59) Multiple POV features of A and B (Proposed ; acc: 0.66)

Figure 3. Confusion matrices and average accuracies of the classification task on the PEV dataset.

effectiveness of combining multiple POV features. We fol-

lowed the same protocol as Ryoo and Matthies [29] and re-

peated two-fold cross validations 100 times.

As shown in Table 2, we found that the combination

of first-person and second-person features in Degraded-B

performed the best. Note that the method of Ryoo and

Matthies [29] performs better (0.896 as a classification ac-

curacy) by incorporating structured prediction tailored to

long-term activities with multiple sub-events. Future work

will be to extend our method to cope with multiple action

and reaction sequences.

3.7. Limitations

One current limitation of our method is that it only con-

siders behaviors of two people taking place in the same

time period. Recognizing actions and reactions with a

large amount of delay will require a structured predic-

tion [28, 30, 37]. In addition, we currently focus on only

two-person scenarios. To generalize our work to deal with

group interactions where more than two people are present,

wearer identification [26, 46] will be necessary to obtain a

second-person POV observation of specific persons.

4. Conclusions

We have introduced the task of recognizing micro-

actions and reactions in dyadic human-to-human interac-

tions. The key finding of our work is that the micro-

actions and reactions can be best recognized by utilizing

first-person and second-person POV features of two inter-

acting people. Understanding social interaction dynamics

by recognizing micro-actions and reactions will impact sev-

eral first-person vision tasks such as video summarization

of social events and assistive systems, and also raise new

problems such as wearer identification in crowded scenes

and modeling of group interaction dynamics.

A. Implementation Details

We adopted a linear SVM for the decision functions in

Eq. (1) and Eq. (2) and trained them via stochastic gradient

descent as it performed the best. As CD [27] features were

obtained per frame, we computed decision scores for each

frame and averaged them over time. In PoTCD [27, 30],

we used only three pyramids (split into one, two, and four

segments) as we worked on short video clips.

On E, E+O [18], IDT [39], TCNN [32] and TDD [40],

we learned some additional models for the FV in the train-

ing datasets: the principal component analysis (PCA) to
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(1) GT:Pointing | PoTCD:Pointing | IDT:Pointing | PoTCD+IDT:Pointing | Proposed:Pointing (2) GT:Pointing | PoTCD:Attention | IDT:Pointing | PoTCD+IDT:Pointing | Proposed:Pointing

(3) GT:Positive | PoTCD:Positive | IDT:Attention | PoTCD+IDT:Positive | Proposed:Positive

(6) GT:Negative | PoTCD:Gesture | IDT:Receiving | PoTCD+IDT:Receiving | Proposed:Negative

(4) GT:Passing | PoTCD:Attention | IDT:Passing | PoTCD+IDT:Passing | Proposed:Passing

(5) GT:Attention | PoTCD:Pointing | IDT:Gesture | PoTCD+IDT:Gesture | Proposed:Attention

(7) GT:Gesture | PoTCD:Passing | IDT:Receiving | PoTCD+IDT:Receiving | Proposed:Gesture (8) GT:Gesture | PoTCD:Positive | IDT:Passing | PoTCD+IDT:Passing | Proposed:Positive
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Figure 4. Our proposed method working on the PEV dataset. The first row of each example shows 40th and 70th frames of the video

recorded by target person A as well as its cumulative displacement patterns [27] (motion vectors uniformly sampled in video frames and

accumulated over time) that are encoded by pooled time-series [30] in our proposed method. Dense trajectories [39] are visualized by the

yellow arrows in each video frame. The second row of each example provides the same visualization but for the video recorded by person

B. Titles describe classification results (correct classifications are highlighted in green) as well as the ground-truth label. Micro-actions

and reactions annotated by the pink arrows are discussed in Section 3.5.

perform a dimensionality reduction on features and the

Gaussian mixture model (GMM) to generate the FV. We

followed the original papers [18, 39, 40] to determine the

number of components for the PCA and GMM. The PCA

with half the number of original feature dimensions and the

GMM with 64 components were used for E and E+O, and

the PCA with 64 components and the GMM with 256 com-

ponents were used for IDT, TCNN, and TDD. All the FVs

were further applied the power and L2 normalizations [24].

We used the code available on the web2 for dense trajec-

tories in E+O, IDT and TDD. As hand manipulations were

2https://lear.inrialpes.fr/people/wang/

improved_trajectories

barely found in the PEV dataset, in E+O we extracted the

object features along all the trajectories. We adopted the

CNNs trained by Wang et al. [40] for TCNN and TDD.

Based on the results from each convolution layer in the

work of Wang et al. [40], we concatenated the outputs of the

conv4 layer of spatial CNN and the conv3 layer of temporal

CNN as second-person features.
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