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Abstract

We propose an identity-aware multi-object tracker based

on the solution path algorithm. Our tracker not only pro-

duces identity-coherent trajectories based on cues such as

face recognition, but also has the ability to pinpoint potential

tracking errors. The tracker is formulated as a quadratic

optimization problem with ℓ0 norm constraints, which we

propose to solve with the solution path algorithm. The al-

gorithm successively solves the same optimization problem

but under different ℓp norm constraints, where p gradually

decreases from 1 to 0. Inspired by the success of the solu-

tion path algorithm in various machine learning tasks, this

strategy is expected to converge to a better local minimum

than directly minimizing the hardly solvable ℓ0 norm or the

roughly approximated ℓ1 norm constraints. Furthermore,

the acquired solution path complies with the “decision mak-

ing process” of the tracker, which provides more insight to

locating potential tracking errors. Experiments show that

not only is our proposed tracker effective, but also the solu-

tion path enables automatic pinpointing of potential tracking

failures, which can be readily utilized in an active learning

framework to improve identity-aware multi-object tracking.

1. Introduction

Multi-object tracking in a multi-camera environment

serves as a fundamental building block to the analysis of

surveillance video. Furthermore, if real-world identity in-

formation such as recognized faces can be assigned to each

trajectory, this enables subsequent person-specific behavior

analysis. Unfortunately, in long-term surveillance scenarios,

it is inevitable for multi-object trackers to make errors, such

as confusing the identity of two people. Therefore, if we

could automatically pinpoint potential tracking errors, then

humans can efficiently provide crucial information to guide

the tracker to the correct tracking results.

Though many multi-object tracking algorithms have been

proposed, most trackers 1) cannot perform identity-aware

tracking and 2) cannot identify uncertainty in final tracking

output. To this end, we propose an identity-aware multi-

(a) Stable solution path: easy observation. It is clearly ID 2.

(b) Turbulent solution path: more confusing observation. Could be

ID 2 or ID 3 as they are close together.

Figure 1: Visualization of the solution path of identity (ID)

assignments w.r.t. p for two observations. One can identify

uncertain observations from the shape of the solution path.

object tracking algorithm based on the solution path algo-

rithm, which has been extensively used in multiple tasks such

as Lasso [34] and Support Vector Machines [19]. Our tracker

is formulated as a quadratic optimization problem with ℓ0
norm constraints, which enforce the mutual exclusion and

the spatial locality constraints, i.e. a person detection can

only belong to a single physical individual and a physical

individual cannot be at two locations at the same time. Un-

fortunately, directly solving the optimization problem with

ℓ0 norm constraints effectively is very difficult. An alterna-

tive is to solve its ℓ1 norm convex relaxation, but the results

will not be accurate. Therefore, we propose to utilize the

solution path algorithm to “bridge” the two solutions under

ℓ1 and ℓ0 norm constraints. Starting from the solution under

the convex ℓ1 norm constraints, the algorithm successively

solves the same optimization problem but under different

ℓp norm constraints, where p gradually decreases from 1 to

0. The solution path ends as p approaches to 0, and a better

solution to our original problem can be obtained.

The solution path algorithm has two key benefits. First, it

can optimize loss functions with ℓ0 norm constraints, which

is a common but difficult-to-optimize constraint in sparsity

and relaxed combinatorial problems. Second, the solution
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path can be viewed as the “decision making process” of

the tracker, which can be utilized to automatically pinpoint

uncertainty in tracking for manual correction in an active

learning scenario [31]. We emphasize that this uncertainty

is different from the confidence of detected people or track-

lets used by many trackers [4, 41], which focuses on the

confidence of the input data. In our case we are interested

in estimating the confidence of the output tracking results.

Figure 1 demonstrates how one could observe the solution

path to determine the uncertainty of tracking output. In sum,

the main contributions are as follows:

1. We propose a novel optimization paradigm based on

the solution path algorithm to solve quadratic programs

with ℓ0 norm constraints.

2. We formulate our identity-aware tracker as a quadratic

program with ℓ0 norm constraints, which models the

mutual exclusion and spatial locality constraints.

3. We demonstrate that the solution path acquired can be

exploited to locate uncertain tracking output, which can

be utilized in an active learning framework to enhance

multi-object tracking.

2. Related Work

There has been much effort in improving tracking-by-

detection-based [29] multi-object tracking in different as-

pects, including appearance modeling [21, 22, 4], motion

modeling [13, 15] and data association. Data association is

the task of grouping person detections into multiple disjoint

sets where each set resembles a trajectory of a person. As

our paper mainly focuses on the data association step, we

discuss this aspect in more detail.

Many data association methods have been proposed. A

popular way to formulate the tracking problem is designing

a linear optimization function for tracking [20, 41, 30, 8, 15,

7, 24, 36] which can be solved efficiently with linear pro-

gramming solvers or minimum cost network flow. However,

linear objective functions cannot model higher-order rela-

tions such as the one used in our tracker: finding a labeling

such that the labels of an observation is similar to its k near-

est neighbors. This requires modeling higher-order relations,

and the lack of this ability may cause the linear methods to

be not as stable. Therefore, [25], [11] and [12] optimizes

second-order relations based on quadratic boolean program-

ming, Lagrangian Relaxation and the Frank-Wolfe algorithm

respectively. Another line of work utilizes continuous en-

ergy minimization [2] and discrete-continuous optimization

[3] to perform tracking. Also, [37, 27] utilizes Conditional

Random Fields for data association.

However, it is not straightforward to perform identity-

aware tracking with many existing trackers, because these

trackers do not utilize identity information during the data

association process. One naı̈ve fix is a two step process,

where the trajectories are first acquired with any existing

multi-object tracker and then the identities are assigned af-

terwards. However, problems occur when a trajectory has

identity-switches and could be assigned more than one iden-

tity, thus leading to identity-incoherent trajectories. There-

fore, an identity-aware tracker should incorporate identity

information directly into the data association process to cre-

ate identity-coherent trajectories.

Three existing identity-aware trackers are described be-

low. First, [7, 40] utilizes the number on sports jerseys or

face recognition for identity-aware tracking, but the tracker

is formulated as a linear program and suffers from the draw-

backs mentioned in the previous paragraphs. Also, in multi-

camera scenarios, discretization of the tracking space is re-

quired to aggregate the detections from multiple cameras,

and some precision may be lost. Second, [14] is based on

network flow hence also a linear program, where the identity-

aware edge weights were assigned by a target-specific ap-

pearance model learned with structured learning. Finally,

[39] is formulated as a quadratic program, but [39] does not

include the spatial locality constraint in the loss function,

which might produce unreasonable tracking results where

the same person is at multiple places at the same time.

Finally, most methods do not address the uncertainty of

a tracker’s prediction. [7] mentioned that the non-integer

results acquired from their linear-programming-based tracker

can also be interpreted as uncertainty of tracking output, but

no experiments were performed in this direction. Active

learning for efficient manual refinement of tracking results

has been explored in [35], which utilizes a single object

tracker to track multiple objects. In our case, we propose a

multi-object tracker which can aid active learning.

3. Tracker Formulation

Following the tracking-by-detection paradigm [29], the

main input to our tracker are person detections from all video

frames and sparse face recognition information, which can be

viewed as sparse labels. Our tracker’s goal is then to assign

identity labels to all person detections except for the false

positives. In the following paragraphs, we will describe how

we formulate our tracker as a quadratic loss function with ℓ0
norm constraints. Then, in Section 4, we will describe how

the loss function is solved with the solution path algorithm.

3.1. Notations

The notations used throughout this section are defined

as follows. For a matrix B, we denote Bij as the element

located at row i and column j of B. We denote Bi as the i-th
row of B. For a vector b, we denote bi as the i-th element

of b. Given a vector x ∈ R
b, the ℓp norm of x is defined as

‖x‖p =
(

∑b
i=1 |xi|

p
)

1
p

. Tr(·) denotes the trace operator.

A person detection result is referred to as an observation.

Suppose there are n observations generated by the person
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detector. These observations could be from a single camera

or multiple cameras. As single camera is a special case of

multiple cameras, we will only discuss the multi-camera

case, where we map all observations from different cameras

to a unified 3D coordinate system. Let P ∈ R
n×3, where

Pi corresponds to the (x, y, z) location of observation i. Let

t ∈ R
n, where ti corresponds to the time when observation

i was observed. Let H ∈ R
n×d be a matrix representing

all the d-dimensional color histograms of each observation.

Let c be the number of tracked individuals, which can be

determined by either a pre-defined gallery of faces or the

number of unique individuals identified by the face recogni-

tion algorithm. Note that the number of trajectories found

can be larger than c, as each individual can enter and exit

the scene multiple times. We denote the velocity required to

go from observation i to j as vij =
max(||Pi−Pj ||2−δ,0)

|ti−tj |+ǫ
. ǫ

is a small number to prevent division by zero, and δ is the

maximum localization error, which is used to compensate

for camera calibration errors.

The multi-object tracking task is to assign each of the

n (non-false-positive) observations a class label, where

each class corresponds to one individual. The learned

label assignments are encoded in the label matrix F ∈
R

n×c. 0 ≤ Fij ≤ 1, and a larger value corresponds

to higher chance of observation i belonging to class j.

The set of available face recognition information (and an-

notations from active learning) are represented by Y =
{(i, j) | observation i is recognized as individual j }.

3.2. Modeling Appearance and Spatial Affinity

Following [39], we encode the appearance and spatial

information of person detections using a manifold learning

approach. This method is advantageous in that we are tak-

ing into account appearance and spatial information from

multiple other observations to decide an observation’s label.

Appearance Affinity Modeling: Based on the assumption

that two observations with similar appearance are likely to

belong to the same individual, we find nearest neighbors

for each data point with the following criteria to build the

manifold structure. Observation j is a suitable candidate for

a nearest neighbor of observation i if 1) j is reachable with

reasonable velocity, i.e. vij ≤ V , 2) i and j should not be too

far apart in time, i.e. |ti − tj | ≤ T , and 3) both observations

should look similar, i.e. the similarity of color histograms

Hi and Hj should be larger than a threshold τ . Here, V is

the maximum velocity a person can achieve. T limits how

far we look for nearest neighbors in the time axis, because

if two observations are separated too far in terms of time,

even if they have very similar appearance, they may still

not belong to the same individual. The similarity between

two histograms is computed with the exponential-χ2 metric:

χ2(Hi,Hj) = exp
(

− 1
2

∑d
l=1

(Hil−Hjl)
2

Hil+Hjl

)

. For observa-

tion i, let Qi be the set of up to k most similar observations

which satisfy the aforementioned criteria 1, 2 and 3. We

can then compute the sparse affinity matrix W ∈ R
n×n as

follows. If j ∈ Qi, then Wij = χ2 (Hi,Hj). Otherwise

Wij = 0. The diagonal degree matrix D of W is computed,

i.e. Dii =
∑n

l=1 Wil. Then, the Laplacian matrix which

captures the manifold structure in the appearance space is

L = D−W.

Spatial Affinity Modeling: Other than modeling observa-

tions with similar appearances, observations which are a

few centimeters apart in neighboring frames are also very

likely to belong to the same individual. This is reasonable

in a multi-camera scenario, where detections from different

cameras correspond to the same person, but due to calibra-

tion errors these person detections will not all project to the

same 3D point. In this case, regardless of the appearance

differences which may be due to non-color-calibrated cam-

eras, these observations should belong to the same individual.

We encode this information with another Laplacian matrix

K ∈ R
n×n. Let Ki be the set of observations which are less

than distance D̃ away and less than T̃ frames away from

point i. We then compute the affinity matrix A ∈ R
n×n

from Ki by setting Aij = 1 if j ∈ Ki and Aij = 0 oth-

erwise. Let D̂ ∈ R
n×n be the diagonal degree matrix of

A, i.e. D̂ii =
∑n

l=1 Ail. We then compute the normalized

Laplacian matrix [28] K = I−D̂− 1
2AD̂

− 1
2 , which encodes

spatial affinity.

A preliminary loss function encoding the appearance and

spatial affinity is as follows:

min
F

Tr
(

F
T (L+K)F

)

s.t. ∀(a, b) ∈ Y,Fab = 1. (1)

Minimizing the quadratic term of the loss function will lead

to finding a labeling such that the inferred labels have similar

labeling as its neighbors [6, 39]. The constraints enforce the

final solution to be consistent with the face recognition re-

sults, which also prevents the trivial solution for the quadratic

term. This constraint also assumes that all face recogni-

tion results are correct, which is reasonable as face recog-

nition systems are approaching human-level performance

[26]. However, this may not be an accurate assumption in

all scenarios, so analysis on how face recognition errors af-

fect tracking performance are detailed in the supplementary

materials. In the next section, we add the mutual exclusion

and spatial locality constraints into our loss function.

3.3. Modeling the Mutual Exclusion and
Spatial Locality Constraint

We model the mutual exclusion and spatial locality con-

straint by adding constraints on the label matrix F. The

mutual exclusion constraint means that an observation can

only belong to at most a single class, which corresponds to

each row of F having at most one non-zero value. Mathe-

matically, this is ‖Fi‖0 ≤ 1, 1 ≤ i ≤ n. This formulation
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can also handle false positive observations by having all ele-

ments in one row of F be all zeros, i.e. this observation does

not belong to any class.

The spatial locality constraint enforces that a person can-

not be at multiple places at the same time. We incorpo-

rate the constraint by modeling pairwise observation con-

straints. Given a pair of observations (i, j), if the veloc-

ity vij required to move from one observation to the other

is too large, then it is highly unlikely that the pair belong

to the same person. Mathematically, if two observations

(i, j) cannot belong to the same class, then the elements

Fil and Fjl cannot both be non-zero for all 1 ≤ l ≤ c.
This constraint can also be modeled with a ℓ0 norm con-

straint, i.e.
∥

∥

[

Fil Fjl

]∥

∥

0
≤ 1, 1 ≤ l ≤ c. We denote

T = {(i, j) | vij > V } as all the observation pairs which

are unlikely to be of the same individual.

The final loss function is as follows:

min
F

Tr
(

F
T (L+K)F

)

s.t. ∀(a, b) ∈ Y, Fab = 1, ‖Fr‖0 ≤ 1, 1 ≤ r ≤ n

∀(i, j) ∈ T ,
∥

∥

[

Fil Fjl

]∥

∥

0
≤ 1, 1 ≤ l ≤ c.

(2)

The three constraints in the loss function correspond to face

recognition, mutual exclusion and spatial locality constraints.

However, due to the ℓ0 norm constraints, this loss function

is difficult to optimize. Therefore, we utilized the solution

path algorithm to solve Equation 2.

4. Solution Path Algorithm Optimization

The solution path algorithm acts like a bridge between

two solutions: the easily accessible solution under ℓ1 norm

constraints, and the hard to obtain solution under ℓ0 norm

constraints. This is achieved by computing the solution

path w.r.t. ℓp, 0 ≤ p ≤ 1. Initialized with the solution

under ℓ1 norm constraints, the algorithm successively solves

the same optimization problem but under different ℓp norm

constraints, where p gradually decreases from 1 to 0. The

intuition is that if the p from the previous iteration does not

differ too much with the current p, the solution from the

previous parameter setting could be a good initialization for

the current parameter setting. Since our algorithm has a good

initialization (ℓ1 norm, convex global solution), and also p
decreases slowly, the solution path algorithm is more likely

to converge to a better local minimum compared to direct

minimization under the ℓ0 norm constraints or inaccurately

solving the problem under ℓ1 constraints.

More specifically, we denote p(m) as the p used during

the m-th iteration of the path algorithm, and p(1) = 1,

p(M) → 0, and p(m−1) > p(m) for 2 ≤ m ≤ M . At

iteration m, we compute the solution F
(m) of the loss func-

tion in Equation 2 under ℓp(m) norm constraints with block

coordinate descent. F
(m−1) is used to initialize iteration

m’s optimization process. The solution to F
(1) under ℓ1

norm constraints is solved with random initial values be-

cause Equation 2 under ℓ1 norm constraints is convex. The

set F =
{

F
(1),F(2), . . . ,F(M)

}

denotes the solution path.

We now describe how we utilize block coordinate descent to

compute F
(m).

4.1. Block Coordinate Descent

To optimize for F(m), we utilize block coordinate descent

[10] by only updating the variables for a single observation

i while keeping all other observations fixed. A random

ordering is utilized to select which observation to update. For

notational clarity, we denote G = F
(m) and p refers to p(m).

We denote the i-th row of G as Gi =
[

Gi1, . . . , Gic

]

.

We fix all other variables and only optimize for Gi, thus the

loss function is simplified from Equation 2 to the following

quadratic function:

min
Gi

1

2
‖Gi − a‖

2
2 s.t. ‖Gi‖p ≤ 1,

(i, ∀j) ∈ T ,
∥

∥

[

Gil, Gjl

]
∥

∥

p
≤ 1, 1 ≤ l ≤ c,

(3)

where a ∈ R
c. Each element l in a is computed as follows:

al =
∑n

j=1(Wij+Aij)Gjl∑
n
j=1(Wij+Aij)

. a encodes the label information

of the neighbors of observation i. W and A are the similarity

matrices defined in Section 3.2. If the i-th row contains a

recognized face, then Gi is not updated.

We further relax Equation 3. Due to the spatial locality

constraint, Gil ≤
(

1−G
p
jl

)
1
p

for all j where (i, j) ∈ T .

As Gjl for all j are fixed, we can combine all such con-

straints and acquire an upper bound of Gil which we denote

as ul. Let u ∈ R
c represent the upper bound of each ele-

ment in Gi. Then, we clip the values in each dimension of

a with u to acquire a
′, i.e. a′l = min(al,ul). We arrive at

the following relaxed loss function:

min
Gi

‖Gi − a
′‖

2
2 s.t. ‖Gi‖p ≤ 1. (4)

If ‖a′‖p ≤ 1, then the solution of Gi = a
′. Otherwise,

we propose to solve Equation 4 by our proposed iterative

projection method.

4.2. Iterative Projection Method

We propose an iterative projection method (IPM) to

find a local minimum of Equation 4 when ‖a′‖p > 1.

For convenience, we refer to the region which satisfies
{

v | ‖v‖p ≤ 1
}

as the ℓp norm ball. At the beginning,

given a
′ with ‖a′‖p > 1, we first draw a line between a

′ and

the origin. As shown in Figure 2, let G
(1)
i ∈ R

c be the place

where the line intersects the boundary of the ℓp norm ball in

iteration 1, i.e.

∥

∥

∥
G

(1)
i

∥

∥

∥

p
= 1. This intersection can be found
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Figure 2: First iteration of iterative projection method. G
(2)
i

is derived from G
(1)
i , which is derived from a

′.

Input: locations P, timing t, histograms H,

p(1), . . . , p(M)

Output: solution path F

Compute Laplacian matrices L, K ; // (Sec. 3.2)

// Sol. of convex ℓ1 norm constraint as initialization

F ← {F(1)} ; // Solution path set

m← 2 ; // path algorithm iteration count

repeat // Solution path algorithm (Sec. 4)

G← F
(m−1) // Initialize with F

(m−1)

// Solve Equation 2 under ℓp(m) norm constraint

repeat // Block coordinate descent (Sec. 4.1)

for ∀ observations i do
Update Gi by solving Equation 3 with IPM

(Sec. 4.2)
end

until convergence;

F
(m) ← G;

Add F
(m) into F ;

m← m+ 1;

until m ≥M ;

return F

Algorithm 1: Solution path tracking algorithm.

efficiently with binary search. Now, at iteration l > 1, given

G
(l−1)
i from iteration l − 1, we compute G

(l)
i as follows.

We first compute the tangent plane π(l−1) of the ℓp norm

ball at G
(l−1)
i . Next we project a′ onto π(l−1) and denote

the projection as x
(l−1). We then draw a line between a

′

and x
(l−1) and find the intersection of the line with the ℓp

norm ball. We denote the intersection as G
(l)
i .These steps

are repeated till convergence. The loss function monotoni-

cally decreases with such an update rule, which is proved in

the supplementary materials.

4.3. Wrapping Up

Once we acquire the final F(M) which satisfies the ex-

clusion constraints, we compute the trajectories by simply

connecting neighboring observations belonging to the same

class. At one time instant, if there are multiple observations

belonging to a person, which is common in multi-camera

scenarios, then the weighted average location is computed.

The weights are based on the scores in F
(M). A simple fil-

tering process is also utilized to remove sporadic predictions.

Algorithm 1 summarizes our method. The computational

complexity of our method is detailed in the supplementary

materials.

5. Experiments1

Data Sets: We utilized three data sets: terrace1, nursing

home short and nursing home long to evaluate our tracker.

terrace1 [17] is a 4 camera sequence consisting of 9 people

walking around in a 7.5m by 11m rectangle for around 5,000

frames. The scene is very crowded as shown in Figure 3.

The nursing home short and nursing home long data sets

are 15 camera sequences recorded in a nursing home [38].

nursing home short is originally from [39] and consists of

13 people performing their daily activities in a nursing home

for around 11,000 frames. This data set is challenging in

that the indoor environment is very complex, including many

occlusion caused by walls and long corridors. The nursing

home long data set is an extension of nursing home short and

consists of 7 hours 45 minutes of video per the 15 cameras.

Ground truth was annotated every minute, and 49 individuals

were identified.

Evaluation Metrics: Multiple evaluation metrics were

utilized. First, the Multiple Object Tracking Accuracy

(MOTA2) from the CLEAR metrics [9] was used. This

is the most popular metric used to evaluate multi-object

trackers. It takes into account the number of true posi-

tives (TP), false positives (FP), missed detections (MD) and

identity switches (ID-S). Following [39], tracking results

and ground truth are matched if they are less than 1 me-

ter apart. Following [7], MOTA is computed as follows:

MOTA = 1− # FP+# MD+log10(# ID-S)
# ground truth

.
However, the TP count in MOTA does not take into ac-

count the identity of a person, which is unreasonable for

identity aware tracking. Therefore, we compute identity-

aware true positives (I-TP), which means that a detection

is only a true positive if 1) it is less than 1 meter from

the ground-truth and 2) the identities match. Similarly, we

can compute I-FP and I-MD, which enables us to com-

pute classification-based metrics such as micro-precision

(MP = # I-TP
# I-TP + # I-FP

), micro-recall (MR = # I-TP
# I-TP + # I-MD

)

and micro-F1 ( 2 × MP × MR
MP+MR

) for each tracker. The micro-

based performance evaluation takes into account the length

(in terms of time) of each person’s trajectory, thus a person

who appears more often has larger influence on the final

scores.

1Source code and data sets used in the paper are released here:

https://sites.google.com/site/solutionpath2016/
2Code from https://github.com/glisanti/CLEAR-MOT [5].
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Baselines: As our main focus is on identity-aware tracking,

existing trackers which could not generate identity-coherent

trajectories as discussed in Section 2 were not compared.

Multi-Commodity Network Flow (MCNF): MCNF [7] creates

multiple layers of the network-flow tracking graph, where

each layer corresponds to an identity group. Face recognition

and global appearance templates were used for identification.

Two different person localization methods were used in our

paper. The original paper [8, 7] utilized Probabilistic Occu-

pancy Maps (POM) [17] for localization, which we found to

be ineffective on the nursing home short sequence. There-

fore, we also provide POM-like person localization results

computed from person detections (MCNF with PD). This is

computed by first discretizing the tracking space into many

cells. Then the score of each cell is computed according to

the density of person detections in the cell. We solved the

data association problem with Gurobi [1].

Lagrangian Relaxation (LR): [14] imposes mutual exclu-

sion constraints for identity-aware tracking in a network

flow framework very similar to MCNF, where each iden-

tity has their own identity specific edges. The weights of

the Lagrange multipliers, which enforce the mutual exclu-

sion constraint over mutual-exclusive edges in the graph,

are learned with Lagrangian Relaxation. To fairly compare

different data association methods, our LR-based tracker uti-

lizes the same appearance information used by all our other

trackers, thus the structured learning and densely sampled

windows proposed in [14] were not used. Specifically, LR

uses the same POM-like input and network as MCNF.

Non-Negative Discretization (NND): NND [39] formulates

identity-aware tracking as a constrained quadratic optimiza-

tion problem and solves it with nonnegative matrix optimiza-

tion techniques. The biggest problem with NND is that it

does not incorporate the spatial locality constraint in the op-

timization step, and the solutions acquired may suggest that

the same person is at multiple places at the same time. NND

also requires the start and end locations of each track, which

we could not provide as it is nearly impossible to identify all

start and end locations of each track, especially on the 7 hour

45 minute long 15 camera nursing home long sequence.

Implementation Details: We utilized off-the-shelf models

[16, 18] for person detection, which were further mapped

into a global 3D coordinate system based on the provided

camera calibration parameters. Color histograms for per-

son detections were computed following [39]. We split the

bounding box horizontally into pyramids of regions [23] and

computed the HSV color histogram for each region. Given

L layers, we will have 2L−1 partitions for each template. L
was 3 in our experiments. For POM, background subtraction

was performed with [33]. Face information was acquired

from the PittPatt software. The software also provides a

tool to group detected faces into multiple clusters, where

each cluster only contains faces of a single individual, but

Figure 3: Snapshots of tracking results on terrace1 data set.

there could be multiple clusters representing the same single

individual. Therefore, for evaluation purposes, these clusters

were manually mapped into their corresponding grouth-truth

identities.

For our method, the parameters for all three data sets

were as follows. The number of nearest neighbors used

for appearance-based manifold construction was k = 25,

and the threshold for color histogram similarity was τ =
0.85. The window to search for appearance-based nearest

neighbors was T = 8 seconds. The fastest velocity one could

walk was V = 3 m/s. The parameters to create K were very

conservatively set to D̃ = 20 cm and T̃ = 6 frames. The

maximum localization error was δ = 125cm. Also, the step

size for p was 1.05, i.e. p(m+1) ← p(m)/1.05, and there

were a total of M = 94 different p values. p(M) = 0.01.

5.1. Tracking Results

Quantitative tracking results are shown in Table 1, and

qualitative results3 are shown in Figure 3. For quantitative

results, our tracker is run 5 times and the performance of the

run with median F1-score is reported to take into account the

randomness in our method. In terms of both evaluation met-

rics, our tracker outperforms the state-of-the-art on all three

data sets, except on the MOTA metric for terrace1 where

our method is slightly lower. For the other methods, NND

performs very poorly on crowded sequences such as terrace1

as it does not take the spatial locality constraint into account.

MCNF performs well on terrace1 as POM is effective in that

sequence. However, POM creates many false positives in

the complex indoor nursing home environment, which has

non-ideal camera coverage that causes ambiguities in POM

localization, thus leading to poor POM-based tracking on

nursing home short. Nevertheless, if person detections (PD)

were used, then the MCNF with PD run still performs well.

We also tested the performance of our method under

different step sizes s (used in p(m+1) ← p(m)/s) for varying

values of p on the terrace1 sequence as shown in Figure 4.

3Due to space constraints, qualitative results for the nursing home

sequences are in the supplementary materials.
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Method Micro-Precision Micro-Recall Micro-F1 TP FN FP ID-S MOTA

MCNF with POM 0.593 0.532 0.561 21864 3298 644 197 0.844

LR with POM 0.609 0.478 0.535 19216 5996 521 147 0.743

NND 0.613 0.238 0.343 8035 17267 1771 57 0.249

Ours 0.752 0.705 0.727 22263 2996 1407 100 0.826

(a) Tracking performance on terrace1 sequence: 4 cameras, 5000 frames each, 9 individuals.

Method Micro-Precision Micro-Recall Micro-F1 TP FN FP ID-S MOTA

MCNF with POM 0.117 0.238 0.157 23493 9769 44452 757 -0.594

MCNF with PD 0.746 0.578 0.652 19941 13749 5927 329 0.422

LR with PD 0.802 0.565 0.663 19415 14408 4203 196 0.453

NND 0.861 0.726 0.787 25628 8364 3100 27 0.663

Ours 0.871 0.755 0.809 26531 7458 3004 30 0.692

(b) Tracking performance on nursing home short sequence: 15 cameras, 11310 frames each, 13 individuals.

Method Micro-Precision Micro-Recall Micro-F1 TP FN FP ID-S MOTA

MCNF with PD 0.743 0.418 0.535 265 347 71 25 0.342

LR with PD 0.787 0.405 0.535 261 360 52 16 0.351

NND 0.588 0.505 0.543 314 281 174 42 0.283

Ours 0.650 0.581 0.614 375 236 152 26 0.389

(c) Tracking performance on nursing home long sequence: 15 cameras, 7 hours 45 minutes each, 49 individuals.

Table 1: Tracking performance on 3 sequences. POM: Probabilistic Occupancy Map [17] as input. PD: Person detection as

input. MCNF with POM was not run on the nursing home long sequence because it already performs poorly on the nursing

home short sequence.

Figure 4: Tracking performance on terrace1 data set under

different step sizes and ℓp norm constraints.

We can see that smaller step size leads to better MOTA

scores, which shows that directly optimizing under ℓ0 norm

constraints (i.e. very large step size) may converge to bad

local minimum. Also, we see big performance drop if one

only solved the tracking problem under ℓ1 norm constraints,

which only achieves MOTA 0.378. However, by using the

solution path algorithm to compute the solution under ℓ0
norm constraints, we were able to improve MOTA to 0.83.

5.2. Analyzing the Solution Path

We demonstrate how to utilized the solution path to locate

potential tracking errors. The solution path records the class

membership values in the label matrix F for all values of

p. If the solution path for an observation shows high scores

for multiple individuals as shown in Figure 1b, this may

indicate that the tracker is uncertain, which can be captured

with the entropy measure [32]. Specifically, for iteration m,

Figure 5: Entropy histogram of correctly and incorrectly

labeled observations for terrace1.

we denote Gi = F
(m)
i as the score distribution for the i-th

observation. According to the mutual exclusion constraint,

‖Gi‖p(m) ≤ 1, i.e.
∑c

j=1 G
p(m)

ij ≤ 1. Then, we can view

G
p(m)

ij for all 1 ≤ j ≤ c as a probability distribution4 and

compute the entropy as follows:

e
(m)
i = −

∑c
j=1 G

p(m)

ij log
(

G
p(m)

ij

)

. e
(m)
i captures the

spread of the score distribution for observation i at itera-

tion m. We compute the uncertainty of an observation by

summing the entropy of the observation for iterations where

p ∈ [0.01, 0.1], as we observe most fluctuation in this range,

i.e. ēi =
∑

p(m)∈[0.01,0.1] e
(m)
i .

There are other methods to compute uncertainty, such as

computing the residual error for each observation. However,

the residual error for a sample is only a single number, but

our method provides richer information as the decision pro-

cess for the whole solution path is taken into account. One

4The sum of
∑c

j=1
G

p(m)

ij
may not always be 1 if the constraint is

not tight, but it is usually 1 in most cases.
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may argue that we can also utilize the intermediate results

of other optimization methods and treat them as the decision

making process. However, these unconverged intermediate

results do not have an obvious physical meaning. For our

case, the solution path consists of converged solutions from

multiple unique optimization problems. Each solution has

clear physical meanings: the class membership hypothesis

given the current strictness (value of p) of the mutual ex-

clusion and spatial locality constraint. In sum, our entropy

measure provides deeper insights to the tracking process.

To validate our entropy metric, we plotted the histogram

of ēi for both correctly and incorrectly assigned observa-

tions. The histogram shown in Figure 5 shows that incorrect

observations tend to have larger entropy, thus supporting our

claims. In the next section, we demonstrate the usage of the

entropy measure for improving multi-object tracking in an

active learning scenario.

5.3. Active Learning for MultiObject Tracking

In challenging scenarios, it is inevitable for trackers to

make mistakes, and it would be very useful if the tracker can

pinpoint potential errors for human verification and labeling.

However, human verification is very expensive, thus one

should first present to the human annotators the instances

which will improve the classifier the most if the labels of the

instances were acquired. The task of automatically pinpoint-

ing such instances is called active learning [31]. A widely

used heuristic is uncertainty sampling, i.e. selecting the in-

stances of which the classifier is least certain. Uncertainty

sampling is a good fit to our entropy measure, which reflects

the uncertainty of our tracker’s output.

To evaluate our entropy-based sampling method, we per-

formed active learning experiments as follows. The tracker

is run iteratively, and after each iteration, the tracker auto-

matically identifies the 5 most confusing observations and

requests for their labels. The additional labels are added into

Y and the tracker is rerun. This iteration is repeated 10 times.

To select the confusing observations, three methods were uti-

lized: sampling based on entropy values, sampling based on

time difference from closest labeled instance (baseline), and

sampling based on residual error (baseline). The sampling

based on entropy values favors the observations with higher

entropy, i.e., the probability of the i-th observation being

selected is 1
Rank(ēi)

, where the rank instead of the absolute

entropy values were used to favor higher ranked observa-

tions. Time difference sampling favors observations which

are furthest away in terms of time from any labeled instance,

thus having higher likelihood of having an identity switch.

Residual error sampling favors observations which have high

residual error in the final optimization result. High residual

error may indicate that this observation is incorrect. Dur-

ing sampling, we also add a simple filter to avoid sampling

all 5 observations from the same region (within 1 meter)

Figure 6: Performance of tracker in each iteration of active

learning on terrace1 data set. Experiments for the two sam-

pling methods were performed 20 times each, and the 95%

confidence interval are drawn.

and time (within 2 seconds). The results shown in Figure 6

demonstrates that our entropy-based sampling significantly

beats the baselines. Time difference sampling also shows

some gains, but residual sampling performs poorly because

high residual error mostly occurs near observations with

recognized faces. Recognized faces have a fixed score of 1,

but scores of neighboring observations will be significantly

smaller (e.g. 0.3 or less), thus causing large residual error.

Labeling observations near recognized faces is not helpful

in improving tracking because they are already highly likely

to be correct. In sum, our entropy measure for uncertainty

sampling is effective in active learning.

6. Conclusion and Future Work

We propose a multi-object tracker which utilizes the so-

lution path algorithm to solve a quadratic problem with ℓ0
norm constraints. The ℓ0 norm constraints enforce the mu-

tual exclusion and spatial locality constraint. The solution

path also provides insights into the “decision making process”

of the tracker, thus enabling us to identify uncertainty in the

tracking output. Experiments show that our tracker is not

only effective, but also the uncertainty can be utilized in an

active learning framework to more efficiently enhance track-

ing results. Future work includes 1) applying the solution

path algorithm to other problems with ℓ0 norm constraints,

2) utilizing the computed solution path to locate uncertainty

in other tasks, and 3) taking into account face recognition

errors during the optimization process.
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[36] X. Wang, E. Türetken, F. Fleuret, and P. Fua. Tracking in-

teracting objects optimally using integer programming. In

ECCV, 2014. 2

[37] B. Yang and R. Nevatia. An online learned CRF model for

multi-target tracking. In CVPR, 2012. 2

[38] Y. Yang, A. Hauptmann, M.-Y. Chen, Y. Cai, A. Bharucha,

and H. Wactlar. Learning to predict health status of geriatric

patients from observational data. In Computational Intelli-

gence in Bioinformatics and Computational Biology, 2012.

5

[39] S.-I. Yu, Y. Yang, and A. Hauptmann. Harry potter’s ma-

rauder’s map: Localizing and tracking multiple persons-of-

interest by nonnegative discretization. In CVPR, 2013. 2, 3,

5, 6

[40] M. Zervos, H. BenShitrit, F. Fleuret, and P. Fua. Facial

descriptors for identity-preserving multiple people tracking.

Technical report epfl-article-187534, 2013. 2

[41] L. Zhang, Y. Li, and R. Nevatia. Global data association for

multi-object tracking using network flows. In CVPR, 2008. 2

3879


