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Abstract

We propose a novel method for detecting horizontal van-

ishing points and the zenith vanishing point in man-made

environments. The dominant trend in existing methods is

to first find candidate vanishing points, then remove out-

liers by enforcing mutual orthogonality. Our method re-

verses this process: we propose a set of horizon line can-

didates and score each based on the vanishing points it

contains. A key element of our approach is the use of

global image context, extracted with a deep convolutional

network, to constrain the set of candidates under consider-

ation. Our method does not make a Manhattan-world as-

sumption and can operate effectively on scenes with only

a single horizontal vanishing point. We evaluate our ap-

proach on three benchmark datasets and achieve state-of-

the-art performance on each. In addition, our approach is

significantly faster than the previous best method.

1. Introduction

Automatic vanishing point (VP) and horizon line detec-

tion are two of the most fundamental problems in geometric

computer vision [6, 22]. Knowledge of these quantities is

the foundation for many higher level tasks, including im-

age mensuration [10], facade detection [20], geolocaliza-

tion [4, 31], and camera calibration [2, 12, 15, 17]. Recent

work in this area [3, 30, 33] has explored novel problem

formulations that significantly increase robustness to noise.

A vanishing point results from the intersection of projec-

tions of a set of parallel lines in the world. In man-made en-

vironments, such sets of lines are often caused by the edges

of buildings, roads, and signs. VPs can typically be classi-

fied as either vertical, there is one such VP, and horizontal,

there are often many such VPs. Given a set of horizontal

VPs, there are numerous methods to estimate the horizon

line. Therefore, previous approaches to this problem focus

on first detecting the vanishing points, which is a challeng-

ing problem in many images due to line segment intersec-

Figure 1: An example result of our method. (left) Hori-

zon line candidates, colored by their scores (red means high

score), and the true horizon line (green dash). (right) The

horizon line (magenta) estimated by our algorithm is very

close to the true horizon line (green dash). Line segments

are color coded based on the most consistent detected van-

ishing point.

tions that are not true VPs.

Our approach is to propose candidate horizon lines, score

them, and keep the best (Fig. 1). We use a deep convolu-

tional neural network to extract global image context and

guide the generation of a set of horizon line candidates. For

each candidate, we identify vanishing points by solving a

discrete-continuous optimization problem. The final score

for each candidate line is based on the consistency of the

lines in the image with the selected vanishing points.

This seemingly simple shift in approach leads to the need

for novel algorithms and has excellent performance. We

evaluated the proposed approach on two standard bench-

mark datasets, the Eurasian Cities Dataset [5] and the York

Urban Dataset [11]. To our knowledge, our approach has

the current best performance on both datasets. To evaluate

our algorithm further, we also compare with the previous

state-of-the-art method (Lezama et al. [19]) on a recently

introduced dataset [32]; the results shows that our method

is more accurate and much faster.

The main contributions of this work are: 1) a novel

method for horizon line/vanishing point detection, which

uses global image context to guide precise geometric anal-

ysis; 2) a strategy for quickly extracting this context, in
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Figure 2: Algorithm overview: 1) use global image context to estimate a prior over horizon lines (Sec. 3); 2) extract line

segments; 3) identify the zenith VP (Sec. 4.1); 4) sample horizon line candidates consistent with the zenith VP (Sec. 4.2); 5)

find VPs on horizon line candidates (Sec. 4.2); and 6) select the best horizon line based on the VPs it contains (Sec. 4.3).

the form of constraints on possible horizon lines, using a

deep convolutional neural network; 3) a discrete-continuous

method for scoring horizon line candidates; and 4) an

evaluation of the proposed approach on three benchmark

datasets, which highlights that our method is both fast and

accurate.

1.1. Related Work

Vanishing points and the horizon line provide a strong

characterization of geometric scene structure and as such

have been intensely studied for decades [6, 22]. For exam-

ple, Hoiem et al. [13] show how the horizon line improves

the accuracy of object detection. A wide variety of methods

have been introduced to estimate these quantities. We pro-

vide a brief overview of the main approaches, refer to [26]

for a comprehensive review.

Two distinct categories of methods exist, distinguished

by the features they use. The first group of methods [5,

9, 11, 25] operate directly on lower-level features, such as

edge pixels or image gradients. The second group of meth-

ods [1, 11, 19, 21, 28, 30, 33] build on top of the closely re-

lated problem of line segment detection. Our work is most

closely related to the latter category, so we focus our dis-

cussion towards them.

The dominant approach to vanishing point detection

from line segments is to cluster the line segments that pass

through the same location. Various methods of clustering

have been explored, including RANSAC [7], J-linkage [27],

and the Hough transform [14]. Once the line segments have

been clustered, vanishing points can be estimated using one

of many refinement procedures [19, 25, 27, 30, 33].

These procedures typically minimize a nonlinear objec-

tive function. An important distinction between such meth-

ods is the choice of point and line representation and error

metric. Collins and Weiss [8] formulate vanishing point de-

tection as a statistical estimation problem on the Gaussian

Sphere, which is similar to the geometry we use. More re-

cent work has explored the use of dual space [19, 35] repre-

sentations. Among the clustering-based approaches, Xu et

al. [33] improve this pipeline by introducing a new point-

line consistency function that models errors in the line seg-

ment extraction step.

Alternatives to clustering-based approaches have been

explored. For example, vanishing point detection from line

segments has been modeled as an Uncapacitated Facility

Location (UFL) problem [3, 28]. To avoid error accumula-

tion issues encountered by a step-by-step pipeline method,

Barinova et al. [5] solve the problem in a unified framework,

where edges, lines, and vanishing points fit into a single

graphical model.

Our approach is motivated by the fact that properties

of the scene, including objects, can provide additional

cues for vanishing point and horizon line placement than

line segments alone. Unlike existing methods that use J-

linkage [27, 33] or similar techniques to find an initial set

of VPs by clustering detected lines followed by a refinement

step, our approach first proposes candidate horizon lines us-

ing global image context.

1.2. Approach Overview

Our approach is motivated by two observations: 1) tradi-

tional purely geometric approaches to vanishing point de-

tection often fail in seemingly nonsensical ways and 2)

identifying the true vanishing points for many scenes is

challenging and computationally expensive due to the large

number of outlier line segments. Driven by these observa-

tions, we propose a two part strategy. First, we use global

image context to estimate priors over the horizon line and
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the zenith vanishing point (Sec. 3). Using these priors,

we introduce a novel VP detection method (Sec. 4) that

samples horizon lines from the prior and performs a fast

one-dimensional search for high-quality vanishing points in

each. Both steps are essential for accurate results: the prior

helps ensure a good initialization such that our horizon-first

detection method may obtain very precise estimates that are

necessary for many scene understanding tasks. See Fig. 2

for an overview of our algorithm.

2. Problem Formulation

The goal of this work is to detect the horizon line, the

zenith vanishing point, and any horizontal vanishing points

from a single image. The remainder of this section de-

fines the notation and basic geometric facts that we will use

throughout. For clarity we use unbolded letters for points

in world coordinates or the image plane and bolded letters

for points or lines in homogeneous coordinates. We primar-

ily follow the notation convention of Vedaldi and Zisser-

man [28].

Given a point (u, v) in the image plane, its homogeneous

coordinate with respect to the calibrated image plane is de-

noted by:

p = [ρ(u− cu), ρ(v − cv), 1]
T/Σ ,

where ρ is a scale constant, (cu, cv) is the camera principal

point in the image frame, which we assume to be the cen-

ter of the image, and Σ is the constant that makes p a unit

vector.

In homogeneous coordinates, both lines and points are

represented as three-dimensional vectors (Fig. 3). Comput-

ing the line, l, that passes through two points, (p1,p2), and

the point, p, at the intersection of two lines, (l1, l2), are

defined as follows:

l =
p1 × p2

‖p1 × p2‖
p =

l1 × l2

‖l1 × l2‖
. (1)

We denote the smallest angle between two vectors x and y

with Θx,y = |cos−1(xTy)|. We use this to define the con-

sistency between a line, l, and a point, p, as: fc(p, l) =
max(θcon − Θp,l, 0). The maximum value of consistency

between a vanishing point and a line segment is θcon. This

will occur if it is possible to extend the line segment to con-

tain the vanishing point.

3. Horizon Priors from Global Image Context

Recent studies show that deep convolutional neural net-

works (CNNs) are adaptable for a wide variety of tasks [34],

and are quite fast in practice. We propose to use a CNN to

extract global image context from a single image.

We parameterize the horizon line by its slope angle,

α ∈ [−π, π), and offset, o ∈ [0, inf), which is the shortest

Figure 3: In homogeneous coordinates, lines (red lines) are

defined by the normal (red arrow) of the plane (red triangle)

they form with the origin (green dot). Two lines form a

great circle (blue circle), whose normal (blue arrow) is their

common point (blue dot) in homogeneous coordinates.

distance between the horizon line and the principal point.

In order to span the entire horizon line parameter space, we

“squash” o from pixel coordinates to the interval [0, π/2),
through a one-to-one function, w = tan−1(o/κ), in which

κ is a scaling factor that affects how dense the sampling is

near the center of the image.

3.1. Network Architecture

For our task, we adapt the popular AlexNet [18] archi-

tecture, which was designed for object recognition as part of

the ImageNet ILSVRC-2012 challenge [24]. It consists of

five convolutional layers, each followed by a non-linearity

(rectified linear unit), and occasionally interspersed with

pooling and local response normalization. This is followed

by three fully connected layers (referred to as ‘fc6’, ‘fc7’,

and ‘fc8’). A softmax is applied to the final output layer to

produce a categorical distribution over 1000 object classes.

We use this as a foundation to create a CNN that simultane-

ously generates a categorical distribution for each horizon-

line parameter.

We modify the original AlexNet architecture in the fol-

lowing way: The first five convolutional layers are left un-

modified. These layers are initialized with weights from

a network trained for object detection and scene classifi-

cation [36]. We remove the original fully connected lay-

ers (‘fc6’–‘fc8’) and add two disjoint sets of fully con-

nected layers (‘fc6α’–‘fc8α’ and ‘fc6w’–‘fc8w’), one for

each target label, α and w. We convert the slope, α, and the

squashed offset, w, into independent categorical labels by

uniformly dividing their respective domains into 500 bins.

We randomly initialize the weights for these new layers.

We train our network using stochastic gradient descent,

with a multinomial logistic loss function. The learning rates

for the convolutional layers are progressively increased

such that the latter layers change more. The new fully con-
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Figure 4: Example images from our training dataset (Sec. 3.2), each overlaid with the ground-truth horizon line.

nected layers are given full learning rate.

3.2. Training Database

To support training our model of global image context,

we construct a large dataset of images with known horizon

lines. We make use of equirectangular panoramas down-

loaded from Google Street View in large metropolitan cities

around the world. We identified a set of cities based on pop-

ulation and Street View coverage. From each city, we down-

loaded panoramas randomly sampled in a 5km × 5km re-

gion around the city center. This resulted in 11 001 panora-

mas from 93 cities. Example cities include New York, Rio

de Janeiro, London, and Melbourne.

We extracted 10 perspective images from each panorama

with randomly sampled horizontal field-of-view (FOV),

yaw, pitch, and roll. Here yaw is relative to the Google

Street View capture vehicle. We sampled horizontal FOV

from a normal distribution with µ = 60◦ and σ = 10◦.

Similarly, pitch and roll are sampled from normal distribu-

tions with µ = 0◦ and σ = 10◦ and σ = 5◦, respectively.

Yaw is sampled uniformly. We truncate these distributions

such that horizontal FOV ∈ [40◦, 80◦], pitch ∈ [−30◦, 30◦],
and roll ∈ [−20◦, 20◦]. These settings were selected empir-

ically to match the distribution of images captured by casual

photographers in the wild.

Given the FOV, pitch, and roll of a generated perspec-

tive image, it is straightforward to compute the horizon line

position in image space. In total, our training database con-

tains 110 010 images with known horizon line. Fig. 4 shows

several example images from our dataset annotated with the

ground-truth horizon line.

3.3. Making the Output Continuous

Given an image, I , the network outputs a categorical

probability distribution for the slope, α, and squashed off-

set, w. We make these distributions continuous by approxi-

mating them with a Gaussian distribution. For each, we es-

timate the mean and variance from 5 000 samples generated

from the categorical probability distribution. Since the rela-

tionship between w and o is one-to-one, this also results in a

continuous distribution over o. The resulting distributions,

p(α|I) and p(o|I), are used in the next step of our approach

to aid in detecting the zenith VP and as a prior for sampling

candidate horizon lines. To visualize this distribution we

Figure 5: Global image context imposes a strong prior on

horizon line location. The output of our CNN is visualized

as an overlaid heatmap, with red indicating more likely lo-

cations. For each image, the ground-truth horizon line (dash

green) and the line that maximizes the prior (red) are shown.

observe that the horizon line can be uniquely defined by the

point on the line closest to the principal point. Therefore,

we can visualize a horizon line distribution as a distribution

over points in the image. Fig. 5 shows this distribution for

two images.

4. Horizon-First Vanishing Point Detection

We propose an approach to obtain accurate estimates of

the horizon line, the zenith vanishing point, and one or more

horizontal vanishing points. Given an image, our approach

makes use of the distributions estimated from global image

context (Sec. 3) and line segments extracted with LSD [29].

The algorithm consists of the following major steps:

1. detect the zenith vanishing point (Sec. 4.1)

2. detect horizontal vanishing points on horizon line can-

didates (Sec. 4.2)

3. score horizon line candidates with horizontal vanish-

ing points (Sec. 4.3)

The remainder of this section provides details for each of

these steps.

4.1. Detecting the Zenith Vanishing Point

To detect the zenith vanishing point, we first select an

initial set of line segments using the zenith direction, lz,

from the global image context, then use the RANSAC [7]

algorithm to refine it. The zenith direction is the line con-
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necting the principal point and the zenith vanishing point,

which is uniquely determined by the horizon line slope (see

supplemental material for a proof).

We compute our initial estimate of lz using the global

image context by choosing the value that maximizes the

posterior: α̂ = argmaxα p(α|I). To handle the presence

of outlier line segments, we first select a set of candidate

vertical line segments as the RANSAC inputs by threshold-

ing the angle between each line segment and the estimated

zenith direction, Θl,lz < θver. For a randomly sampled pair

of line segments with intersection, p, we compute the set of

inlier line segments, {l | fc(p, l) > 0}. If the largest set of

inliers has a sufficient portion (more than 2% of candidate

line segments), we obtain the final estimate of the zenith

vanishing point, z, by minimizing the algebraic distance,

‖lTp‖ using singular value decomposition (SVD), and up-

date the zenith direction, lz. Otherwise, we keep the zenith

direction estimated from the global image context.

4.2. Detecting Horizontal Vanishing Points

We start with sampling a set of horizon line candidates,

{hi}
S
1

, that are perpendicular to lz in the image space, under

the distribution of horizon line offsets, p(o|I). See Fig. 6 for

examples of horizon line sampling with and without global

context.

For each horizon line candidate, we identify a set of hor-

izontal VPs by selecting points along the horizon line where

many line segments intersect. We assume that for the true

horizon line the identified horizontal VPs will be close to

many intersection points and that these intersections will be

more tightly clustered than for non-horizon lines. We use

this intuition to define a scoring function for horizon line

candidates.

As a preprocessing step, given the zenith direction, lz,

and a horizon line candidate, h, we filter out nearly verti-

cal line segments (Θl,lz < θver), which are likely associ-

ated with the zenith vanishing point, and nearly horizontal

line segments (Θl,h < θhor), which result in noisy horizon

line intersection points. We remove such lines from con-

sideration because they lead to spurious, or uninformative,

vanishing points, which decreases accuracy.

Given a horizon line candidate, h, and the filtered line

segments in homogeneous coordinates, L = {li}, we se-

lect a set of horizontal VPs, P = {pi}, by minimizing the

following objective function:

g(P|h,L) = −
∑

pi∈P

∑

lj∈L

fc(pi, lj) (2)

subject to:

Θpi,pj
> θdist and 〈pi,h〉 = 0, ∀(i, j) .

The constraint prevents two vanishing points from being too

close together, which eliminates the possibility of selecting

multiple vanishing points in the same location.

Figure 6: Our method samples more horizon line candi-

dates (red) near the ground truth (green dash) with (mid-

dle) global image context than without (left). In the case of

sampling with global image context, the offset PDF, p(o|I)
(blue curve), is fit from the CNN categorical probability dis-

tribution outputs (hollow bins). For clarity, we only show a

reduced number of horizon line candidates and bins.

We propose the following combinatorial optimization

process for obtaining an initial set of vanishing points, fol-

lowed by a constrained nonlinear optimization to refine the

vanishing points.

4.2.1 Initialization by Random Sampling and Discrete

Optimization

To choose an initial set of candidate vanishing points,

{pi}
M
1

, we randomly select a subset of line segments,

{li}
M
1

, and compute their intersection with the horizon line.

We then construct a graph with a node for each vanish-

ing point, pi, each with weight
∑

lj∈L fc(pi, lj), which is

larger if there are many line segments in the image that are

consistent with pi. Pairs of nodes, (i, j), are connected if

the corresponding vanishing points, pi,pj , are sufficiently

close in homogeneous space (Θpi,pj
≤ θdist).

From this randomly sampled set, we select an optimal

subset of VPs by maximizing the sum of weights, while

ensuring no VPs in the final set are too close. Therefore,

the problem of choosing the initial set of VPs reduces to a

maximum weighted independent set problem, which is NP-

hard in general. Due to the nature of the constraints, the

resulting graph has a ring-like structure which means that,

in practice, the problem can be quickly solved. Our solver

exploits this sparse ring-like structure by finding a set of

VPs that when removed convert the ring-like graph into a

set of nearly linear sub-graphs (Fig. 7). We solve each sub-

problem using dynamic programming. The set of VPs with

maximum weight, {pi}opt, is used as initialization for local

refinement. Usually, 2–4 such vanishing points are found

near the horizon line ground truth.
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Figure 7: A ring-like graph (left) is converted into three

nearly linear subgraphs (right) by partitioning around a

node with minimal degree. For the subgraphs, the red node

is mandatory, the dashed nodes are excluded, and a subset

of the solid nodes are selected using dynamic programming.

4.2.2 Vanishing Points Refinement

Since they were randomly sampled, the set of vanishing

points selected during initialization, {pi}opt, may not be

at the optimal locations. We optimize their locations to fur-

ther minimize the objective function (2). We perform an

EM-like algorithm to refine the vanishing point locations,

subject to the constraint that they lie on the horizon line:

• E-step: Given a vanishing point, p, assign line

segments that have positive consistency with p:

{l|fc(p, l) > 0}.

• M-step: Given the assigned line segments as a ma-

trix, L = [l1, l2, . . . , ln], and the horizon line, h, both

represented in homogeneous coordinates, we solve for

a refined vanishing point, p∗, by minimizing the al-

gebraic distance, ‖LTp‖ such that hTp = 0. We

define a basis, Bh, for the null space of h, and re-

formulate the problem as λ∗ = argmin ‖L⊤Bhλ‖,

which we solve using SVD. Given the optimal coeffi-

cients, λ∗, we reconstruct the optimal vanishing point

as: p∗ = Bhλ
∗

‖Bhλ∗‖ .

We run this refinement iteration until convergence. In

practice, this converges quickly; we run at most three iter-

ations for all the experiments. The final set of optimized

VPs is then used to assign a score to the current horizon

line candidate.

4.3. Optimal Horizon Line Selection

For each horizon line candidate, we assign a score based

on the total consistency of lines in the image with the VPs

selected in the previous section. The score of a horizon line

candidate, h, is defined as:

score(h) =
∑

{p̃i}

∑

lj∈L

fc(p̃i, lj) . (3)

To reduce the impact of false positive vanishing points,

we select from {pi}opt the two highest weighted vanishing

points (or one if {pi}opt contains only one element), {p̃i},

for horizon line scoring.

5. Evaluation

We perform an extensive evaluation of our methods,

both quantitatively and qualitatively, on three benchmark

datasets. The results show that our method achieves state-

of-the-art performance based on horizon-line detection er-

ror, the standard criteria in recent work on VP detec-

tion [5, 19, 28, 33]. Horizon detection error is defined as

the maximum distance from the detected horizon line to the

ground-truth horizon line, normalized by the image height.

Following tradition, we show the cumulative histogram of

these errors and report the area under the curve (AUC).

Our method is implemented using MATLAB, with the

exception of detecting line segments, which uses an exist-

ing C++ library [29], and extracting global image context,

which we implemented using Caffe [16]. We use the pa-

rameters defined in Tab. 1 for all experiments. This differs

from other methods which usually use different parameters

for different datasets.

Table 1: Algorithm parameters (given an H ×W image).

Name Usage(s) Value

θcon Sec. 2 2◦

ρ Sec. 2 2/max(H,W )
κ Sec. 3 1/5×H

θver Sec. 4.1, Sec. 4.2 Θl,lz < 10◦

θhor Sec. 4.2 Θl,h < 1.5◦

S Sec. 4.2 300 candidates

M Sec. 4.2.1 20 line segments

θdist Sec. 4.2, Sec. 4.2.1 Θpi,pj
> 33◦

5.1. Quantitative Evaluation

The York Urban Dataset (YUD) [11] is a commonly

used dataset for evaluating horizon line estimation methods.

It contains 102 images and ground-truth vanishing points.

The scenes obey the Manhattan-world assumption, how-

ever we do not take advantage of this assumption. Fig. 8a

shows the performance of our methods relative to previous

work on YUD. These results demonstrate that our method

achieves state-of-the-art AUC, improving upon the previous

best of Lezama et al. [19] by 0.28%, a relative improve-

ment1 of 5%. This is especially impressive given that our

method only requires an average of 1 second per image,

while Lezama et al. requires approximately 30 seconds per

image.

The Eurasian Cities Dataset (ECD) [5] is another com-

monly used benchmark dataset, which is considered chal-

lenging due to the large number of outlier line segments

1We define the relative improvement as
AUCnew−AUCold

1−AUCold
.
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Figure 8: For three benchmark datasets, the fraction of images (y-axis) with a horizon error less than a threshold (x-axis).

The AUC for each curve is shown in the legend. For additional details see Sec. 5.

Table 2: Component error analysis (AUC).

Method YUD ECD HLW

Lezama et al. [19] 94.51% 89.20% 52.59%

NONE+FULL 93.87% 87.94% 53.04%

GISTRF+EMPTY 53.36% 32.69% 31.08%

GISTRF+FULL 94.66% 87.60% 54.95%

CNN+EMPTY 73.67% 67.64% 49.03%

CNN+FULL (Ours) 94.78% 90.80% 58.24%

and complex scene geometries. It contains 103 images cap-

tured in urban areas and, unlike the YUD dataset, not all

images satisfy the Manhattan-world assumption. It provides

reliable horizon line ground truth and is widely considered

difficult for horizon line detection. To our knowledge, the

previous state-of-the-art performance in terms of the AUC

metric on this dataset was achieved by Lezama et al. [19].

Our algorithm improves upon their performance, increas-

ing the state of the art to 90.8%. This is a significant rel-

ative improvement of 14.8%, especially considering their

improvement relative to the state of the art was 0.5%. On

ECD, our method takes an average of 3 seconds per image,

while Lezama et al. requires approximately 60 seconds per

image. We present the performance comparison with other

methods in Fig. 8b.

The Horizon Lines in the Wild (HLW) dataset [32] is

a new, very challenging benchmark dataset. We use the

provided test set, which contains approximately 2 000 im-

ages from diverse locations, with many images not adher-

ing to the Manhattan-world assumption. Fig. 8c compares

our method with the method of Lezama et al. [19] (the only

publicly available implementation from a recent method).

Our method is significantly better, achieving 58.24% versus

52.59% AUC.

5.2. Component Error Analysis

Our method consists of two major components: global

context extraction (Sec. 3) and horizon-first vanishing point

detection (Sec. 4). This section provides an analysis of the

impact each component has on accuracy.

To evaluate the impact of global context extraction,

we considered three alternatives: our proposed approach

(CNN), replacing the CNN with a random forest (us-

ing the Python “sklearn” library with 25 trees) applied

to a GIST [23] descriptor (GISTRF), and omitting con-

text entirely (NONE). When omitting the global context,

we assume no camera roll (horizon lines are horizontal in

the image) and sample horizon lines uniformly between

[−2H, 2H] (H is the image height). To evaluate the im-

pact of vanishing point detection, we considered two alter-

natives: our proposed approach (FULL) and omitting the

vanishing point detection step (EMPTY). When omitting

vanishing point detection, we directly estimate the horizon

line, (α, o), by maximizing the posterior estimated by our

global-context CNN, p(α, o|I).

Quantitative results presented in Tab. 2 show that both

components play important roles in the algorithm and

that CNN provides better global context information than

GISTRF. Though our vanishing point detection performs

well by itself (see column NONE+FULL), global image

context helps improve the accuracy further. Fig. 8c visual-

izes these results as a cumulative histogram of horizon error

on HLW. To illustrate the impact of global image context,

we present two examples in Fig. 9 that compare horizon line

estimates obtained using global context (CNN+FULL) and

without (NONE+FULL). When using global context, the

estimated horizon lines are very close to the ground truth.

Without, the estimates obtained are implausible, even re-

sulting in an estimate that is off the image.

5663



Figure 10: Example results produced by our method. (rows 1 and 3) Line segments color coded based on the most consistent

VP, the ground-truth (green dash), and detected horizon lines (magenta). For clarity only the top two horizontal VPs are

shown. (rows 2 and 4) The line segments (dots) and their VPs (rings) represented in homogeneous coordinates. (last column)

Two failure cases of our method, caused by irregularly shaped objects (bottom) and short edges (top).

Figure 9: Two images where horizon line estimates are

much better with global context (left) than without (right).

5.3. Failure Cases

We highlight two representative failure cases in the last

column of Fig. 10. The top image fails due to the propa-

gation of measurement errors from the short line segments.

The bottom image is challenging because the curved struc-

tures lead to indistinct VPs. Despite this, global context

helps our method produce plausible results, while other

methods (e.g., [5]) fail dramatically.

6. Conclusion

We presented a novel vanishing point detection algo-

rithm that obtains state-of-the-art performance on three

benchmark datasets. The main innovation in our method

is the use of global image context to sample possible hori-

zon lines, followed by a novel discrete-continuous proce-

dure to score each horizon line by choosing the optimal

vanishing points for the line. Our method is both more ac-

curate and more efficient than the previous state-of-the-art

algorithm, requiring no parameter tuning for a new testing

dataset, which is common in other methods.
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