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Abstract

The well-known word analogy experiments show that the

recent word vectors capture fine-grained linguistic regular-

ities in words by linear vector offsets, but it is unclear how

well the simple vector offsets can encode visual regularities

over words. We study a particular image-word relevance

relation in this paper. Our results show that the word vec-

tors of relevant tags for a given image rank ahead of the

irrelevant tags, along a principal direction in the word vec-

tor space. Inspired by this observation, we propose to solve

image tagging by estimating the principal direction for an

image. Particularly, we exploit linear mappings and nonlin-

ear deep neural networks to approximate the principal di-

rection from an input image. We arrive at a quite versatile

tagging model. It runs fast given a test image, in constant

time w.r.t. the training set size. It not only gives superior

performance for the conventional tagging task on the NUS-

WIDE dataset, but also outperforms competitive baselines

on annotating images with previously unseen tags.

1. Introduction

Recent advances in the vector-space representations of

words [37, 38, 45] have benefited both NLP [49, 60, 52] and

computer vision tasks such as zeros-shot learning [50, 15, 1]

and image captioning [31, 26, 27]. The use of word vectors

in NLP is grounded on the fact that the fine-grained linguis-

tic regularities over words are captured by linear word vec-

tor offsets—a key observation from the well-known word

analogy experiments [39, 45], such as the syntactic relation

dance − dancing ≈ fly − flying and semantic relation

king − man ≈ queen − woman. However, it is unclear

whether the visual regularities over words, which are im-

plicitly used in the aforementioned computer vision prob-

lems, can still be encoded by the simple vector offsets.

In this paper, we are interested in the problem of im-

age tagging, where an image (e.g., of a zoo in Figure 1)

calls for a partition of a vocabulary of words into two

disjoint sets according to the image-word relevance (e.g.,

relevant tags Y = {people, animal, zoo} and irrelevant

Figure 1: Given an image, its relevant tags’ word vectors

rank ahead of the irrelevant tags’ along some direction in

the word vector space. We call that direction the principal

direction for the image. To solve the problem of image

tagging, we thus learn a function f(·) to approximate the

principal direction from an image. This function takes as the

input an image xm and outputs a vector f(xm) for defining

the principal direction in the word vector space.

ones Y = {sailor, book, landscape}). This partitioning of

words, (Y, Y ), is essentially different from the fine-grained

syntactic (e.g., dance to dancing) or semantic (e.g., king to

man) relation tested in the word analogy experiments. In-

stead, it is about the relationship between two sets of words

due to a visual image. Such a relation in words is semantic

and descriptive, and focuses on visual association, albeit

relatively coarser. In this case, do the word vectors still

offer the nice property, that the simple linear vector offsets

can depict the visual (image) association relations in words?

For the example of the zoo, while humans are capable of

easily answering that the words in Y are more related to the

zoo than those in Y , can such zoo-association relation in

words be expressed by the 9 pairwise word vector offsets

{people − sailor, people − book, · · · , zoo − landscape}
between the relevant Y and irrelevant Y tags’ vectors?

One of the main contributions of this paper is to empiri-

cally examine the above two questions (cf. Section 3). Ev-

ery image introduces a visual association rule (Y, Y ) over

words. Thanks to the large number of images in benchmark
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datasets for image tagging, we are able to examine many

distinct visual association regulations in words and the cor-

responding vector offsets in the word vector space. Our re-

sults reveal a somehow surprising connection between the

two: the offsets between the vectors of the relevant tags Y

and those of the irrelevant Y are along about the same direc-

tion, which we call the principal direction. See Figure 2

for the visualization of some vector offsets. In other words,

there exists at least one vector (direction) w in the word vec-

tor space, such that its inner products with the vector offsets

between Y and Y are greater than 0, i.e., ∀p ∈ Y , ∀n ∈ Y ,

〈w,p− n〉 > 0 equivalently, 〈w,p〉 > 〈w,n〉 , (1)

where the latter reads that the vector w ranks all relevant

words Y (e.g., for the zoo image) ahead of the irrelevant

ones Y . For brevity, we overload the notations Y and Y to

respectively denote the vectors of the words in them.

The visual association relations in words thus represent

themselves by the (linear) rank-abilities of the correspond-

ing word vectors. This result reinforces the conclusion

from the word analogy experiments that, for a single word

multiple relations are embedded in the high dimensional

space [39, 45]. Furthermore, those relations can be ex-

pressed by simple linear vector arithmetic.

Inspired by the above observation, we propose to solve

the image tagging problem by estimating the principal di-

rection, along which the relevant tags rank ahead of the ir-

relevant ones in the word vector space. Particularly, we ex-

ploit linear mappings and deep neural networks to approx-

imate the principal direction from each input image. This

is a grand new point of view to image tagging and results

in a quite versatile tagging model. It operates fast given a

test image, in constant time with respect to the training set

size. It not only gives superior performance for the conven-

tional tagging task, but is also capable of assigning novel

tags from an open vocabulary, which are unseen at the train-

ing stage. We do not assume any a priori knowledge about

these unseen tags as long as they are in the same vector

space as the seen tags for training. To this end, we name our

approach fast zero-shot image tagging (Fast0Tag) to recog-

nize that it possesses the advantages of both FastTag [7] and

zero-shot learning [29, 17, 18].

In sharp contrast to our approach, previous image tag-

ging methods can only annotate test images with the tags

seen at training except [18], to the best of our knowledge.

Limited by the static and usually small number of seen tags

in the training data, these models are frequently challenged

in practice. For instance, there are about 53M tags on Flickr

and the number is rapidly growing. The work of [18] is per-

haps the first attempt to generalize an image tagging model

to unseen tags. Compared to the proposed method, it de-

pends on two extra assumptions. One is that the unseen tags

are known a priori in order to tune the model towards their

combinations. The other is that the test images are known a

priori, to regularize the model. Furthermore, the generaliza-

tion of [18] is limited to a very small number, U, of unseen

tags, as it has to consider all the 2U possible combinations.

To summarize, our first main contribution is on the anal-

yses of the visual association relations in words due to im-

ages, and how they are captured by word vector offsets. We

hypothesize and empirically verify that, for each visual as-

sociation rule (Y, Y ), in the word vector space there exists a

principal direction, along which the relevant words’ vectors

rank ahead of the others’. Built upon this finding, the sec-

ond contribution is a novel image tagging model, Fast0Tag,

which is fast and generalizes to open-vocabulary unseen

tags. Last but not least, we explore three different im-

age tagging scenarios: conventional tagging which assigns

seen tags to images, zero-shot tagging which annotates im-

ages by (a large number of) unseen tags, and seen/unseen

tagging which tags images with both seen and unseen tags.

In contrast, the existing work tackles either conventional

tagging, or zero-shot tagging with very few unseen tags.

Our Fast0Tag gives superior results over competitive base-

lines under all the three testing scenarios.

2. Related work

Image tagging. Image tagging aims to assign relevant

tags to an image or to return a ranking list of tags. In the

literature this problem has been mainly approached from

the tag ranking perspective. In the generative methods,

which involve topic models [3, 40, 58, 42] and mixture

models [30, 23, 51, 14, 6, 12], the candidate tags are nat-

urally ranked according to their probabilities conditioned

on the test image. For the non-parametric nearest neigh-

bor based methods [35, 36, 33, 25, 20, 32, 59], the tags

for the test image are often ranked by the votes from some

training images. The nearest neighbor based algorithms,

in general, outperform those depending on generative mod-

els [25, 34], but suffer from high computation costs in both

training and testing. The recent FastTag algorithm [7] is

magnitude faster and achieves comparable results with the

nearest neighbor based methods. Our Fast0Tag shares the

same level of low complexity as FastTag. The embedding

method [55] assigns ranking scores to the tags by a cross-

modality mapping between images and tags. This idea is

further exploited using deep neural networks [19]. Interest-

ingly, none of these methods learn their models explicitly

for the ranking purpose except [55, 19], although they all

rank the candidate tags for the test images. Thus, there ex-

ists a mismatch between the models learned and the actual

usage of the models, violating the principle of Occam’s ra-

zor. We use a ranking loss in the same spirit as [55, 19].

In contrast to our Fast0Tag, which can rank both seen

and an arbitrary number of unseen tags for test images, the

aforementioned approaches only assign tags to images from
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a closed vocabulary seen at the training stage. An exception

is by Fu et al. [17], where the authors consider pre-fixed

U unseen tags and learn a multi-label model to account for

all the 2U possible combinations of them. This method is

limited to a small number U of unseen tags.

Word embedding. Instead of representing words using

the traditional one-hot vectors, word embedding maps each

word to a continuous-valued vector, by learning from pri-

marily the statistics of word co-occurrences. Although there

are earlier works on word embedding [46, 11], we point out

that our work focuses on the most recent GloVe [45] and

word2vec vectors [39, 38, 37]. As shown in the well-known

word analogy experiments [39, 45], both types of word vec-

tors are able to capture fine-grained semantic and syntactic

regularities using vector offsets. In this paper, we further

show that the simple linear offsets also depict the relatively

coarser visual association relations in words.

Zero-shot learning. Zero-shot learning is often used

exchange-ably with zero-shot classification, whereas the

latter is a special case of the former. Unlike weakly-

supervised learning [41, 16] which learn new concepts by

mining noisy new samples, zero-shot classification learns

classifiers from seen classes and aims to classify the ob-

jects of unseen classes [44, 43, 29, 1, 17, 22, 43, 44, 50].

Attributes [28, 13] and word vectors are two of the main

semantic sources making zero-shot classification feasible.

Our Fast0Tag along with [18] enriches the family

of zero-shot learning by zero-shot multi-label classifica-

tion [53]. Fu et al. [18] reduce the problem to zero-shot

classification by treating every combination of the multiple

labels as a class. We instead directly model the labels and

are able to assign/rank many unseen tags for an image.

eat

3. The linear rank-ability of word vectors

Our Fast0Tag approach benefits from the finding that the

visual association relation in words, i.e., the partition of a

vocabulary of words according to their relevances to an im-

age, expresses itself in the word vector space as the exis-

tence of a principal direction, along which the words/tags

relevant to the image rank ahead of the irrelevant ones. This

section details the finding.

3.1. The regulation over words due to image tagging

We use S to denote the seen tags available for training

image tagging models and U the tags unseen at the training

stage. The training data are in the form of {(xm, Ym);m =
1, 2, · · · ,M}, where xm ∈ R

D is the feature representation

of image m and Ym ⊂ S are the seen tags relevant to that

image. For brevity, we overload the notation Ym to also

denote the collection of the corresponding word/tag vectors.

The conventional image tagging aims to assign seen tags

in S to the test images. The zero-shot tagging, formalized

in [18], tries to annotate test images using a pre-fixed set of

unseen tags U . In addition to those two scenarios, this pa-

per considers seen/unseen image tagging, which finds both

relevant seen tags from S and relevant unseen tags from U
for the test images. Furthermore, the set of unseen tags U
could be open and dynamically growing.

Denote by Ym := S\Ym the irrelevant seen tags. An im-

age m introduces a visual association regulation to words—

the partition (Ym, Ym) of the seen tags to two disjoint sets.

Noting that many fine-grained syntactic and semantic regu-

lations over words can be expressed by linear word vector

offsets, we next examine what properties the vector offsets

could offer for this new visual association rule.

3.2. Principal direction and cluster structure

Figure 2 visualizes the vector offsets (p − n), ∀p ∈
Ym, ∀n ∈ Ym using t-SNE [54] and PCA for two visual

association rules over words. One is imposed by an image

with 5 relevant tags and the other is with 15 relevant tags.

We observe two main structures from the vector offsets:

Principal direction. Mostly, the vector offsets point to

about the same direction (relative to the origin), which

we call the principal direction, for a given visual asso-

ciation rule (Ym, Ym) in words for image m. This im-

plies that the relevant tags Ym rank ahead of the irrele-

vant ones Ym along the principal direction (cf. eq. (1)).

Cluster structure. There exist cluster structures in the vec-

tor offsets for each visual association regulation over

the words. Moreover, all the offsets pointing to the

same relevant tag in Ym fall into the same cluster. We

differentiate the offsets pointing to different relevant

tags by colors in Figure 2.

Can the above two observations generalize? Namely, do

they still hold in the high-dimensional word vector space

for more visual association rules imposed by other images?

To answer the questions, we next design an experiment to

verify the existence of the principal directions in word vec-

tor spaces, or equivalently the linear rank-ability of word

vectors. We leave the cluster structure for future research.

3.3. Testing the linear rank­ability hypothesis

Our experiments in this section are conducted on the val-

idation set (26,844 images, 925 seen tags S , and 81 un-

seen tags U ) of NUS-WIDE [8]. The number of relevant

seen/unseen tags associated with an image ranges from 1 to

20/117 and on average is 1.7/4.9. See Section 5 for details.

Our objective is to investigate, for any visual association

rule (Ym, Ym) in words by image m, the existence of the

principal direction along which the relevant tags Ym rank

ahead of the irrelevant tags Ym. The proof completes once
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Figure 2: Visualization of the offsets between relevant tags’ word vectors and irrelevant ones’. Note that each vector from

the origin to a point is an offset between two word vectors. The relevant tags are shown beside the images [8].

we find a vector w in the word vector space that satisfies the

ranking constraints 〈w,p〉 > 〈w,n〉 , ∀p ∈ Ym, ∀n ∈ Ym.

To this end, we train a linear ranking SVM [24] for each

visual association rule using all the corresponding pairs

(p,n), then rank the word vectors by the SVM, and finally

examine how many constraints are violated. In particular,

we employ MiAP, the larger the better (cf. Section 5), to

compare the SVM’s ranking list with those ranking con-

straints. We repeat the above process for all the validation

images, resulting in 21,863 unique visual association rules.
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Figure 3: The existence (left) and generalization (right) of

the principal direction for each visual association rule in

words induced by an image.

Results. The MiAP results averaged over all the distinct

regulations are reported in Figure 3(left), in which we test

the 300D GloVe vectors [45] and word2vec [39] of dimen-

sions 100, 300, 500, and 1000. The horizontal axis shows

different regularizations we use for training the ranking

SVMs. Larger λ regularizes the models more (details in

Suppl.). In the 300D GloVe space and the word2vec spaces

of 300, 500, and 1000 dimensions, more than two rank-

ing SVMs, with small λ values, give rise to nearly perfect

ranking results (MiAP ≈ 1), showing that the seen tags S
are linearly rank-able under almost every visual association

rule—all the ranking constraints imposed by the relevant

Ym and irrelevant Ym tags to image m are satisfied.

However, we shall be cautious before drawing any con-

clusions beyond the experimental vocabulary S of seen tags.

An image m incurs a visual association rule essentially over

all words, though the same rule implies different partitions

of distinct experimental vocabularies (e.g., the seen tags S
and unseen ones U ). Accordingly, we would expect the

principal direction for the seen tags is also shared by the

unseen tags under the same rule, if the answer is YES to the

questions at the end of Section 3.2.

Generalization to unseen tags. We test whether the same

principal direction exists for the seen tags and unseen ones

under every visual association rule induced by an image.

This can be (only partially) justified by applying the rank-

ing SVMs previously learned, to the unseen tags’ vectors,

because we do not know the “true” principal directions. We

consider the with 81 unseen tags U as the “test data” for the

trained ranking SVMs, each due to an image incurred visual

association. NUS-WIDE provides the annotations of the 81

tags for the images. The results, shown in Figure 3(right),

are significantly better than the most basic baseline, ran-

domly ranking the tags (the black curve close to the origin),

demonstrating that the directions output by SVMs are gen-

eralizable to the new vocabulary U of words.

Observation. Therefore, we conclude that the word vec-

tors are an efficient media to transfer knowledge—the rank-

ability along the principal direction—from the seen tags to

the unseen ones. We have empirically verified that the vi-

sual association rule (Ym, Ym) in words due to an image m

can be represented by the linear rank-ability of the corre-

sponding word vectors along a principal direction. Our ex-

periments involve |S|+ |U| = 1,006 words in total. Larger-

scale and theoretical studies are required for future work.

4. Approximating the linear ranking functions

This section presents our Fast0Tag approach to image

tagging. We first describe how to solve image tagging by
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approximating the principal directions thanks to their exis-

tence and generalization, empirically verified in the last sec-

tion. We then describe detailed approximation techniques.

4.1. Image tagging by ranking

Grounded on the observation from Section 3, that there

exists a principal direction wm, in the word vector space,

for every visual association rule (Ym, Y m) in words by an

image m, we propose a straightforward solution to image

tagging. The main idea is to approximate the principal di-

rection by learning a mapping function f(·), between the

visual space and the word vector space, such that

f(xm) ≈ wm, (2)

where xm is the visual feature representation of the image

m. Therefore, given a test image x, we can immediately

suggest a list of tags by ranking the word vectors of the tags

along the direction f(x), namely, by the ranking scores,

〈f(x), t〉 , ∀t ∈ S ∪ U (3)

no matter the tags are from the seen set S or unseen set U .

We explore both linear and nonlinear neural networks for

implementing the approximation function f(x) ≈ w.

4.2. Approximation by linear regression

Here we assume a linear function from the input image

representation x to the output principal direction w, i.e.,

f(x) := Ax, (4)

where A can be solved in a closed form by linear regression.

Accordingly, we have the following from the training

wm = Axm + ǫm,m = 1, 2, · · · ,M (5)

where wm is the principal direction of all offset vectors of

the seen tags, for the visual association rule (Ym, Ym) due

to the image m, and ǫm are the errors. Minimizing the mean

squared errors gives us a closed form solution to A.

One caveat is that we do not know the exact principal

directions wm at all—the training data only offer images

xm and the relevant tags Ym. Here we take the easy alter-

native and use the directions found by ranking SVMs (cf.

Section 3) in eq. (5). There are thus two stages involved to

learn the linear function f(x) = Ax. The first stage trains a

ranking SVM over the word vectors of seen tags for each vi-

sual association (Ym, Ym). The second stage solves for the

mapping matrix A by linear regression, in which the targets

are the directions returned by the ranking SVMs.

Discussion. We note that the the linear transformation be-

tween visual and word vector spaces has been employed

before, e.g., for zero-shot classification [1, 15] and image
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Figure 4: The neural network used in our approach for im-

plementing the mapping function f(x;θ) from the input

image, which is represented by the CNN features x, to its

corresponding principal direction in the word vector space.

annotation/classification [56]. This work differs from them

with a prominent feature, that the mapped image f(x) =
Ax has a clear meaning; it depicts the principal direction,

which has been empirically verified, for the tags to be as-

signed to the image. We next extend the linear transforma-

tion to a nonlinear one, through a neural network.

4.3. Approximation by neural networks

We also exploit a nonlinear mapping f(x;θ) by a multi-

layer neural network, where θ denotes the network param-

eters. Figure 4 shows the network architecture. It consists

of two RELU layers followed by a linear layer to output the

approximated principal direction, w, for an input image x.

We expect the nonlinear mapping function f(x;θ) to offer

better modeling flexibility than the linear one.

Can we still train the neural network by regressing to the

M directions obtained from ranking SVMs? Both our intu-

ition and experiments tell that this is a bad idea. The number

M of training instances is small relative to the number of pa-

rameters in the network, making it hard to avoid overfitting.

Furthermore, the directions by ranking SVMs are not the

true principal directions anyway. There is no reason for us

to stick to the ranking SVMs for the principal directions.

We instead unify the two stages in Section 4.2. Recall

that we desire the output of the neural network f(xm;θ) to

be the principal direction, along which all the relevant tag

vectors p ∈ Ym of an image m rank ahead of the irrelevant

ones n ∈ Ym. Denote by

ν(p,n;θ) = 〈f(xm;θ),n〉 − 〈f(xm;θ),p〉 ,

the amount of violation to any of those ranking constraints.

We minimize the following loss to train the neural network,

θ⋆ ← argminθ

M
∑

m=1

ωmℓ(xm, Ym;θ), (6)

ℓ(xm, Ym;θ) =
∑

p∈Ym

∑

n∈Ym

log (1 + exp{ν(p,n;θ)})

where ωm =
(

|Ym||Ym|
)−1

normalizes the per-image

RankNet loss [5] ℓ(xm, Ym;θ) by the number of ranking
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constraints imposed by the image m over the tags. This

formulation enables the function f(x) to directly take ac-

count of the ranking constraints by relevant p and irrelevant

n tags. Moreover, it can be optimized with no challenge at

all by standard mini-batch gradient descent.

Practical considerations. We use Theano [4] to solve the

optimization problem. A mini-batch consists of 1,000 im-

ages, each of which incurs on average 4,600 pairwise rank-

ing constraints of the tags—we use all pairwise ranking con-

straints in the optimization. The normalization ωm for the

per-image ranking loss suppresses the violations from the

images with many positive tags. This is desirable since

the numbers of relevant tags of the images are unbalanced,

ranging from 1 to 20. Without the normalization the MiAP

results drop by about 2% in our experiments. For regular-

ization, we use early stopping and a dropout layer [21] with

the drop rate of 30%. The optimization hyper-parameters

are selected by the validation set (cf. Section 5).

In addition to the RankNet loss [5] in eq. (6), we

have also experimented some other choices for the per-

image loss, including the hinge loss [9], Crammer-Singer

loss [10], and pairwise max-out ranking [24]. The hinge

loss performs the worst, likely because it is essentially not

designed for ranking problems, though one can still under-

stand it as a point-wise ranking loss. The Crammer-Singer,

pairwise max-out, and RankNet are all pair-wise ranking

loss functions. They give rise to comparable results and

RankNet outperforms the other two by about 2% in terms

of MiAP. This may attribute to the ease of control over the

optimization process for RankNet. Finally, we note that the

list-wise ranking loss [57] can also be employed.

5. Experiments

This section presents our experimental results. We con-

trast our approach to several competitive baselines for the

conventional image tagging task on the large-scale NUS-

WIDE [8] dataset. Moreover, we also evaluate our method

on the zero-shot and seen/unseen image tagging problems

(cf. Section 3.1). For the comparison on these problems,

we extend some existing zero-shot classification algorithms

and consider some variations of our own approach.

5.1. Dataset and configuration

NUS-WIDE. We mainly use the NUS-WIDE dataset [8]

for the experiments in this section (more results in Suppl.).

NUS-WIDE is a standard benchmark dataset for image tag-

ging. It contains 269,648 images in the original release and

we are able to retrieve 223,821 of them since some images

are either corrupted or removed from Flickr. We follow the

recommended experiment protocol to split the dataset into a

training set with 134,281 images and a test set with 89,603

images. We further randomly separate 20% from the train-

ing set as our validation set for 1) tuning hyper-parameters

in our method and the baselines and 2) conducting the em-

pirical analyses in Section 3.

Annotations of NUS-WIDE. NUS-WIDE releases three

sets of tags associated with the images. The first set com-

prises of 81 “groundtruth” tags. They are carefully chosen

to be representative of the Flickr tags, such as containing

both general terms (e.g., animal) and specific ones (e.g.,

dog and flower), corresponding to frequent tags on Flickr,

etc. Moreover, they are annotated by high-school and col-

lege students and are much less noisy than those directly

collected from the Web. This 81-tag set is usually taken as

the groundtruth for benchmarking different image tagging

methods. The second and the third sets of annotations are

both harvested from Flickr. There are 1,000 popular Flickr

tags in the second set and nearly 5,000 raw tags in the third.

Image features and word vectors. We extract and ℓ2 nor-

malize the image feature representations of VGG-19 [48].

Both GloVe [45] and Word2vec [39] word vectors are in-

cluded in our empirical analysis experiments in Section 3

and the 300D GloVe vectors are used for the remaining ex-

periments. We also ℓ2 normalize the word vectors.

Evaluation. We evaluate the tagging results of different

methods using two types of metrics. One is the mean image

average precision (MiAP), which takes the whole ranking

list into account. The other consists of the precision, recall,

and F-1 score for the top K tags in the list. We report the

results for K = 3 and K = 5. Both metrics are commonly

used in the previous works on image tagging. We refer the

readers to Section 3.3 of [34] for how to calculate MiAP and

to Section 4.2 of [19] for the top-K precision and recall.

5.2. Conventional image tagging

Here we report the experiments on the conventional tag-

ging. The 81 concepts with “groundtruth” annotations in

NUS-WIDE are used to benchmark different methods.

Baselines. We include TagProp [20] as the first com-

petitive baseline. It is representative among the nearest

neighbor based methods, which in general outperform the

parametric methods built from generative models [3, 6],

and gives rise to state-of-the-art results in the experimen-

tal study [34]. We further compare with two most recent

parametric methods, WARP [19] and FastTag [7], both of

which are built upon deep architectures though using dif-

ferent models. For a fair comparison, we use the same

VGG-19 features for all the methods—the code of TagProp

and FastTag is provided by the authors and we implement

WARP based on our neural network architecture. Finally,

we compare to WSABIE [56] and CCA, both correlating

images and relevant tags in a low dimensional space. All

the hyper-parameters (e.g., the number of nearest neighbors

in TagProp and early stopping for WARP) are selected using

the validation set.
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Table 2: Comparison results of the zero-shot and seen/unseen image tagging tasks with 81 unseen tags and 925 seen tags.

Method %

Zero-shot image tagging Seen/unseen image tagging

MiAP
K = 3 K = 5

MiAP
K = 3 K = 5

P R F1 P R F1 P R F1 P R F1

Random 7.1 2.2 3.8 2.8 2.2 6.1 3.2 1.2 0.6 0.3 0.4 0.6 0.5 0.5

Seen2Unseen 16.7 7.3 12.5 9.2 7.0 19.7 10.3 2.8 2.1 1.1 1.4 1.9 1.6 1.8

LabelEM [2] 23.7 11.9 20.2 14.9 10.2 28.9 15.1 8.8 8.7 4.4 5.8 7.9 6.6 7.2

LabelEM+ [2] 24.9 12.5 21.4 15.8 10.7 30.4 15.8 10.2 11.3 5.7 7.6 9.6 8.1 8.8

ConSE [43] 32.4 17.7 30.1 22.3 13.7 38.8 20.2 12.5 16.7 8.4 11.2 13.5 11.3 12.3

Fast0Tag (lin.) 40.1 21.8 37.2 27.5 17.0 48.4 25.2 18.8 22.9 11.5 15.4 18.7 15.7 17.1

Fast0Tag (net.) 42.2 22.6 38.4 28.4 17.6 50.0 26.0 19.1 21.7 11.0 14.5 18.4 15.5 16.8

RankSVM 37.0 19.7 33.3 24.7 15.2 42.9 22.5 – – – – – – –

Table 1: Comparison results of the conventional image tag-

ging with 81 tags on NUS-WIDE.

Method % MiAP
K = 3 K = 5

P R F1 P R F1

CCA 19 9 15 11 7 20 11

WSABIE [56] 28 16 27 20 12 35 18

TagProp [20] 53 29 50 37 22 62 32

WARP [19] 48 27 45 34 20 57 30

FastTag [7] 41 23 39 29 19 54 28

Fast0Tag (lin.) 52 29 50 37 21 60 31

Fast0Tag (net.) 55 31 52 39 23 65 34

Results. Table 1 shows the comparison results of Tag-

Prop, WARP, FastTag, WSABIE, CCA, and our Fast0Tag

models implemented respectively by the linear mapping and

nonlinear neural network. We can see that TagProp per-

forms significantly better than WARP and FastTag. How-

ever, TagProp’s training and test complexities are very high,

being respectively O(M2) and O(M) w.r.t. the training set

size M. In contrast, both WARP and FastTag are more ef-

ficient, with O(M) training complexity and constant test-

ing complexity, thanks to their parametric formulation. Our

Fast0Tag with linear mapping gives comparable results to

TagProp and Fast0Tag with the neural network outperforms

the other methods. Also, both implementations have as low

computation complexities as WARP and FastTag.

5.3. Zero­shot and Seen/Unseen image tagging

This section presents some results for the two novel im-

age tagging scenarios, zero-shot and seen/unseen tagging.

Fu et al. [18] formalized the zero-shot image tagging

problem, aiming to annotate test images using a pre-fixed

set U of unseen tags. Our Fast0Tag naturally applies to this

scenario, by simply ranking the unseen tags with eq. (3).

Furthermore, this paper also considers seen/unseen image

tagging which finds both relevant seen tags from S and rel-

evant unseen tags from U for the test images. The set of

unseen tags U could be open and dynamically growing.

In our experiments, we treat the 81 concepts with high-

quality user annotations in NUS-WIDE as the unseen set U

for evaluation and comparison. We use the remaining 925

out of the 1000 frequent Flickr tags to form the seen set

S—75 tags are shared by the original 81 and 1,000 tags.

Baselines. Our Fast0Tag models can be readily applied to

the zero-shot and seen/unseen image tagging scenarios. For

comparison we study the following baselines.

Seen2Unseen. We first propose a simple method which ex-

tends an arbitrary traditional image tagging method to

also working with previously unseen tags. It originates

from our analysis experiment in Section 3. First, we

use any existing method to rank the seen tags for a

test image. Second, we train a ranking SVM in the

word vector space using the ranking list of the seen

tags. Third, we rank unseen (and seen) tags using the

learned SVM for zero-shot (and seen/unseen) tagging.

LabelEM. The label embedding method [2] achieves im-

pressive results on zero-shot classification for fine-

grained object recognition. If we consider each tag of

S ∪ U as a unique class, though this implies that some

classes will have duplicated images, the LabelEM can

be directly applied to the two new tagging scenarios.

LabelEM+. We also modify the objective loss function of

LabelEM when we train the model, by carefully re-

moving the terms that involve duplicated images. This

slightly improves the performance of LabelEM.

ConSE. Again by considering each tag as a class, we

include a recent zero-shot classification method,

ConSE [43] in the following experiments.

Note that it is computationally infeasible to compare

with [18], which might be the first work to our knowledge

on expanding image tagging to handle unseen tags, because

it considers all the possible combinations of the unseen tags.

Results. Table 2 summarizes the results of the baselines

and Fast0Tag when they are applied to the zero-shot and-

seen/unseen image tagging tasks. Overall, Fast0Tag, with

either linear or neural network mapping, performs the best.

Additionally, in the table we add two special rows whose

results are mainly for reference. The Random row corre-

sponds to the case when we return a random list of tags in
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Table 3: Annotating images with up to 4,093 unseen tags.

Method % MiAP
K = 3 K = 5

P R F1 P R F1

Random 0.3 0.1 0.1 0.1 0.1 0.1 0.1

Fast0Tag (lin.) 9.8 9.4 7.2 8.2 7.4 9.5 8.4

Fast0Tag (net.) 8.5 8.0 6.2 7.0 6.5 8.3 7.3

U for zero-shot tagging (and in U ∪ S for seen/unseen tag-

ging) to each test image. We compare this row with the row

of Seen2Unseen, in which we extend TagProp to handle the

unseen tags. We can see that the results of Unseen2Seen

are significantly better than randomly ranking the tags. This

tells us that the simple Seen2Unseen is effective in expand-

ing the labeling space of traditional image tagging methods.

Some tag completion methods [47] may also be employed

for the same purpose as Seen2Unseen.

Another special row in Table 2 is the last one with

RankSVM for zero-shot image tagging. We obtain its re-

sults through the following steps. Given a test image, we

assume the annotation of the seen tags, S , are known and

then learn a ranking SVM with the default regularization

λ = 1. The learned SVM is then used to rank the unseen

tags for this image. One may wonder that the results of this

row should thus be the upper bound of our Fast0Tag im-

plemented based on linear regression, because the ranking

SVM models are the targets of the linear regresson. How-

ever, the results show that they are not. This is not surpris-

ing, but rather it reinforces our previous statement that the

learned ranking SVMs are not the “true” principal direc-

tions. The Fast0Tag implemented by the neural network is

an effective alternative for seeking the principal directions.

It would also be interesting to compare the results in Ta-

ble 2 (zero-shot image tagging) with those in Table 1 (con-

ventional tagging), because the experiments for the two ta-

bles share the same testing images and the same candidate

tags; they only differ in which tags are used for training.

We can see that the Fast0Tag (net.) results of the zero-shot

tagging in Table 2 are actually comparable to the conven-

tional tagging results in Table 1, particularly about the same

as FastTag’s. These results are encouraging, indicating that

it is unnecessary to use all the candidate tags for training in

order to have high-quality tagging performance.

Annotating images with 4,093 unseen tags. What hap-

pens when we have a large number of unseen tags showing

up at the test stage? NUS-WIDE provides noisy annotations

for the images with over 5,000 Flickr tags. Excluding the

925 seen tags that are used to train models, there are 4,093

remaining unseen tags. We use the Fast0Tag models to rank

all the unseen tags for the test images and the results are

shown in Table 3. Noting that the noisy annotations weaken

the credibility of the evaluation process, the results are rea-

sonably low but significantly higher than the random lists.

Qualitative results. Figure 5 shows the top five tags for

some exemplar images [8], returned by Fast0Tag under
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Figure 5: The top five tags for exemplar images [8] re-

turned by Fast0Tag on the conventional, zero-shot, and

seen/unseen image tagging tasks, and by TagProp for con-

ventional tagging. (Correct tags: green; mistaken tags: red

and italic. Best viewed in color.)

the conventional, zero-shot, and seen/unseen image tagging

scenarios. Those by TagProp under the conventional tag-

ging are shown on the rightmost. The tags in green color

appear in the groundtruth annotation; those in red color and

italic font are the mistaken tags. Interestingly, Fast0Tag per-

forms equally well for traditional and zero-shot tagging and

makes even the same mistakes. More results are in Suppl.

6. Conclusion

We have systematically studied a particular visual reg-

ulation over words, the visual association rule which par-

titions words into two disjoint sets according to their rele-

vances to an image, as well as how it can be captured by

the vector offsets in the word vector space. Our empiri-

cal results show that, for any image, there exists a princi-

pal direction in the word vector space such that the relevant

tags’ vectors rank ahead of the irrelevant ones’ along that

direction. The experimental analyses involve 1,006 words;

larger-scale and theoretical analyses are required for future

work. Built upon this observation, we develop a Fast0Tag

model to solve image tagging by estimating the principal

directions for input images. Our approach is as efficient as

FastTag [7] and is capable of annotating images with a large

number of previously unseen tags. Extensive experiments

validate the effectiveness of our Fast0Tag approach.
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