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Abstract

We focus on learning open-vocabulary visual classifiers,

which scale up to a large portion of natural language vo-

cabulary (e.g., over tens of thousands of classes). In partic-

ular, the training data are large-scale weakly labeled Web

images since it is difficult to acquire sufficient well-labeled

data at this category scale. In this paper, we propose a

novel online learning paradigm towards this challenging

task. Different from traditional N-way independent clas-

sifiers that generally fail to handle the extremely sparse

and inter-related labels, our classifiers learn from contin-

uous label embeddings discovered by collaboratively de-

composing the sparse image-label matrix. Leveraging on

the structure of the proposed collaborative learning formu-

lation, we develop an efficient online algorithm that can

jointly learn the label embeddings and visual classifiers.

The algorithm can learn over 30,000 classes of 1,000 train-

ing images within 1 second on a standard GPU. Extensively

experimental results on four benchmarks demonstrate the

effectiveness of our method.

1. Introduction

In recent years, we have witnessed the impressive

progress of visual classifiers that help to move a large va-

riety of visual applications from academic prototypes into

industrial products [27, 41]. However, when we communi-

cate with vision systems using natural language, those clas-

sifiers with a predefined vocabulary (e.g., ImageNet [35])

generally fail due to vocabulary discrepancy and scarcity.

For example, “dolphin” is usually used instead of “gram-

pus griseus” [33] and adjective classifiers like “romantic” or

“exciting” are usually scarce as compared to nouns [28, 19].

Recently, much attention has been paid to scale up visual

classifiers to open-vocabulary, which covers the full range

of vocabulary in natural language [18, 16, 46].

One major limitation of the scale-up is the difficulty

in acquiring sufficient well-labeled datasets with many

classes, e.g., even the full ImageNet only contains images
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Figure 1. Top: Web images are usually noisy and incomplete.

These examples are from SBU 1M Flickr image dataset [34],

which is used as the training data. Middle: The power-law dis-

tribution of labels suggests that the images are sparsely labeled.

We transform such extreme sparsity to continuous label space that

preserve semantic relations. Different colors suggest various se-

mantic clusters by K-means. Bottom: As compared to traditional

classifiers, ours are learned from the latent embeddings.

of around 20K nouns. Fortunately, a promising method to

acquire more labels has been recently studied on learning

concepts from millions of noisy Web images. This method

utilizes user-generated textual descriptions as labels and can

naturally accommodate an open vocabulary [34, 29, 49].

However, learning open-vocabulary classifiers from a large

weakly-labeled dataset is not a trivial extension to the con-

ventional N-way classification (e.g., one-vs-all SVM or

softmax that treats the N classes independently), due to the

following three challenges:

Extreme Sparse Labels. Web images are usually weakly

annotated, i.e., an image is usually described by only a

small number of words as compared to the whole vocab-

ulary. This results in extreme sparse labels, where the miss-

12809



ing entries have no clear “positive” or “negative” supervised

samples that confuse the resultant classifiers. As shown in

Figure 1 (top), missing labels such as “green” and “grass”

should also be considered as positive.

Complex Semantic Relations. Traditional N -way classi-

fiers assume that the N labels are mutually exclusive [1].

However, when N is large, this assumption will no longer

hold. Although some efforts are made by hand-crafting se-

mantic relations among the labels [10, 11, 44, 22], it is in-

creasingly impractical as more realistic open-vocabulary la-

bels are considered. On one hand, different labels are usu-

ally used to describe the same image, e.g., “BMW” is a

“car”, which may or may not be a “racer”; treating them

independently will violate semantic relations. On the other

hand, the vocabulary of Web image labels follow a power-

law distribution (cf. Figure 1(middle))—only a few labels

correspond to many training data while the large number

of the rest labels correspond to little data. If the semantic

relations among labels are ignored, we cannot transfer the

knowledge of learning frequent classes to help learning rare

classes [37].

Inexhaustible Web Data. Nearly 1.83 million images are

uploaded to Flickr everyday1! It is necessary to keep clas-

sifiers up-to-date since: 1) receiving more data will im-

prove the performance of the classifiers; and 2) the seman-

tics of classifiers may evolve when feeding additional ex-

amples [9]. Obviously, it is impractical to retrain our visual

classifiers each time when new samples arrive. Therefore,

we require the open-vocabulary classifiers to be trained in

an online fashion, which will help us to realize a practical

never-ending visual learner [5].

In this paper, we present a novel classification paradigm

towards tackling the above challenges. As shown in Fig-

ure 1(bottom), our key idea is to learn latent representations

for labels and images, and then cast the classifier learning

from label discrimination to image embedding regression.

We call this paradigm Collaborative Learning since we ex-

ploits the joint collaboration among images, labels and vi-

sual features during classifier learning. In fact, this tech-

nique can be considered as a visual extension to the well-

known Collaborative Filtering that is used to learn latent

representations for the sparsely linked users and items in

recommendation systems [26]. Collaborative learning can

effectively transform the extreme sparse labels into compact

latent space, where the semantic relations are also preserved

in terms of similarities in the space (cf. Figure 1(b)). By do-

ing this, we can effectively handle the patterns of missing

labels and the complex label relations.

To address the dynamic nature of the ever-evolving Web

images, we develop a computationally efficient online algo-

rithm to solve the proposed collaborative learning problem.

As illustrated in the colored components in Figure 2, given a

1https://www.flickr.com/photos/franckmichel/6855169886
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Figure 2. The proposed online collaborative learning paradigm.

Colored components are alternatively updated.

new image and its label, our model is updated by two online

steps: 1) update the image and label embeddings given new

images and labels; and 2) update the classifiers given the

updated embeddings. In sharp contrast to the widely-used

SGD, our method has two advantages: 1) it does not re-

quire the tuning of learning rate that has a significant effect

on the performance of SGD, and 2) it can “memorize” the

history data and thus only one pass of training data is suffi-

cient. We apply the proposed method to learn a set of 30K-

vocabulary classifiers from a publicly available 1M Flickr

image dataset with weak labels [34]. Our method achieves

fast online training of 1K images within a second on a GPU

(or 10s on a single CPU). Cross-dataset experiments on sev-

eral multi-labeled benchmarks demonstrate that the learned

open-vocabulary classifiers outperform several state-of-the-

art learning methods. Figure 3 illustrates qualitative images

ranked by several sample classifiers in our vocabulary. In

summary, our contributions are as follows:

• We propose a novel open-vocabulary classification

paradigm named collaborative learning, which tackles

the three challenges of: extreme label sparsity, complex

label relations and inexhaustible Web data.

• We develop a fast online algorithm for collaborative

learning which requires no learning rate and retraining.

• Promising results on cross-datasets demonstrate the high

potential of our 30,456-vocabulary classifiers trained

from 1M Flickr Images.

2. Related Work

Our idea of transforming multi-label classification to

regression is inspired by recent studies on learning vi-

sual models from semantic embeddings [16, 2, 38] that

are fundamentally different from those studies on webly-

supervised learning [12, 4]. As compared to hand-crafted

semantic relations, e.g., semantic hierarchy [10, 37] and

relation graph [11], mapping discrete label space to con-

tinuous semantic space offers a more flexible scalability.

Frome et al. [16] applied Word2Vec model [32] to obtain
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Figure 3. Top 10 images classified by our open-vocabulary classifiers, including various types of semantics such as nouns, adjectives, verbs

and abstract concepts. Note that the images are from NUSWIDE [7] which are different from the training set. We can see that our classifiers

well generalize the visual patterns, e.g., there is no “husky” in NUSWIDE but we can return the most similar “wolf”. This is mainly due to

the effectiveness of learning from semantic embeddings. Best viewed in color and zoom in.

the embeddings of the 1,000 ImageNet classes by learn-

ing from a large Wiki corpus and then fitted a visual CNN

model to the 1,000 embeddings. Therefore, by similar-

ity calculation between class embeddings, the visual model

can be generalized to unseen classes in the corpus. Simi-

lar models with different regression function can be found

in [38]. Compared to our work, their semantic embeddings

were pretrained by an external textual corpus while ours are

jointly learned by collaborating images and visual features.

This joint learning approach can also be found in recent

visual-semantic embedding work [45, 24]. However, they

require training data with well-annotated image-sentence

pairs, while our method can deal with weakly labeled data.

Technically speaking, the work mentioned above and

ours are closely related to Label Space Dimension Re-

duction (LSDR) [21, 42]—a new paradigm in multi-label

classification that can be traced back to the very classic

CCA [20]. LSDR maps the label-space into a new low

dimensional space, trains the classifier in the constructed

space and then projects the predictions back to the original

labels. In experiments, we compare our method with two re-

cent works [46, 48] since they can also be applied in large-

scale settings. Compared to their optimizaiton procedure,

our method needs no sensitive learning rates or subproblem

iterations.

Collaborative filtering via matrix factorization has been

successfully applied in many recommender systems [26],

which inspires our collaborative learning formulation. Our

modeling of sparse label-image annotations is analogous

to their sparse user-item relations. This idea has also

been applied in the latest work on visual learning [17, 14],

where the CNN model is fine-tuned with image embeddings

learned by collaborative filtering. On the other hand, we de-

velop an efficient online algorithm for the proposed collab-

orative learning with the help of matrix factorization. Our

algorithm can be considered as a visual extension for the

recent online dictionary learning methods [31, 15].

3. Formulation

For a typical multi-label classification problem with n

training samples {xi,yi}
n
i=1

, where xi ∈ R
d is the image fea-

ture vector and yi ∈ {0, 1}m is the sparse label vector with

vocabulary size m, we denote the nonzero entries of yi as

the corresponding labels that are “present” or “on” whereas

the zeros are “absent” or “off”. When m is large, traditional

N-way classifiers {fi}
m
i=1

, where fi: R
d → {0, 1}, will be

problematic due to the complex semantic relations among

the sparsely annotated labels.

3.1. Label Space Dimension Reduction

Recall that the proposed collaborative learning is closely

related to Label Space Dimension Reduction (LSDR) [42,

6]—a generic framework that scales up to large label size.

LSDR transforms the original linear classification model

yi ≈ W̃xi into vi ≈ Wxi, where W̃ ∈ R
m×d and W ∈ R

r×d

are the parameters of linear models, vi ∈ R
r (r ≪ m) lies

the reduced label space (cf. Figure 1(bottom)). Formally,

the objective of LSDR can be formulated as a coupled lin-

ear regression problem [48]:

min
U,W

∥∥Y −UTWX
∥∥2
F

+ β
(
‖U‖2F + ‖W‖2F

)
, (1)
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where the columns of Y ∈ R
m×n and X ∈ R

d×n represent

{yi} and {xi}, respectively; U ∈ R
r×m is a reduced classifier

model. LSDR essentially seeks a low-rank decomposition

for W̃, i.e., W̃ = UTW, and the model of the i-th classifier

can be written as w̃i = uT
i W, i.e.,

fi(x) = uT
i Wx. (2)

The assumption of LSDR is that W̃ = {w̃i} are inter-

related. For example, w̃dog should be more similar to w̃puppy

than w̃car. Due to the coupled linear UTWX, solving W and

U requires large matrix inverse2, which is usually solved by

iterative conjugate gradient descent [48]. Therefore, they

are impractical for designing online solutions.

3.2. Collaborative Learning

Instead of hand-crafting the semantic relations between

classifier models W̃, we directly explore the relations from

the extreme sparse labels Y by leveraging collaborative fil-

tering [26], which is especially powerful in learning latent

representations that preserve semantic relations for sparse

user-item matrix like Y. Recall that V = {vi} is the image

embedding in the reduced label space, by forcing V = WX,

Eq. (1) can be reformulated as:

min
U,V,W

∥∥[Y −UTV
∥∥2
F

+ β
(
‖U‖2F + ‖W‖2F

)
, s.t. V = WX.

(3)

By relaxing the equality constraint, our collaborative learn-

ing formulation can be obtained:

min
U,V,W

∥∥Y −UTV
∥∥2
F

+ α ‖V −WX‖2F +

β
(
‖U‖2F + ‖V‖2F + ‖W‖2F

)
.

(4)

To ensure the constraint in Eq. (3) is satisfied, we can en-

force ‖WX−V‖2F = 0 by imposing a very large α. Optimiz-

ing Eq. (3) involves a joint collaboration among the label

embedding U, image embedding V, and the visual features

X. This joint learning is different from other works that

use two-stage learning, including separated semantic em-

bedding and visual-semantic mapping [38, 14, 16].

Note that the original collaborative filtering loss is only

defined for the observed entries, i.e., ‖(Y − UTV) ⊙ I‖2F ,

where I indicates whether Yij is taken into account or not.

However, our method cannot apply this partially collabora-

tive filtering formulation due to the following three reasons.

First, Y is extremely sparse, e.g., for the 1M Flickr dataset

used in this paper, over 99.7% of the enries are missing.

Thus, only modeling the nonzero entries will cause severely

overfitting. Second, most of the missing labels should be

considered as “negative” although there do exist missing

“positive” labels. In fact, some results show that treating

2To see this, denoting w = vec(W), X̃i = [u1 ⊗ xi, ...,um ⊗ xi]
(vec is the column-wise vectorization of a matrix and ⊗ is matrix outer

product), the subproblem can be reformulated into minW
∑

i ‖yi −

X̃T
i vec(W)‖2

2
+ λ2 ‖vec(W)‖2

2
, which requires impractical inversion

of the size md×md.
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dings of the image and the original labels. We can see that due to

severe overfitting, the observed labels receive nearly perfect (close

to 1) predictions; while unobserved but wrong labels receive high

product values.

“missing” as “zero” is much more effective than consider-

ing “missing” as “undefined”, especially for preserving the

latent semantic relations [39, 8, 40]. Finally, the mask I

will cause difficulties in deriving matrix-form solutions and

hence cannot be easily speed-up by parallel computing via

GPU. Figure 4 illustrates some results of the label embed-

ding qualities using different matrix decompositions.

4. Online Algorithm

Eq. (4) can be easily solved via alternating minimiza-

tion that involves solving several quadratic programming

problems. However, in dealing with large-scale and ever-

evolving training data, such batch methods become im-

practical due to the limitation of storage and computational

power.

The batch objective function in Eq. (4) with a batch of

samples can be rewritten as:

Jn(U,W)=
1

n

n∑

i=1

�(U,W;xi,yi)+
β

n

(
‖U‖2F +‖W‖2F

)
, (5)

where �(U,W;xi,yi) = min
v

∥∥yi −UTv
∥∥2
F
+ α ‖Wxi − v‖2F +

β‖v‖2
2
. Note that the regularization for U and W is imposed

on all the training samples, so we have β

n
. This reasonable

since when n → ∞, β

n
→ 0, i.e., the regularization is no

longer necessary due to sufficient training data. In the on-

line optimization setting, we usually focus on minimizing

the expected loss Ex,y[�(U,W);x,y] where the expectation

is taken w.r.t. samples (x,y), instead of directly minimiz-

ing the empirical loss. The reason is that online algorithms

such as SGD can lead to a lower expected loss than a perfect

batch minimization [3].

4.1. Solution

Inspired by recent online matrix factorization algo-

rithms [31, 15], we develop an online stochastic optimiza-

tion algorithm to minimize the empirical loss in Eq. (5),

which can process one training sample at a time. In particu-

lar, at time t, we estimate �(U,W;x,y) by using vt, which is
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Algorithm 1: Online Collaborative Learning

Input : {xi ∈ R
d}ni=1: training image features,

{yi ∈ {0, 1}m}ni=1: training labels,

r: embedding dimension,

α and β: trade-off parameters

Output: W ∈ R
r×d: image embedding model, U ∈ R

r×m:

label embeddings

1 Initialization: randomly initialize U0 and W0, set

A0 = 0r×d, C0 = 0r×m, B−1

0
= α

β
Id×d, D−1

0
= 1

β
Ir×r

2 for t=1 to n do

3 Reveal the sample (xt,yt)
4 Update

vt←
(
Ut−1U

T
t−1

+(α+β)I
)
−1

(αWt−1xt +Ut−1yt);

5 Update Wt ← AtB
−1

t , where At = At−1 + vtx
T
t ,

B−1

t ←B−1

t−1
−B−1

t−1
xtx

T
t B−1

t−1
/(1 + xT

t B−1

t−1
xt);

6 Update Ut ← D−1

t Ct, where Ct = Ct−1 + vty
T
t ,

D−1

t ←D−1

t−1
−D−1

t−1
vtv

T
t D−1

t−1
/
(
1 + vT

t D−1

t−1
vt

)
;

7 end

8 return U = Ut,W = Wt

solved by using last updated Ut−1 and Wt−1. Then, we use

the collected {vi}
t
i=1

to compute Ut and Wt. The detailed

procedure is described as follows.

Update vt with Fixed Wt−1 and Ut−1: We estimate

�(U,W;x,y) in Eq. (5) by using vt obtained by:

vt=argmin
v

∥∥∥yt−UT
t−1v

∥∥∥
2

F
+ α ‖Wt−1xt−v‖2F + β‖v‖22, (6)

which has a closed-form update rule:

vt ←
(
Ut−1U

T
t−1 + (α+ β)I

)
−1

(αWt−1xt +Ut−1yt) . (7)

Note that Ut−1U
T
t−1

is only of size r×r, thus computing the

inverse is fast.

Update Ut and Wt with fixed vt: The loss function for

updating Ut and Wt is:

Gt(U,W) = β

t

(
‖U‖2F +‖W‖2F

)
+

1

t

t∑
i=1

(∥∥yt−UTvt

∥∥2
F

+ α ‖Wxt − vt‖
2
F + β‖vt‖22

)
.

(8)

Minimizing Gt(U,W) can be solved by optimizing W and

U alternatively. With U fixed, Gt(U,W) can be easily cal-

culated by solving equation ∇WGt = 0, which leads to the

following update for Wt:

Wt ← VtX
T
t

(
XtX

T
t + β/αI

)
−1

, (9)

where Vt = [Vt−1,vt] and Xt = [Xt−1,xt]. Since the size

of XtX
T
t is d × d (e.g., d is typically several thousands for

modern visual features), computing the inverse of XtX
T
t

is impractical for online algorithm due to O(d3) computa-

tional cost. Fortunately, note that XtX
T
t = Xt−1X

T
t−1

+xtx
T
t ,

which is a low-rank modification for the original matrix, we

can apply Sherman-Morrison-Woodbury formula to sim-

plify the inverse. Define B0 = β

α
I and Bt = Bt−1+xt−1x

T
t−1

,

we have:

B
−1

t =
(
Bt−1 + xtx

T
t

)
−1

= B
−1

t−1 −
B−1

t−1
xtx

T
t B−1

t−1

1 + xT
t B−1

t−1
xt

. (10)

which only requires matrix-vector multiplication. Let At =

At−1 + vtx
T
t and A0 = 0, then the update rule of Wt in

Eq. (9) can be rewritten as:

Wt ← AtB
−1

t . (11)

Similarly, the updating rule of Ut can be reformulated as:

Ut ← D
−1

t Ct, (12)

where Ct = Ct−1 + vty
T
t , D0 = βI, and

D
−1

t =
(
Dt−1 + vtv

T
t

)
−1

= D
−1

t−1 −
D−1

t−1
vtv

T
t D−1

t−1

1 + vT
t D−1

t−1
vt

. (13)

There are two significant advantages of our method over

SGD: 1) as shown in the update rules discussed above, our

method requires no learning rate; 2) our method explicitly

records the historical information in At, Bt, Ct and Dt.

Thus, our method is expected to achieve better performance

via only one pass of the data, while SGD usually needs sev-

eral passes which are impossible for online cases.

4.2. Algorithmic Analysis

Our online algorithm is summarized in Algorithm 1.

Theorem 1 provides the theoretical guarantee for the con-

vergence of our algorithm, which states that the update se-

ries {(Wt,Ut)} obtained by Algorithm 1 will converge to a

local minimum of the optimization problem with cost func-

tion Jt shown in Eq. (5).

Theorem 1 (Convergence of Algorithm 1)

Assume (xi,yi) is bounded; the solution W ∈ R
r×d and

U ∈ R
r×m obtained by Algorithm 1 is full rank. Then, we

have the following properties with probability one: (a) Gt

converges; (b) Jt −Gt converges to 0; (c) Jt converges; and

(d) (Wt,Ut) converges to a stationary point.

Since the image visual features and the labeling vectors are

always bounded, and we empirically observe that (Wt,Ut)

is always full rank, the assumptions in Theorem 1 hold. The

proof can be done similarly to [31, 15] with additional ef-

forts on showing Gt(W, U) in Eq. (8) is strictly convex and

the update rules in Eq. (7), (11) and (12) satisfy the op-

timality conditions of their corresponding objective func-

tions. Note that Theorem 1 also guarantees the convergence

of the mini-batch extension of Algorithm 1. Suppose the

batch size is b, we slightly abuse the notation Xt as the t-

th mini-batch {xi}
t+b
i=t , and Vt and Yt are defined similarly.

Then, the extended version of Algorithm 1 can be derived

by replacing xt, yt and vt to Xt, Yt and Vt, respectively.

Moreover, we replace At and Bt in Step 5 in Algorithm 1:
{
At ← At−1 + 1

b
VtX

T
t ,

Bt ← B−1

t−1
− 1

b
B−1

t−1
Xt(I+

1

b
XT

t B−1

t−1
Xt)

−1XT
t B−1

t−1
,

(14)
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and replace Ct and Dt in Step 6 in Algorithm 1 by averaging

the observations in a minibatch:
{
Ct ← Ct−1 + 1

b
VtY

T
t ,

Dt ← D−1

t−1
− 1

b
D−1

t−1
Vt(I+

1

b
VT

t D−1

t−1
Vt)

−1VT
t D−1

t−1
.

(15)

Note that the matrix inverse can be computed efficiently

since the corresponding size is only b× b.

We now provide the complexity analysis for the pro-

posed algorithm. In the training stage, despite the out-

put model W and U, the memory consumption to store

At, Bt, Ct and Dt are O(rd), O(d2), O(rm) and O(r2),
respectively. At each training time t, the computational

complexity for Step 4, 5 and 6 are as follows: Step 4 re-

quires O(r3 + r2m), including inverse and matrix multi-

plication; Step 5 requires O(rd2 + rbd + bd2 + b2d + b3)
including O(rd2) for updating Wt, O(rbd) for updating

At and O(bd2 + b2d + b3) for Bt, where b is the mini-

batch size and b = 1 in Algorithm 1; and Step 6 requires

O(mr2 + rbm + b2r + br2 + b3). We can see the mem-

ory and computational compelxity for our algorithm is rela-

tively low—except for several small-size inverses (e.g., r×r

and b × b matrices), our update rules only require matrix

multiplications, which can be easily speed-up by using par-

allel computing such as GPU.

5. Experiments

5.1. Datasets

We used SBU captioned photo dataset [34] as our large-

scale weakly-labeled training data. It contains 1M images

with user-generated descriptive text, which covers noisy and

wide variety of semantics including objects, attributes, ac-

tions, stuff and scenes. The stopwords and words with fre-

quency less than 5 are removed from the text. This gives

rises to a vocabulary of size 3,0456. Since we are in-

terested in examining whether the open-vocabulary classi-

fiers learned with one dataset can generalize to others, we

conducted cross-dataset evaluations, i.e., we test the clas-

sifiers on datasets different from SBU. We used the offi-

cial test split of four multi-labeled visual benchmarks: 1)

NUSWIDE [7], containing 107,859 test images across 81

concepts; 2) CCV [23], containing 4,658 test videos across

20 concepts. Note that some labels of CCV are more com-

plex than those of NUSWIDE (e.g., “MusicPerformance”

vs. “car”); 3) Flickr30K [47], containing 31,783 Flickr

images focusing on events involving people and animals.

Each image is associated with five high-quality sentences

independently written by five native English speakers from

Mechanical Turk. Since this dataset has no train/test split,

we use the whole dataset as test data; 4) COCO [30], con-

taining 40K official validation images with 3-5 high-quality

sentences. We consider Flickr30K and COCO as multi-

labeled datasets, where the labels correspond to the words

in the associated sentences. After removing the words with

frequency less than 5, it resulted in 4,015 and 3,638 labels,

which reside in our 30,456-word open-vocabulary, respec-

tively for Flickr30K and COCO. For images, we used De-

CAF 4,096-d DCNN features [13]. For videos, we sampled

1 frame image with a step size of 5 in each video and used

the mean DeCAF feature as the final video feature. All the

features are normalized by ℓ2-norm.

5.2. Compared Methods and Details

Recall that the two key model parameters for open-

vocabulary classifiers as described in Eq. (2) are: the

visual-to-semantic mapping W and the label embedding

U. We compared the proposed Online Collaborative Learn-

ing (OCL) against 6 state-of-the-art large-scale classifica-

tion methods, which have different definitions of W and U.

1) CNN: a standard 3,0456-way AlexNet [27] with soft-

max classifiers. Such deep architecture has been widely

used in training classifiers recently. Since we used De-

CAF visual features, other methods can be considered as

CNNs of various classification layer but with fixed lower-

level networks. With the last fully-connected layer as fea-

tures, W can be defined as I and U is the softmax model;

2) IncSVM: Incremental SVM [43]. It applies a warm start

strategy to efficiently update the previously trained SVM.

We used the one-vs-all strategy to train 30,456 independent

classifiers. Similar to CNN which has no label space re-

duction, it defines W = I and U as the SVM model; 3)

WSABIE: an online large-scale vocabulary image annota-

tion method [46]. It adopts a max-margin metric learning

method to learn an image mapping W and and label em-

bedding U; 4) DeViSE: a Deep Visual-Semantic Embed-

ding Model [16]. Different from WSABIE, it adopts an

external method—Word2Vec [32] to obtain label embed-

ding U, which are fixed during metric learning. In this

paper, we used the SBU captions as the textual corpus; 5)

NIC: Google Neural Image Caption generator [45]. Based

on [25], we used the visual-semantic mapping as W and

word embeddings as U; 6) LEML: Low-rank Empirical risk

minimization for Multi-Label Learning [48], where U and

W are described in Eq. (1).

The experiments showed that our method is insensitive

to the trade-off parameters α and β. We empirically set

α = 1 and β = 10−4, which can achieve good perfor-

mance. Except for WSABIE and DViSE which have no

released source code, we used the implementations of the

methods suggested by the authors. For WSABIE, our im-

plementation can roughly reproduce the reported results on

NUSWIDE. Since DeViSE has no released textual corpus,

we used the sentences of SBU instead to obtain the label

embeddings by gensim3, and then strictly sticked to the

suggested hyperparameter settings. Except for CNN and

IncSVM, the dimensionality r is a crucial parameter. We

3https://radimrehurek.com/gensim/about.html
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Figure 5. Performance (mAP% or mAP�) on four datasets using various training size. All the results are obtained in an online setting,

i.e., when new data arrive, we do not retrain the model. Therefore, the performance at 100% is obtained by only one pass of the data.

tested r ∈ [100, 300, 500, 1000, 1500] and found that 500

was best for NIC and 1,000 or 1,500 were best for the rest

(1,500 slightly better). Therefore, for efficiency, we chose

r = 500 for NIC and r = 1000 for OCL, WASABIE, De-

ViSE and LEML. All the methods were run 5 times with

different minibatch orders and averaged the results.

The experiments showed that the minibatch extension as

described in Eq. (14) and Eq. (15) improves the resultant

accuracy and the overall training speed and different batch

size b ∈ [64, 128, 256, 512] provided similar results. We

used b = 256 as the default batch size for all the meth-

ods. Table 1 lists the time for training one minibatch of size

256 on a standard desktop 6-core 3.0GHz CPU with 64GB

memory 4. Our method is computationally efficient due to

the fact that each iteration only requires matrix-vector mul-

tiplication and inversion of small-size matrices. Our method

only costs ∼0.3s for a minibatch when running on a Titan Z

GPU with 5K cuda cores and 12GB memory.

Table 1. CPU time of various methods in processing a minibatch

of size 256 with 30,456 labels. For example, ∼ 10× denotes the

CPU time is about 10 times as OCL.
CNN IncSVM WSABIE DeViSE NIC LEML OCL

∼ 70× ∼ 10× ∼ 20× ∼ 20× ∼ 60× ∼ 10× ∼2s

5.3. Results

We first evaluated the performance of our online learned

open-vocabulary classifiers. After collecting the visual-

semantic mapping W and the label embedding U of vari-

ous methods, we computed a score between label and image

as the final classification score. Except for OCL, the other

methods run for several epochs (e.g., scans of training data)

until convergence. Table 2 lists the performance of all the

methods. We can observe that:

1) Except on NUSWIDE, our method considerably out-

4This comparison is coarse since the implementations are different,

e.g., C++ for CNN, IncSVM and LEML, MATLAB for OCL, WASABIE

and DeViSE, Python for NIC. However, the underlying linear algebra cal-

culation of them benefits from Intel hardware acceleration

performs the others. One possible reason is that the 81

classes in NUSWIDE, e.g., “car” and “dog” are relatively

simple, e.g., with large inter- and small intra-class visual

discrepancy. Therefore, N-way classifiers such as CNN can

still perform well. When more complex classes appear such

as “MusicPerformance” in CCV and many more classes in

Flickr30K and COCO, our method becomes superior.

2) Visual-semantic embedding methods like WSABIE, De-

ViSE and NIC generally fail on all the datasets. This shows

that they are ineffective on weakly supervised data.

3) LEML and our method consistently perform well on all

the datasets since they effectively take advantages of explic-

itly learning latent representations from the extreme sparse

label-image matrix.

4) The online version of OCL even outperforms the batch

version (OCL-batch). This finding is consistent with [3],

which states that a perfect minimization of the empirical

loss is not a necessary guarantee to minimize the expected

loss.

Table 2. Performance (mAP%) of various methods on the four

benchmarks. Numbers in the bracket are the number of classes.
Dataset/Method CNN IncSVM WSABIE DeViSE NIC LEML OCL-batch OCL

NUSWIDE (81) 24.3 20.4 9.87 9.51 7.79 23.6 22.7 23.9

CCV (20) 36.2 39.1 13.1 12.1 13.8 37.8 33.9 40.5

Flickr30K (4,015) 1.91 1.85 0.61 0.73 0.93 2.28 1.97 2.48

COCO (3,638) 2.36 2.31 1.22 1.11 1.28 3.40 3.11 3.52

We further evaluated the effectiveness of online learning

of our method. Figure 5 shows the performance of vari-

ous methods by only one pass of the training data (SBU).

Besides similar observations as above, we can see that the

performance of CNN and IncSVM considerably drop by us-

ing only one epoch. We believe that online learning is im-

portant for training Web images due to its large-scale and

ever-evolving nature. The effectiveness of the proposed on-

line learning suggests a practical way for learning open-

vocabulary classifiers. Moreover, we can see that there is

still a large potential when our method is fed with more

training data. That is to say, by continuously learning from

the “free” Web images with weak labels, we can obtain
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Figure 6. Performance (mAP%) of various classifiers vs. the frequency of their semantic labels in training data. For example, performance

at 10% is the mAP% of all the classifiers whose labels fall in the lowest 5% to 10% freqency. We also show the top 10 results of our

classifiers (OCL) at different frequency levels, including label names, AP%, and label freqency. Red lines indicate wrongly classified

images according to the groundtruth. Best viewed in color and zoom in.

more and more accurate classifiers at a large scale.

Now we investigate how well the classifiers perform in

more detail. Figure 6 illustrates the the peformance of var-

ious classifiers at different label frequency levels. We can

see that as compared to conventional datasets of uniformly

distributed data over small label size (e.g., NUSWIDE and

CCV), the performance on large-scale labeled datasets (e.g.,

Flickr30K and COCO) clearly reflects the power-law distri-

bution of real-world label distribution (cf. Figure 1 (mid-

dle)). Therefore, knowledge transfer from “many” classes

to “few” classes is crucial in learning open-vocabulary clas-

sifiers [37]. We can see that our method consistently offers

more accurate classifiers at almost all the frequency levels.

This demonstrate the effectiveness of our method that learns

from semantic embeddings and transfers semantic knowl-

edge. Next, we would like to gain more insights about the

failure cases:

Over generalization. Learning from semantic embed-

dings is not always effective. As shown in Figure 6,

the “glacier” classifier is confused with “bear” and “lake”

on NUSWIDE. The reason is that our model successfully

learns that “glacier” is semantically related to “polar bear”,

“water” and “mountain”. This is meaningful but it confuses

the visual patterns of “glacier”. When the visual cues are

subtle, this confusion becomes more severe. For example,

the “catcher” classifier on COCO is confused with “pitcher”

and “batter”, which are all very close to “baseball”. Never-

theless, we believe that such confusion is more favorable

than the semantically unrelated confusions, e.g., when there

is only 6 training samples of “pacifier”, it can still returns

“baby” images as reasonable wrong results; moreover, as

shown in Figure 3, there is no “husky” in NUSWIDE but

we can return the most similar “wolf”. This demonstrates a

great potential in zero-shot learning.

Word ambiguiation. We can see that “fire” classifier is

confused with “fire truck”, even there are 19,859 training

images. The reason is that we did not adopt any word dis-

ambiguation. However, we believe such failure cases can be

eliminated once we use advanced word sense disambigua-

tion and part-of-speech techniques [36] in the future work.

Subjective labels. Human labeling is usually partially

given in Flickr30K and COCO. For example, even though

the top 10 images of our “yummy” classifier are all deli-

cious food, none of them is labeled by human as “yummy”.

6. Conclusions

This paper presents a novel large-scale classifier learn-

ing paradigm, called Online Collaborative Learning, which

continuously learns many visual classifiers in an online

fashion. The key difference between our method and con-

ventional ones is that we explicitly learn from the discov-

ered semantic embeddings, and hence we can effectively

tackle the extreme sparse and complex semantic relations

in weakly-supervised Web-scale images. We trained 3,0456

classifiers on 1M Flickr images and test them on four visual

benchmarks. Promising results demonstrate the effective-

ness of the proposed approach.
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