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Abstract

The deep two-stream architecture [23] exhibited excel-

lent performance on video based action recognition. The

most computationally expensive step in this approach comes

from the calculation of optical flow which prevents it to be

real-time. This paper accelerates this architecture by re-

placing optical flow with motion vector which can be ob-

tained directly from compressed videos without extra cal-

culation. However, motion vector lacks fine structures, and

contains noisy and inaccurate motion patterns, leading to

the evident degradation of recognition performance. Our

key insight for relieving this problem is that optical flow

and motion vector are inherent correlated. Transferring the

knowledge learned with optical flow CNN to motion vector

CNN can significantly boost the performance of the latter.

Specifically, we introduce three strategies for this, initial-

ization transfer, supervision transfer and their combination.

Experimental results show that our method achieves compa-

rable recognition performance to the state-of-the-art, while

our method can process 390.7 frames per second, which is

27 times faster than the original two-stream method.

1. Introduction

Action recognition aims to enable computer automati-

cally recognize human action in real world video. Recent

years have witnessed extensive research efforts and signifi-

cant research progresses in this area. The existence of large

action datasets and worldwide competitions, like UCF101

[25], HMDB51 [15], and THUMOS14 [11] promote re-

searches in this area. Early approaches in this area uti-

lize a Bag-of-Visual-Words paradigm and its variants [20],

which mainly consists of feature extraction, feature encod-

ing, and classification steps. The performance of these ap-

proaches highly depends on the hand crafted features. Pre-

vious studies show that iDT descriptors and Fisher vec-

tor representation yield superior performance on various
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Figure 1. Comparison of motion vector and optical flow in x and y

components. We can see that motion vector contains lots of noisy

movement information and it is much coarser than optical flow.

datasets [28]. More recently researchers exploit deep learn-

ing for action recognition. One successful example along

this line is the two-stream framework [23] which utilizes

both RGB CNN and optical flow CNN for classification and

achieves the state-of-the-art performance on several large

action datasets. However, two-stream CNNs cannot pro-

cess videos at real-time. The calculation of optical flow is

time consuming which hinders the processing speed of two-

stream CNNs.

This paper aims to develop a real-time action recogni-

tion method with high performance based on the successful

two-stream framework. This is challenging, since optical

flow itself is computationally expensive and cannot be es-

timated in real-time with most current algorithms [1, 4]. It

takes 60 ms [1] to calculate optical flows per frame in K40

GPU, which is far from the requirement of real-time pro-

cessing. To circumvent this difficulty, instead of using opti-

cal flow, this paper leverages motion vector as the input of

CNN, which can be decoded directly from standard video

compressed files with very low computational cost.

Motion vectors represent movement patterns of image

blocks which resemble optical flows in terms of describ-

ing local motions. Early research [12] indicates that motion

vectors include useful information for action recognition.

However, the purpose of motion vector is not to unveil the

temporal relationship of two macro blocks as accurate as

possible, but to exploit temporal redundancy between ad-
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jacent frames to reduce the bit rate in video compression.

Thus motion vector only contains coarse movement patterns

which are usually not precise. Moreover, motion vector

lacks fine motion information of pixels. Directly replac-

ing optical flows with motion vectors will severely degrade

recognition performance of CNN as observed in our exper-

iments.

Here our key insight to improve the recognition perfor-

mance of motion vector CNN is that optical flow and mo-

tion vector share some similar characteristics which allows

us to transfer the fine features/knowledge learned in optical

flow CNN (OF-CNN) to that of motion vectors (MV-CNN).

Both optical flow and motion vector can be extracted at each

frame, and both of them contain motion information of lo-

cal regions. Motion vector contains coarse and inaccurate

motion information while optical flow carries fine and ac-

curate ones. Due to the fine quality of optical flow fields,

OF-CNN can learn elaborate filters and achieve better per-

formance than MV-CNN. These facts inspire us to leverage

the knowledge learned with OF-CNN to enhance MV-CNN.

More specifically, we take OF-CNN learned in optical flow

domain as a teacher net, and teach student MV-CNN in

spirit of the knowledge distillation techniques proposed by

[7]. We call this new CNN as optical flow enhanced mo-

tion vector CNN. Note we only require optical flow in the

training phase, while the testing can be conducted with mo-

tion vector solely. Our experiments demonstrate that this

novel strategy significantly boosts the performance of mo-

tion vectors, and achieves comparable performance with op-

tical flow based action recognition methods [23].

The main contributions of this paper are summarized

as below. Firstly, we propose a real-time CNN based ac-

tion recognition method which achieves comparable perfor-

mance with the state-of-the-art two-stream approach [23].

Secondly, we firstly introduce motion vector as the input of

CNN to avoid the heavy computational cost of optical flow.

Finally, we propose techniques to transfer the knowledge

of optical flow CNN to motion vector CNN, which signifi-

cantly improves the recognition performance.

2. Related Work

Action recognition has been widely studied in recent

years. Early approaches extracted local spatio-time descrip-

tors from input video and encoded these descriptors with

Bag of Visual Words or its variants for classification. Laptev

[17] proposed spatio-time interest points by extending Har-

ris corner into spatio-time dimension. Wang et al. [28] fur-

ther exploited trajectorires to model temporal relationship

of continuous frames. Furthermore, Kviatkovsky et al. [16]

proposed a covariance descriptor to realize online action

recognition. Popular local descriptors for video represen-

tation include HOG [2], HOF [17], MBH [3] and TBC [29].

And feature encoding techniques include hard quantization

[24], VLAD [9], and Fisher Vector [22]. [34, 30, 31] ex-

ploited mid-level representations by proposing MoFAP and

Motionlets.

Recent renaissance of deep neural network remarkably

accelerates the progresses in image classification. Convo-

lutional Neural Networks (CNNs) [18] can learn powerful

features from large scale image datasets, which greatly al-

leviates the difficulty of designing hand-crafted features.

Extensive experiments have demonstrated that CNN can

achieve superior performance on various image and video

classification tasks, e.g. ImageNet object classification [14],

face recognition [26], and event classification [5]. These

successes inspire researchers to extend CNN for video clas-

sification tasks [13, 23, 27]. Karpathy et al. [13] pro-

posed several convolutional neural network (CNN) archi-

tectures based on stacked RGB images for video classifica-

tion. They designed several fusion strategy for RGB flows

to utilize temporal information in stacked RGB frames.

[10, 27] modeled temporal information by designing 3D

filter to directly learn feature from videos. Unlike 2D fil-

ters used in image classification, 3D filters can learn tem-

poral relationship from continuous RGB frames. Simonyan

and Zisserman [23] proposed the two-stream architecture

which exploits two CNNs to model RGB and optical flow

respectively. This method achieved excellent performance

in practice. We will use two-stream network as baseline

of this study. Based on two-stream CNNs, Wang et al.

[33] proposed Trajectory-pooled Deep-Convolutional De-

scriptors to obtains the merits of CNNs and trajectory based

method. Wang et al. [35] further extended two-stream

CNNs to very deep two-stream CNNs and achieve supe-

rior results on several datasets. Recent works also showed

that the temporal structure in video contains discriminative

information. Ng et al.[19] utilized the recurrent LSTM ar-

chitecture to capture temporal structure of actions. Wu et al.

[36] showed that integrating LSTM and two-stream meth-

ods can further improve the recognition performance. The

main focus of this paper is to accelerate action recognition

with deep learning while preserving the high performance.

3. Motion Vector for Deep Action Recognition

Although two-stream CNNs [23] achieve state-of-the-

arts performance in action recognition, it is computational

expensive and cannot be deployed for real-time process.

Two-stream CNNs consist of spatial net and temporal net,

which take RGB image and optical flow as input respec-

tively. In the testing phase, feed forward computation of

CNNs can be conducted in short time (around 30ms) with

GPU implementation. The most computationally expen-

sive step in the original two-stream framework comes from

the calculation of optical flows. With efficient implemen-

tation [12], it takes around 360ms to calculate optical flow

(Farneback’s Flow [4]) for one frame in CPU. Even with
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GPU acceleration [23], the calculation still takes 60 ms

(Brox’s Flow [1]) which cannot meet the requirement of

real-time process. Thus optical flow is the main bottleneck

that prohibits the classical two-stream to be real-time.

Similar to optical flow, motion vector is a two-

dimensional vector used for describing the moving offsets

of local blocks with respect to a reference frame. Motion

vector is widely used in various video compression stan-

dards, thus can be obtained directly in video decoding pro-

cess without extra calculation. These facts make motion

vector an attractive feature for efficient video content anal-

ysis. Actually, the previous work [12] has used motion vec-

tors together with VLAD encoding for action recognition

and achieve good performance. Different from this work

[12], however, we explore motion vector in the deep CNN

framework. Here, the major challenge comes from the fact

that motion vector has low resolution and is imprecise for

describing fine motions. This fact can largely harm the

recognition performance of CNN if we directly train net-

works with motion vectors.

To relieve this problem, we propose several training

methods to enhance motion vector CNN (MV-CNN) for

better recognition performance. Our key insight is that

the knowledge and features learned with optical flow CNN

(OF-CNN) can be helpful for MV-CNN. Thus, we may

leverage OF-CNN as a teacher net to guide the training of

MV-CNN.

3.1. Motion Vector

We begin with a short introduction to motion vectors and

then analyze the difficulty of training motion vector CNNs

(MV-CNNs). Motion vectors are designed for describing

macro blocks movement from one frame to the next, and

are widely used in various video compression standards

such MPEG series, HEVC. Temporal redundancy of two

neighboring frames yields important cues for compressing

video data. Motion vectors exploit temporal relationship in

neighboring frames by recording how macro blocks move in

the next and are one of the essential ingredients in modern

video coding algorithms. Figure 1 illustrates an example of

motion vectors. As motion vectors are already calculated

and encoded in compressed videos, we can obtain them at

very low computational cost.

However, it is challenging to train MV-CNNs with high

performance. This is because that motion vector is designed

for video compression where precious motion information

are not obligatory. Compared with optical flow, motion vec-

tors exhibit coarse structure and may contain noisy and in-

accurate movements. As shown in Figure 1, motion vector

contains macro blocks with different sizes in motion esti-

mation, ranging from 8×8 pixels to 16×16 pixels. Unlike

dense optical flows, which are pixel-level and provide fine

movement information of single pixel, motion vectors only

yield block-level motion information. Thus motion vectors

exhibit much coarser structures than optical flows. Fine de-

tails contained in optical flows can not be delivered in mo-

tion vectors, such as the structure of bow in Archery videos

and the baseball hold by the man’s hand. These information

loss can badly impact the final performance of MV-CNN.

Secondly, noisy information contained in motion vector

poses a barrier for MV-CNN to achieve high performance.

Unlike modern optical flow algorithm [4, 1], motion vectors

simply use three or four comparison steps to find the most

matching block. There are much more noisy patterns con-

tained in motion vectors than optical flow fields as shown

in Figure 1. The inaccurate information and existence of

noisy point are due to the fact that video compression algo-

rithms need to balance between the speed of encoding and

the compression rate. Therefore, motion vectors can only

provide noisy block movement information, which hamper

performance of temporal CNN.

Thirdly, not every frame contains motion vectors. Par-

tial reason for this is that frames are clustered as group

of pictures (GOP). One typical GOP contains three types

of frames: I-frame, P-frame and B-frame. I-frame is an

intra-coded frame encoded based on its own, which means

I-frame contains no movement information. P-frame and

B-frame are acronyms of predicted frame and bi-predictive

frame respectively. They contain movement information.

Clearly, in action recognition with CNNs, empty I-frame

can hinder CNN training process and degrade the perfor-

mance. In this paper, we deal with this problem by sim-

ply replacing I-frame with the motion vectors of previous

frame.

3.2. Real­time Action Recognition Frameworks

Our proposed real-time action recognition framework

contains two components (Figure 2). The first component

is video decoder, which extracts RGB images and motion

vectors from input compressed videos. The second com-

ponent follows the two-stream architecture [23], which can

be decomposed into spatial CNN (RGB-CNN) and tempo-

ral CNN (MV-CNN). The main difference comes from the

fact that we use motion vector as input for temporal CNN

while two-stream uses optical flows. As both RGB images

and motion vectors can be obtained directly from the video

decoding process, our method avoids the computationally

expensive step to estimate optical flow, which is most time-

costly in the original two-stream framework.

In the training phase, we extract RGB images and frames

of motion vectors from video. These images and motion

vectors inherit the labels of original videos. To augment

training samples, we crop image and MV frames in spa-

tial domain. Then we train RGB-CNN and MV-CNN with

these cropped samples, respectively. In the testing phase,

raw images and motion vector frames from testing video

2720



Figure 2. Structure for real-time action recognition system. In spatial and temporal CNN, F stands for kernel size and S means stride step.

O represents for output number and P is pad size.

are fed forward into RGB-CNN and MV-CNN. The action

recognition decision will be made by weighted average of

prediction scores from two CNNs. The weight for spatial

and temporal CNN are set as 1 and 2.

We use the architecture of ClarifaiNet [37] for both

RGB-CNN and MV-CNN, since ClarifaiNet keeps a bal-

ance between efficiency and performance. For spatial net,

dropout layers are added after FC6 and FC7 layer. We fol-

low [23] by setting dropout ratio for spatial CNN to 0.9 to

avoid over-fitting. Spatial net is pre-trained on ImageNet

ILSVRC-2012 datasets. Batch size for spatial and tempo-

ral nets are set as 256. The learning rate is initialized as

10−3 and decreases into 10−4 after 14k steps. The training

procedure stops at 20k iterations.

Our temporal CNN is slightly different with ClarifaiNet

by replacing all ReLU layers with PReLU [6] layers,

which exhibits better performance and quick convergence.

Dropout ratio for temporal net is set to 0.9 and 0.8 after FC6

and FC7 layer respectively. Temporal CNN is trained from

scratch by stacking 10-frame motion vectors as input. Its

learning rate starts from 10−2, and drops to 10−3 at 30k

steps. We then decrease the learning rate to 10−4 after 70k

iterations. The whole learning process stops at 90k steps.

4. Enhanced Motion Vector CNNs

As analyzed above, motion vectors lack fine details and

contain noisy and inaccurate motion patterns, which makes

training motion vector CNN (MV-CNN) more challenging.

We observe that simply replacing optical flow with mo-

tion vector can lead to significant recognition performance

degradation of around 7%. In this section we try to keep

the high speed merit of motion vectors while achieve the

high performance as optical flow. Here our key insight to

circumvent this difficulty is that motion vector and optical

flow are inherent correlated to each other. This fact enables

us to leverage the rich knowledge and fine features learned

in optical flow CNN (OF-CNN) to enhance MV-CNN. This

can be seen as a knowledge transfer problem from optical

flow domain to motion vector domain. More specifically,

we take OF-CNN as a teacher net and use it to teach the

MV-CNN net. It should be noticed that OF-CNN teaches

MV-CNN only in the training phase. Thus we do not need

to calculate optical flows in testing phase, and the system

speed performance will not be affected by the proposed al-

gorithm.

In particular, we propose three strategies to transfer

knowledge from OF-CNN to MV-CNN. To begin with,

several notations are introduced at first. Parameters for

teacher CNN in optical flow domain is denoted by Tp =
{T 1

p , T
2

p , ..., T
n
p }, where n represents the total number of

layers. As for student CNN (MV-CNN), its parameter is

defined as Sp = {S1

p , S
2

p , ..., S
n
p }. In this paper, we as-

sume MV-CNN has the same network structure as OF-

CNN, while the techniques can be easily generalized to

those with different structures.

4.1. Teacher Initialization

Extensive works show that the initialization of network

parameters can largely impact the final performance. Both

optical flow and motion vector describe the motion infor-

mation of local regions, and are inherently correlated. This

fact inspires us to initialize the parameters of MV-CNN as

those of its teacher’s net OF-CNN,

St
p = T t

p, t = 1, ..., n. (1)
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(a) Strategy 1: Teacher Initialization (b) Strategy 2: Supervision Transfer (c) Strategy 3: Combination

Figure 3. Structure of three strategies. Blue dash lines represent copying the initial weights from teacher net to student net. Green lines are

the backward propagation path. Blue full lines mean feed forward paths of teacher flow. Orange lines are feed forward paths of student net.

Then we fine-tune the parameters of MV-CNN with the

motion vector samples until convergence. This process can

also be seen as pre-training MV-CNN with the fine opti-

cal flow samples, which transfers the knowledge learned by

teacher net to student net directly.

For implementation details, the learning rate is initiated

from 10−3, and then drops to 10−4 and 10−5 at 30k and 70k

steps respectively. The training stops at 90k iterations.

4.2. Supervision Transfer

Initialization of MV-CNN with OF-CNN’s parameters is

simple, but the initial knowledge transferred to MV-CNN

may be lost during the fine-tuning process with motion vec-

tor samples. To relieve this problem, we introduce the su-

pervision transferring approach which takes account of ad-

ditional supervision from the teacher net in the training pro-

cess of MV-CNN. OF-CNN can extract effective represen-

tation from input frame. Here we take the representation

obtained in the FC layer of OF-CNN as a new supervision

for training MV-CNN.

This technique is in spirit similar to Hinton et al.’s recent

work on knowledge distillation [7]. The aim of knowledge

distillation is to compress a cumbersome network (teacher)

into a small network (student) which achieves similar per-

formance as the cumbersome one. The cumbersome net-

work and small network have the same input. Different

from this work, in our problems, the teacher (OF-CNN) and

the student (MV-CNN) take different types of input, i.e. op-

tical flow vs. motion vector, but have the same network

structure. Moreover, our objective is not to compress the

student to a small net, but to enhance the performance of

the student with low quality input.

Formally, for a given frame I with optical flow feature

o and motion vector v , we calculate the output of the last

FC layer of teacher CNN as: Tn(o) = softmax(Tn−1(o)),
where ‘softmax’ function is used to transform the feature

Tn−1 to a probability score of multiple classes. Similarly,

the output of student’s last layer is defined as: Sn(v) =

softmax(Sn−1(v)).
To transfer knowledge from teacher to student, we hope

Sn(v) can approximate Tn(o) as closely as possible. We

introduce a teacher supervision loss function to mini-

mize the difference between Sn(v) and Tn(o). The cross-

entropy loss is used to measure the difference. Following

[7], we introduce a temperature Temp to soften the next-

to-last layer output. The softmax output of teacher net is

softened as PT = softmax(Tn−1/Temp), Student net’s

softmax output for second target is similarly defined as:

PS = softmax(Sn−1/Temp), Then the teacher supervision

loss (TSL) with cross-entropy function is defined by :

LTSL = −

k∑

i=1

PT (i) logPS(i), (2)

where k is the dimension of the student’s output (same as

that of the teacher).

In addition to the teacher supervision loss, we also min-

imize the cross entropy between student’s output and the

ground truth Q, which is given by,

LGT = −
∑

i

✶[Q = i] logSn(i), (3)

where Sn and Q represent the hard output distribution vec-

tors and the ground truth label respectively.

Our final loss function combines the teacher supervision

loss (Eq.2) and the ground truth loss (Eq.3):

L = LTSL + w × LGT (4)

where w is a weight to balance these two terms. Thus,

the student MV-CNN can receive supervision signal from

both the teacher OF-CNN and the ground truth. It should

be noted that in supervision transfer, the weights of teacher

model are frozen. In this way, the knowledge is transferred

from the teacher net to the student one.

For implementation details, we set the initial learning

rate as 10−3. We decay the learning rate to 10−4 at 50k

and 10−5 at 70k steps. The whole training procedure stops

at 90k iterations.
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Temporal CNN Accuracy

OF-CNN [23] 81.2%

MV-CNN trained from scratch 74.4%

EMV-CNN with ST 77.5%

EMV-CNN with TI 78.2%

EMV-CNN with ST+TI 79.3%

Table 1. Comparison of temporal CNN performance for Opti-

cal Flow based approach and Motion vector based Method on

UCF101 (Split1). ST stands for Supervision Transfer and TI

means Teacher Initialization.

4.3. Combination

In the third strategy, we combine the initialization with

teacher’s parameters and supervision transfer to further en-

hance the performance of student’s net. We first train the

teacher OF-CNN with optical flow fields. Then we initial-

ize the student MV-CNN with OF-CNN’s parameters. After

this, we train the student net with supervision signal from

both the teacher and the ground truth (Eq. 4). In this way,

the student net not only inherits teacher’s parameters from

initialization, but also mimics teacher net’s prediction dur-

ing fine tuning procedure. This allows us to combine the

merits of two previous strategies and further boost the gen-

eralization ability of student MV-CNN.

5. Experiment

In this section we first describe the evaluation datasets.

Then we report and analyze the experimental results.

5.1. Datasets and Evaluation Protocol

The evaluation is conducted on two challenging datasets:

UCF101 [25] and THUMOS14 [11]. UCF101 contains

13,320 videos. The datasets has three splits for training and

testing. We follow the standard setup and report average

accuracy over three splits on this datasets.

THUMOS14 is a dataset for action recognition chal-

lenge 2014. It contains 13,320 videos for training, 1,010

videos for validation, and 1,574 videos for testing. Unlike

UCF101, THUMOS14 uses untrimmed videos for valida-

tion and testing. Lots of irrelevant frames make the train-

ing and testing of CNNs more difficult. We use training

and validation datasets to train our CNNs. Official evalu-

ation tool is utilized to evaluate our system performance.

According to the standard setup of this dataset, we report

the mean Average Precision (mAP) on testing dataset. As

videos in THUMOS14 are untrimmed and have large num-

ber of frames, we conduct CNN testing at every 20 frames.

For experiments on both datasets, the speed evaluation is

measured as frames per seconds (fps) on a single-core CPU

(E5-2640 v3) and a K40 GPU.

CNN MAP

RGB CNN 57.7%

OF-CNN 55.3%

RGB CNN+OF-CNN 66.1%

MV-CNN 29.8%

EMV-CNN 41.6%

RGB CNN+MV-CNN 58.7%

RGB CNN+EMV-CNN 61.5%

Table 2. Performance of EMV-CNNs and MV-CNNs on THU-

MOS 14 dataset. We also report the results of two-stream CNNs.

MV CNN Total

Dataset (fps) (fps) (fps)

UCF101 735.3 833.3 390.7

THUMOS14 781.3 833.3 403.2

Table 3. Speed of each components in Real-time Action Recogni-

tion System. MV stands for motion vector extraction, while CNN

means convolutional neural network processing.

Spatial Brox’s Flow[1] MV

Dataset Resolution (GPU) (fps) (CPU) (fps)

UCF101 320× 240 16.7 735.3

THUMOS14 320× 180 17.5 781.3

Table 4. Comparison of speed for optical flow fields and motion

vectors. MV means motion vector.

5.2. Implementation Details

In order to learn robust features from CNNs, we use three

data augmentation strategies. Firstly, we randomly crop a

224×224 patch from image set. Random cropping can pro-

vide more training data for CNNs to learn better features.

Secondly, we horizontally flip cropped patches by random.

Furthermore, following [35]1, we use a scale jittering strat-

egy to help CNN to learn robust features. We crop a patch

from dataset on three scales 1, 0.875, and 0.75, which yield

patches of size 224×224, 196×196 and 168×168 respec-

tively. The patches are then resized to 224 × 224 after this

multi-scale strategy. In testing phase, we crop one 224×224
patch from the center of testing image. No data augmenta-

tion strategy is used in evaluation phase.

Our teacher CNN is trained on TV-L1 optical flow [21]

that achieves 81.6% on UCF101 Split1, which is compara-

ble with the performance in the original paper 81.2% [23].

5.3. Parameter Sensitivity

We first analyze the parameter sensitivity. There are

two important parameters in our real-time action recogni-

tion system: temperature Temp for Supervision Transfer

1https://github.com/yjxiong/caffe
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and weight w for soft target. Following [7] we set soft tar-

get weight w = Temp2 to balance the gradients of soft tar-

get. We test three different temperature settings on UCF101

split1 by setting Temp to 1, 2 and 3. The corresponding soft

target weight w is set as 1, 4 and 9. Accuracy grows up from

79.2% to 79.3% from temperature 1 to 2 and goes down to

78.9% at temperature 3. We can see that the recognition re-

sults of different temperatures are very close, which implies

that our method is robust to temperature. According to this

study, we set Temp = 2 in the following experiments.

5.4. Evaluation of MV­CNNs and EMV­CNNs

In this subsection, we compare and analyze different

training strategies for motion vector CNN (MV-CNN) on

UCF101 Split1 and THUMOS14. The result are shown in

Table 1 and Table 2. As [23] did not provide results on

THUMOS14, we re-implement two-stream CNNs on this

dataset.

First, from these results, we can conclude that directly

using motion vector to replace optical flow degrades sys-

tem’s performance. Compared with OF-CNN, MV-CNN

trained from scratch degrades performance by 7% and 25%,

which achieves 74.4% and 29.8% on UCF101 Split1 and

THUMOS14 respectively. It indicates that coarse struc-

ture and imprecise movement information in motion vec-

tor harm the performance of CNNs. The performance on

THUMOS14 is particularly large, as validation and testing

videos in THUMOS14 are untrimmed and labels for a large

part of frames are not correct. Furthermore, lots of shots

shift in videos aggravate the difficulties of training MV-

CNN on THUMOS14 dataset.

Second, comparing Enhanced Motion Vector CNN

(EMV-CNN) and MV-CNN, we observe a performance im-

provement of 4.9% and 12% on UCF101 Split1 and THU-

MOS14 respectively. This indicates that our newly de-

signed method for training EMV-CNN is effective and can

improve the generalization ability of MV-CNNs.

Finally, combined with spatial CNN, EMV-CNN still

outperforms MV-based CNN, which indicates that the

knowledge of EMV-CNN can be more complementary to

spatial CNN. In addition, combining EMV-based with spa-

tial CNN exhibits only a minor performance loss compared

with OF-based CNN on UCF101. Specifically, we study the

effect of our proposed transferring techniques as follows.

Teacher initialization technique can provide an improve-

ment of 3.8%. From this result, we can see, similar to the

study in image classification [14, 23], teacher initialization

on OF-CNN can benefit the MV-CNN by providing a good

initial point to train. Supervision transfer strategy can pro-

vide 3.1% performance improvement on UCF101 Split1. It

shows that knowledge provided by OF-CNN during super-

vision transfer process in training phase can be helpful to

MV-CNN. Combing supervision transfer and teacher ini-

UCF101(Split1) THUMOS14

EMV+RGB-CNN (fps) (fps)

5 crops+mirror 88.0 89.0

1 crop 390.7 403.2

Table 5. Speed comparison for 1 crop and 5 crops+mirror in

UCF101 and THUMOS14. EMV+RGB-CNN stands for two-

stream based CNN with EMV-CNN and RGB-CNN.

EMV+RGB-CNN UCF101(Split1) THUMOS14

5 crops+mirror 86.6% 61.2%

1 crop 85.7% 61.5%

Table 6. Comparison of performance for 1 crop and 5 crops+mirror

in UCF101 and THUMOS14. EMV+RGB-CNN stands for two-

stream based CNN with EMV-CNN and RGB-CNN.

Accuracy FPS

MV+FV (CPU) (re-implement) [12] 78.5% 132.8

C3D (1 net) (GPU) [27] 82.3% 313.9

C3D (3 net) (GPU) [27] 85.2% -

iDT+FV (CPU) [28] 85.9% 2.1

Two-stream CNNs (GPU) [23] 88.0% 14.3

EMV+RGB-CNN 86.4% 390.7

Table 7. Comparison of speed and performance with state-of-the-

art on UCF101

tialization strategy can further boost the performance. As

indicated in [7], supervision transfer can be used to regular-

ize MV-CNN from over-fitting. Supervision strategy uti-

lizes the soft codes produced by OF-CNNs during train-

ing process. These codes are further softened by divid-

ing Temp. Unlike hard ground truth labels, these soft tar-

gets encode more rich information and guide the training

of EMV-CNN, contributing to improve the generalization

ability of EMV-CNNs.

5.5. Speed Evaluation

In this subsection, we analyze the speed of different com-

ponents in our action recognition approach. In our imple-

mentation, We use CPU to extract motion vector while use

GPU to conduct the feed forward process of CNN. It should

be noticed that our system process a volume of 10 frames of

MV and 1 frame of RGB together. Our speed is measured

based on frames instead of volume.

We first compare the speed performance of 1 crop with 5

crops+mirror on UCF101 and THUMOS14 in Table 5 and

Table 6. We can observe that 1 crop only achieves a slight

performance degradation than 5 crops+mirror, while 1 crop

is 4 times faster than the latter.

Next, we evaluate speed performance of each component

on UCF101 datasets and THUMOS14 datasets. The spatial

resolution of video in UCF101 dataset is 320 × 240, while
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Figure 4. Samples of filters for Conv1 layer. Left to right: MV-

CNN, EMV-CNN and OF-CNN.

for video in THUMOS14, its resolution is 320 × 180. As

shown in Table 3, our action recognition system achieves

390.7 fps and 403.2 fps on UCF101 and THUMOS14 re-

spectively, which is one order faster than real-time require-

ment (25 fps).

Finally, we compare the efficiency of extracting motion

vectors and optical flow in Table 4. Motion vector extrac-

tion is almost 30 times faster than real-time requirement.

Although the spatial resolutions for videos in UCF101 and

THUMOS14 are different, the time consumption for ex-

traction of motion vectors are similar. The estimation of

motion vector in CPU is 44 times faster than calculating

Brox’s flow[1] with GPU. The calculation of optical flows

poses the main bottleneck in boost the speed of classical

two-stream framework, which prohibits it to be conducted

in real-time.

5.6. Comparison with the State of the Art

In this section, we compare our method with several

state-of-the-art methods. Since the I/O is related to hard-

ware and operating system, we report computational time

cost without I/O. Unlike those using Support Vector Ma-

chine (SVM) to perform classification [27, 28], our action

recognition approach has an end-to-end structure that com-

bines feature extraction and classification together.

We first compare speed and accuracy performance on

UCF101 (3 Splits) dataset. Results are given in Table 7.

Our method is 3 times and 180 times faster than motion

vector + fisher vector (MV FV) and iDT+FV respectively.

It should be noted that this may not be a fair comparison

since iDT and FV are implemented in CPU. At the same

time, our method achieves higher accuracy than these meth-

ods. For MV FV, we use the public code offered by [12].

Although iDT used Farneback optical flows [4] which pro-

vides more precise movement information than motion vec-

tor, our methods still obtain higher performance than iDT.

We also make comparison with deep learning methods,

namely two-stream CNNs and C3D. Our method achieves

390.7 fps on UCF101 and is the fastest among all methods

compared (Table 7). And our recognition accuracy is 4.1%

and 1.2% higher than C3D (1 net) and C3D (3 net). As for

two-stream CNNs, our method achieves comparable results

but ours is 27 times faster than them.

Finally, we compare our speed and mean average pre-

cision with [8] on THUMOS14 dataset (Table 8). Our

Accuracy FPS

Objects (GPU) [8] 44.7% -

iDT+CNN (CPU+GPU) [32] 62.0% < 2.38
Motion (iDT+FV) (CPU) [8] 63.1% 2.38

Objects+Motion (CPU+GPU) [8] 71.6% < 2.38
EMV+RGB-CNN 61.5% 403.2

Table 8. Comparison of speed and performance with state-of-the-

art on THUMOS14

method achieves better performance than Objects for 16.8%

and obtains comparable performance with Motion (iDT)

and iDT+CNN, but exhibits worse performance than Ob-

jects+Motion. However, as Objects+Motion is built on the

iDT features, our method is 200 times faster than it.

5.7. Visualization of Filters

In order to further explore the effectiveness of EMV-

CNN, we visualize filters of the first layer (Conv1) for

MV-CNN, EMV-CNN and OF-CNN in Figure 4. It can

be clearly noticed that filters of MV-CNN contain coarse

and noisy information, which may be ascribed to the fact

that motion vector lacks fine grained information as shown

in Figure 1. Compared with filters of MV-CNN, EMV-

CNN can obtain detailed information, which shows that

our proposed learning scheme successfully transfer knowl-

edge from OF-CNN to EMV-CNN. Filters of EMV-CNN

are cleaner than MV-CNN and have fine structures, con-

tributing to improve recognition performance.

6. Conclusions

In this paper we have proposed a motion vector CNN

to accelerate the speed of deep learning methods for action

recognition. Motion vectors can be extracted directly in

video decoding process without extra computation. How-

ever, motion vectors lacks fine and accurate motion infor-

mation which degrades recognition performance. To relieve

this problem, we developed three knowledge transfer tech-

niques to adapt the models of optical flow CNN to motion

vector CNN, which significantly boost the recognition per-

formance of the latter. Our method achieves 391 fps and 403

fps with high performance on UCF101 and THUMOS14 re-

spectively.

7. Acknowledgement

This work is partly supported by National Natural Sci-

ence Foundation of China (61472410, 61472281), Guang-

dong Innovative Research Program (2015B010129013,

2014B050505017), Shenzhen Research Program

(KQCX2015033117354153, JSGG20150925164740726,

CXZZ20150930104115529) and the Program for Professor

of Special Appointment (Eastern Scholar) at the Shanghai

Institutions of Higher Learning (GZ2015005).

2725



References

[1] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High ac-

curacy optical flow estimation based on a theory for warping.

In ECCV’14, pages 25–36, 2004.

[2] N. Dalal and B. Triggs. Histograms of oriented gradients for

human detection. In CVPR’05, pages 886–893, 2005.

[3] N. Dalal, B. Triggs, and C. Schmid. Human detection using

oriented histograms of flow and appearance. In ECCV’06,

pages 428–441. 2006.
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