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Abstract

The complex compositional structure of language makes

problems at the intersection of vision and language chal-

lenging. But language also provides a strong prior that can

result in good superficial performance, without the under-

lying models truly understanding the visual content. This

can hinder progress in pushing state of art in the computer

vision aspects of multi-modal AI.

In this paper, we address binary Visual Question Answer-

ing (VQA) on abstract scenes. We formulate this problem

as visual verification of concepts inquired in the questions.

Specifically, we convert the question to a tuple that con-

cisely summarizes the visual concept to be detected in the

image. If the concept can be found in the image, the an-

swer to the question is “yes”, and otherwise “no”. Abstract

scenes play two roles (1) They allow us to focus on the high-

level semantics of the VQA task as opposed to the low-level

recognition problems, and perhaps more importantly, (2)

They provide us the modality to balance the dataset such

that language priors are controlled, and the role of vision

is essential. In particular, we collect fine-grained pairs of

scenes for every question, such that the answer to the ques-

tion is “yes” for one scene, and “no” for the other for the

exact same question. Indeed, language priors alone do not

perform better than chance on our balanced dataset. More-

over, our proposed approach matches the performance of a

state-of-the-art VQA approach on the unbalanced dataset,

and outperforms it on the balanced dataset.

1. Introduction

Problems at the intersection of vision and language are in-

creasingly drawing more attention. We are witnessing a

move beyond the classical “bucketed” recognition paradigm

(e.g. label every image with categories) to rich compo-

sitional tasks involving natural language. Some of these

problems concerning vision and language have proven sur-

prisingly easy to take on with relatively simple techniques.

Consider image captioning, which involves generating a
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Figure 1: We address the problem of answering binary

questions about images. To eliminate strong language pri-

ors that shadow the role of detailed visual understanding in

visual question answering (VQA), we use abstract scenes to

collect a balanced dataset containing pairs of complemen-

tary scenes: the two scenes have opposite answers to the

same question, while being visually as similar as possible.

We view the task of answering binary questions as a visual

verification task: we convert the question into a tuple that

concisely summarizes the visual concept, which if present,

result in the answer of the question being “yes”, and other-

wise “no”. Our approach attends to relevant portions of the

image when verifying the presence of the visual concept.

sentence describing a given image [12, 6, 10, 26, 21, 19, 35].

It is possible to get state of the art results with a relatively

coarse understanding of the image by exploiting the statis-

tical biases (inherent in the world and in particular datasets)

that are captured in standard language models.

For example, giraffes are usually found in grass next to a

tree in the MS COCO dataset images [22]. Because of this,

the generic caption “A giraffe is standing in grass next to a

tree” is applicable to most images containing a giraffe in the

dataset. The machine can confidently generate this caption

just by recognizing a “giraffe”, without recognizing “grass”,

or “tree”, or “standing”, or “next to”. In general, captions

borrowed from nearest neighbor images result in a surpris-

ingly high performance [8].
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A more recent task involving vision and language is Visual

Question Answering (VQA). A VQA system takes an im-

age and a free-form natural language question about the im-

age as input (e.g. “What is the color of the girl’s shoes?”,

or “Is the boy jumping?”), and produces a natural language

answer as its output (e.g. “blue”, or “yes”). Unlike image

captioning, answering questions requires the ability to iden-

tify specific details in the image (e.g. color of an object, or

activity of a person). There are several recently proposed

VQA datasets on real images e.g. [2, 24, 25, 14, 29], as

well as on abstract scenes [2]. The latter allows research on

semantic reasoning without first requiring the development

of highly accurate detectors.

Even in this task, however, a simple prior can give the right

answer a surprisingly high percentage of the time. For ex-

ample, in the VQA dataset (with images from MS COCO)

[2], the most common sport answer “tennis” is the correct

answer for 41% of the questions starting with “What sport

is”. Similarly, “white” alone is the correct answer for 23%

of the questions starting with “What color are the”. Al-

most half of all questions in the VQA datatset [2] can be

answered correctly by a neural network that ignores the im-

age completely and uses the question alone, relying on sys-

tematic regularities in the kinds of questions that are asked

and what answers they tend to have.

This is true even for binary questions, where the answer

is either “yes” or “no”, such as “Is the man asleep?” or

“Is there a cat in the room?”. One would think that with-

out considering the image evidence, both answers would be

equally plausible. Turns out, one can answer 68% of binary

questions correctly by simply answering “yes” to all binary

questions. Moreover, a language-only neural network can

correctly answer more than 78% of the binary questions,

without even looking at the image.

As also discussed in [32], such dataset bias effects can give

a false impression that a system is making progress towards

the goal of understanding images correctly. Ideally, we want

language to pose challenges involving the visual under-

standing of rich semantics while not allowing the systems

to get away with ignoring the visual information. Similar to

the ideas in [15], we propose to unbias the dataset, which

would force machine learning algorithms to exploit image

information in order to improve their scores instead of sim-

ply learning to game the test. This involves not only having

an equal number of “yes” and “no” answers on the test as

a whole, but also ensuring that each particular question is

unbiased, so that the system has no reason to believe, with-

out bringing in visual information, that a question should be

answered with “yes” or “no.”

In this paper, we focus on binary (yes/no) questions for two

reasons. First, unlike open-ended questions (Q: “what is

the man playing?” A: “tennis”), in binary questions (Q: “is

the man playing tennis?”) all relevant semantic informa-

tion (including “tennis”) is available in the question alone.

Thus, answering binary questions can be naturally viewed

as visual verification of concepts inquired in the question

(“man playing tennis”). Second, binary questions are easier

to evaluate than open-ended questions.

Although our approach of visual verification is applicable

to real images (more discussion in Sec. 6), we choose to

use abstract images [2, 3, 39, 38, 40] as a test bed because

abstract scene images allow us to focus on high-level se-

mantic reasoning. They also allow us to balance the dataset

by making changes to the images, something that would be

difficult or impossible with real images.

Our main contributions are as follows: (1) We balance

the existing abstract binary VQA dataset [2] by creating

complementary scenes so that all questions1 have an an-

swer of “yes” for one scene and an answer of “no” for

another closely related scene. We show that a language-

only approach performs significantly worse on this balanced

dataset. (2) We propose an approach that summarizes the

content of the question in a tuple form which concisely de-

scribes the visual concept whose existence is to be verified

in the scene. We answer the question by verifying if the tu-

ple is depicted in the scene or not (See Fig. 1). We present

results when training and testing on the balanced and unbal-

anced datasets.

2. Related work

Visual question answering. Recent work has proposed

several datasets and methods to promote research on the

task of visual question answering [15, 4, 33, 24, 2, 25, 14,

29], ranging from constrained settings [15, 24, 29] to free-

form natural language questions and answers [4, 33, 2, 25,

14]. For example, [15] proposes a system to generate binary

questions from templates using a fixed vocabulary of ob-

jects, attributes, and relationships between objects. [33] has

studied joint parsing of videos and corresponding text to an-

swer queries about videos. [24] studied VQA with synthetic

(templated) and human-generated questions, both with the

restriction of answers being limited to 16 colors and 894

object categories or sets of categories. A number of recent

papers [2, 14, 25, 29] proposed neural network models for

VQA composing LSTMs (for questions) and CNNs (for im-

ages). [2] introduced a large-scale dataset for free-form and

open-ended VQA, along with several natural VQA models.

[4] uses crowdsourced workers to answer questions about

visual content asked by visually-impaired users.

Data augmentation. Classical data augmentation tech-

niques (such as mirroring, cropping) have been widely used

in past few years [18, 31] to provide high capacity models

additional data to learn from. These transformations are de-

signed to not change the label distribution in the training

1nearly all. About 6% of test questions do not lend themselves to this

modification. See Sec. 3 for details.
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data. In this work, we “augment” our dataset to explicitly

change the label distribution. We use human subjects to col-

lect additional scenes such that every question in our dataset

has equal number of ‘yes’ and ‘no’ answers (to the extent

possible). In that sense, our approach can be viewed as se-

mantic data augmentation. Several classification datasets,

such as ImageNet [7] try to be balanced. But this is infeasi-

ble for the VQA task on real images because of the heavy-

tail of concepts captured by language. This motivates our

use of abstract scenes.

Visual abstraction + language. A number of works have

used abstract scenes to focus on high-level semantics and

study its connection with other modalities such as lan-

guage [23, 16, 38, 40, 39, 3, 13, 34], including automat-

ically describing abstract scenes [16], generating abstract

scenes that depict a description [39], capturing common

sense [13, 23, 34], learning models of fine-grained interac-

tions between people [3], and learning the semantic impor-

tance of visual features [38, 40]. Some of these works have

also taken advantage of visual abstraction to “control” the

distribution of data, for example, [3] collects equal number

of examples for each verb/preposition combinations, and

[38] have multiple scenes that depict the exact same sen-

tence/caption. Similarly, we balance the dataset by making

sure that each question in the dataset has a scene for “yes”

and another scene for “no” to the extent possible.

Visual verification. [30, 34] reason about the plausibility of

commonsense assertions (men, ride, elephants) by gather-

ing visual evidence for them in real images [30] and abstract

scenes [34]. In contrast, we focus on visually-grounded

image-specific questions like “Is the man in the picture rid-

ing an elephant?”. [39] also reasons about relations between

two objects, and maps these relations to visual features.

They take as input a description and automatically generate

a scene that is compatible with all tuples in the description

and is a plausible scene. In our case, we have a single tuple

(summary of the question) and we want to verify if it exists

in a given image or not, for the goal of answering a free

form “yes/no” question about the image.

Visual attention involves searching and attending to rele-

vant image regions. [20, 36] uses alignment/attention for

image caption generation. Input is just an image, and

they try to describe the entire image and local regions with

phrases and sentences. We address a different problem: vi-

sual question answering. We are given an image and text (a

question) as input. We want to align parts of the question to

regions in the image so as to extract detailed visual features

of the regions of the image being referred to in the text.

3. Datasets

We first describe the VQA dataset for abstract scenes col-

lected by [2]. We then describe how we balance this dataset

by collecting more scenes.

Figure 2: A snapshot of our Amazon Mechanical Turk

(AMT) interface to collect complementary scenes.

3.1. VQA dataset on abstract scenes

Abstract library. The clipart library contains 20 “paper-

doll” human models [3] spanning genders, races, and ages

with 8 different expressions. The limbs are adjustable to al-

low for continuous pose variations. In addition to humans,

the library contains 99 objects and 31 animals in various

poses. The library contains two different scene types – “in-

door” scenes, containing only indoor objects, e.g. desk, ta-

ble, etc., and “outdoor” scenes, which contain outdoor ob-

jects, e.g. pond, tree, etc. The two different scene types are

indicated by different background in the scenes.

VQA abstract dataset consists of 50K abstract scenes,

with 3 questions for each scene, with train/val/test splits of

20K/10K/20K scenes respectively. This results in total 60K

train, 30K validation and 60K test questions. Each ques-

tion has 10 human-provided ground-truth answers. Ques-

tions are categorized into 3 types – ‘yes/no’, ‘number’, and

‘other’. In this paper, we focus on ‘yes/no’ questions, which

gives us a dataset of 36,717 questions- 24,396 train and

12,321 val questions. Since test annotations are not publicly

available, it is not possible to find the number of ‘yes/no’

type questions in test set. We use the binary val questions

as our unbalanced test set, a random subset of 2,439 train-

ing questions as our unbalanced validation set, and rest of

the training questions as our unbalanced train set.

3.2. Balancing abstract binary VQA dataset

We balance the abstract VQA dataset by posing a counter-

factual task – given an abstract scene and a binary question,

what would the scene have looked like if the answer to the

binary question was different? While posing such coun-

terfactual questions and obtaining corresponding scenes is

nearly impossible in real images, abstract scenes allow us

to perform such reasoning.

We conducted the following Mechanical Turk study – given
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an abstract scene, and an associated question from the VQA

dataset, we ask subjects to modify the clipart scene such that

the answer changes from ‘yes’ to ‘no’ (or ‘no’ to ‘yes’). For

example, for the question “Is a cloud covering the sun?”, a

worker can move the ‘sun’ into open space in the scene to

change the answer from ‘yes’ to ‘no’. A snapshot of the

interface is shown in Fig. 2.

We ask the workers to modify the scene as little as possible.

We encourage minimal changes because these complemen-

tary scenes can be thought of as hard-negatives/positives to

learn subtle differences in the visual signal that are relevant

to answering questions. This signal can be used as addi-

tional supervision for training models such as [37, 9, 28, 5]

that can leverage explanations provided by the annotator

in addition to labels. Our complementary scenes can also

be thought of as analogous to good pedagogical techniques

where a learner is taught concepts by changing one thing at

a time via contrasting (e.g., one fish vs. two fish, red ball

vs. blue ball, etc.). Full instructions on our interface can be

found in supp. material.

Note that there are some (scene, question) pairs that do not

lend themselves to easy creation of complementary scenes

with the existing clipart library. For instance, if the question

is “Is it raining?”, and the answer needs to be changed from

‘no’ to ‘yes’, it is not possible to create ‘rain’ in the current

clipart library. Fortunately, these scenes make up a small

minority of the dataset (e.g., 6% of the test set).

To keep the balanced train and test set comparable to un-

balanced ones in terms of size, we collect complementary

scenes for ∼half of the respective splits – 11,760 from train

and 6,000 from test set. Since Turkers indicated that 2,137

scenes could not be modified to change the answer because

of limited clipart library, we do not have complementary

scenes for them. In total, we have 10,295 complementary

scenes for the train set and 5,328 complementary scenes for

test, resulting in balanced train set containing 22,055 sam-

ples and balanced test set containing 11,328 samples. We

further split a balanced set of 2,202 samples from balanced

train set for validation purposes. Examples from our bal-

anced dataset are shown in Fig. 1 and Fig. 4.

We use the publicly released VQA evaluation script in our

experiments. The evaluation metric uses 10 ground-truth

answers for each question to compute performance. To be

consistent with the VQA dataset, we collected 10 answers

from human subjects using AMT for all complementary

scenes in the balanced test set.

We compare the degree of balance in our unbalanced and

balanced datasets. We find that 92.65% of the (scene, ques-

tion) pairs in the unbalanced test set do not have a corre-

sponding complementary scene (where the answer to the

same question is the opposite). Only 20.48% of our bal-

anced test set does not have corresponding complementary

scenes. Note that our dataset is not 100% balanced either

because there are some scenes which could not be modified

to flip the answers to the questions (5.93%) or because the

most common answer out of 10 human annotated answers

for some questions does not match with the intended answer

of the person creating the complementary scene (14.55%)

either due to inter-human disagreement, or if the worker did

not succeed in creating a good scene.

4. Approach

We present an overview of our approach before describing

each step in detail in the following subsections. To answer

binary questions about images, we propose a two-step ap-

proach: (1) Language Parsing: where the question is parsed

into a tuple, and (2) Visual Verification: where we verify

whether that tuple is present in the image or not.

Our language parsing step summarizes a binary question

into a tuple of the form <P, R, S>, where P refers to pri-

mary object, R to relation and S to secondary object, e.g.

for a binary question “Is there a cat in the room?”, our goal

is to extract a tuple of the form: <cat, in, room>. Tuples

need not have all the arguments present. For instance, “Is

the dog asleep” → <dog, asleep, >, The primary argument

P is always present. Since we only focus on binary ques-

tions, this extracted tuple captures the entire visual concept

to be verified in the image. If the concept is depicted in the

image, the answer is “yes”, otherwise the answer is “no”.

Once we extract <P, R, S> tuples from questions (details

in Sec. 4.1), we align the P and S arguments to objects in

the image (Sec. 4.2). We then extract text and image fea-

tures (Sec. 4.4), and finally learn a model to reason about

the consistency of the tuple with the image (Sec. 4.3).

4.1. Tuple extraction

In this section, we describe how we extract <P, R, S> tuples

from raw questions. Existing NLP work such as [11] has

studied this problem, however, these approaches are catered

towards statements, and are not directly applicable to ques-

tions. We only give an overview of our method, more details

can be found in supp. material.

Parsing: We use the Stanford parser to parse the ques-

tion. Each word is assigned an entity, e.g. nominal subject

(“nsubj”), direct object (“dobj”), etc. We remove all char-

acters other than letters and digits before parsing.

Summarizing: As an intermediate step, we first convert a

question into a “summary”, before converting that into a

tuple. First, we remove a set of “stop words” such as de-

terminers (“some”, “the”, etc.) and auxillary verbs (“is”,

“do”, etc.). Our full list of stop words is provided in supp.

material. Next, following common NLP practice, we re-

move all words before a nominal subject (“nsubj”) or a pas-

sive nominal subject (“nsubjpass”). For example, “Is the

woman on couch petting the dog?” is parsed as “Is(aux)

the(det) woman(nsubj) on(case) couch(nmod) petting(root)
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the(det) dog(dobj)?”. The summary of this question can be

expressed as (woman, on, couch, petting, dog).

Extracting tuple: Now that we have extracted a summary

of each question, next we split it into PRS arguments. Ide-

ally, we would like P and S to be noun phrases (“woman on

couch”, “dog”) and the relation R to be a verb phrase (“pet-

ting”) or a preposition (“in”) when the verb is a form of “to

be”. For example, <dog, in, room>, or <woman on couch,

petting, dog>. Thus, we apply the Hunpos Part of Speech

(POS) tagger [17] to assign words to appropriate arguments

of the tuple. See supp. material for details.

4.2. Aligning objects to primary (P) and secondary
(S) arguments

In order to extract visual features that describe the objects

in the scene being referred to by P and S, we need to align

each of them with the image.

We extract PRS tuples from all binary questions in the train-

ing data. Among the three arguments, P and S contain noun

phrases. To determine which objects are being referred to

by the P and S arguments, we follow the idea in [39] and

compute the mutual information2 between word occurrence

(e.g. “dog”), and object occurrence (e.g. clipart piece #32).

We only consider P and S arguments that occur at least twice

in the training set. At test time, given an image and a PRS

tuple corresponding to a binary question, the object in the

image with the highest mutual information with P is con-

sidered to be referred by the primary object, and similarly

for S. If there is more than one instance of the object cate-

gory in the image, we assign P/S to a random instance. Note

that for some questions with ground-truth answer ‘no’, it is

possible that P or S actually refers to an object that is not

present in the image (e.g. Question: “Is there a cat in the

image?” Answer: “no”). In such cases, some other ob-

ject from images (say clipart #23, which is a table) will be

aligned with P/S. However, since the category label (‘table’)

of the aligned object is a feature, the model can learn to han-

dle such cases, i.e., learn that when the question mentions

‘cat’ and the aligned clipart object category is ‘table’, the

answer should be ‘no’.

We found that this simple mutual information based align-

ment approach does surprisingly well. This was also found

in [39]. Fig. 3 shows examples of clipart objects and three

words/phrases that have the highest mutual information.

4.3. Visual verification

We have extracted PRS tuples and aligned PS to the clipart

objects in the image, we can now compute a score indicating

the strength of visual evidence for the concept inquired in

the question. Our scoring function measures compatibility

between image and text features (described in Sec. 4.4).

2We compute MI separately for indoor and outdoor scenes. More de-

tails about scene types can be found in Sec. 3.1.

Figure 3: Most plausible words for an object determined

using mutual information.

Our model is an ensemble of two similar models– Q-model

and Tuple-model, whose common architecture is inspired

from a recently proposed VQA approach [2]. Specifically,

each model takes two inputs (image and question), each

along a different branch. The two models (Q-model and

Tuple-model) use the same image features, but different lan-

guage features. Q-model encodes the sequential nature of

the question by feeding it to an LSTM and using its 256-

dim hidden representation as a language embedding, while

Tuple-model focuses on the important words in the question

and uses concatenation of word2vec [27] embeddings (300-

dim) of P, R and S as the language features. If P, R or S con-

sist of more than one word, we use the average of the cor-

responding word2vec embeddings. This 900-dimensional

feature vector is passed through a fully-connected layer fol-

lowed by a tanh non-linearity layer to create a dense 256-

dim language embedding.

The image is represented by rich semantic features, de-

scribed in Sec. 4.4. Our binary VQA model converts these

image features into 256-dim with an inner-product layer,

followed by a tanh layer. This inner-product layer learns

to map visual features onto the space of text features.

Now that both image and text features are in a common

space, they are point-wise multiplied resulting in a 256-dim

fused language+image representation. This fused vector is

then passed through two more fully-connected layers in a

Multi-Layered Perceptron (MLP), which finally outputs a

2-way softmax score for the answers ‘yes’ and ‘no’. These

predictions from the Q-model and Tuple-model are multi-

plied to obtain the final prediction. Both the models are

learned separately and end-to-end (including LSTM) with a

cross-enptropy loss. Our implementation uses Keras [1].

Learning is performed via SGD with a batch-size of 32,

dropout probability 0.5, and the model is trained till the val-

idation loss plateaus.

At test time, given the question and image features, we can

perform visual verification simply by performing forward

pass through our network.
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4.4. Visual Features

We use the same features as [23] for our approach. These

visual features describe the objects in the image that are

being referred to by the P and S arguments, their interac-

tions, and the context of the scene within which these ob-

jects are present. In particular, the feature vector for each

scene has 1432 dimensions, which are composed of 563

dimensions for each primary object and secondary object,

encoding object category (e.g., cat vs. dog vs. tree), in-

stance (e.g., which particular tree), flip (i.e., facing left or

right), absolute location modeled via GMMs, pose (for hu-

mans and animals), expression, age, gender and skin color

(for humans), 48 dimensions for relative location between

primary and secondary objects (modeled via GMMs), and

258 dimensions encoding which other object categories and

instances are present in the scene around P and S.

5. Experiments

5.1. Baselines

We compare our model with several strong baselines includ-

ing language-only models as well as a state-of-the-art VQA

method.

Prior: Predicting the most common answer in the training

set, for all test questions. The most common answer is “yes”

in the unbalanced set, and “no” in the balanced set.

Blind-Q+Tuple: A language-only baseline which has a

similar architecture as our approach except that each model

only accepts language input and does not utilize any visual

information. Comparing our approach to Blind-Q+Tuple

quantifies to what extent our model has succeeded in lever-

aging the image to answer questions correctly.

SOTA Q+Tuple+H-IMG: This VQA model has a similar

architecture as our approach, except that it uses holistic im-

age features (H-IMG) that describe the entire scene layout,

instead of focusing on specific regions in the scene as deter-

mined by P and S. This model is analogous to the state-of-

the-art models presented in [2, 25, 29, 14], except applied

to abstract scenes.

These holistic features include a bag-of-words for clipart

objects occurrence (150-dim), human expressions (8-dim),

and human poses (7-dim). The 7 human poses refer to 7

clusters obtained by clustering all the human pose vectors

(concatenation of (x, y) locations and global angles of all 15

deformable parts of human body) in the training set. We ex-

tract these 165-dim holistic features for the complete scene

and for four quadrants, and concatenate them together to

create a 825-dim vector. These holistic image features are

similar to decaf features for real images, which are good

at capturing what is present where, but (1) do not attend to

different parts of the image based on the questions, and (2)

may not be capturing intricate interactions between objects.

Comparing our model to SOTA Q+Tuple+H-IMG quanti-

fies the improvement in performance by attending to spe-

cific regions in the image as dictated by the question be-

ing asked, and explicitly capturing the interactions between

the relevant objects in the scene. In other words, we quan-

tify the improvement in performance obtained by pushing

for a deeper understanding of the image than generic global

image descriptors. Thus, we name our model Q+Tuple+A-

IMG, where A is for attention.

5.2. Evaluation on the original (unbalanced) dataset

In this subsection, we train all models on the train splits of

both the unbalanced and balanced datasets, and test on our

unbalanced test set. The results are shown in Table 1.

Training set

Unbalanced Balanced

Prior (“yes”) 68.67 68.67

Blind-Q+Tuple 78.90 60.80

SOTA Q+Tuple+H-IMG 78.49 69.19

Ours Q+Tuple+A-IMG 79.20 72.80

Table 1: Evaluation on unbalanced test set. All accuracies

are calculated using the VQA [2] evaluation metric.

We draw the following key inferences:

Vision helps. We observe that models that utilize visual

information tend to perform better than “blind” model when

trained on the balanced dataset. This is because the lack

of strong language priors in the balanced dataset forces the

models to focus on the visual understanding.

Attending to specific regions is important. When trained

on the balanced set where visual understanding is critical,

our proposed model Q+Tuple+A-IMG, which focuses only

on a specific region in the scene, outperforms all the base-

lines by a large margin.

Bias is exploited. As expected, the performance of all

models trained on unbalanced dataset is better than the bal-

anced dataset, because these models learn the language bi-

ases while training on unbalanced dataset, which are also

present in the unbalanced test set.

5.3. Evaluation on the balanced dataset

We also evaluate all models trained on the train splits of

both the unbalanced and balanced datasets, by testing on the

balanced test set. The results are summarized in Table 2.

Here are the observations from this experiment:

Training on balanced is better. It is clear from Table 2

that both language+vision models trained on balanced data

perform better than the models trained on unbalanced data.

This may be because the models trained on balanced data

have to learn to extract visual information to answer the

question correctly, since they are no longer able to exploit
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Figure 4: Qualitative results of our approach. We show input questions, complementary scenes that are subtle (semantic)

perturbations of each other, along with tuples extracted by our approach, and objects in the scenes that our model chooses to

attend to while answering the question. Primary object is shown in red and secondary object is in blue.

Training set

Unbalanced Balanced

Prior (“no”) 63.85 63.85

Blind-Q+Tuple 65.98 63.33

SOTA Q+Tuple+H-IMG 65.89 71.03

Ours Q+Tuple+A-IMG 68.08 74.65

Table 2: Evaluation on balanced test set. All accuracies are

calculated using the VQA [2] evaluation metric.

language biases in the training set. Where as models trained

on the unbalanced set are blindsided into learning strong

language priors, which are then not available at test time.

Blind models perform close to chance. As expected, when

trained on unbalanced dataset, the “blind” model’s perfor-

mance is significantly lower on the balanced dataset (66%)

than on unbalanced (79%). Note that the accuracy is higher

than 50% because this is not binary classification accuracy

but the VQA accuracy [2], which provides partial credit

when there is inter-human disagreement in the ground-truth

answers.

Attention helps. When trained on balanced dataset (where

language biases are absent), our model Q+Tuple+A-IMG

is able to outperform all baselines by a significant mar-

gin. Specifically, our model gives improvement in perfor-

mance relative to the state-of-the-art VQA model from [2]

(Q+Tuple+H-IMG), showing that attending to relevant re-

gions and describing them in detail helps, as also seen in

Sec. 5.2.

Role of balancing. We see clear improvements by reason-

ing about vision in addition to language. Note that in ad-

dition to the lack of language bias, the visual reasoning is

also harder on the balanced dataset because now there are

pairs of scenes with fine-grained differences but with op-

posite answers to the same question. So the model really

needs to understand the subtle details of the scene to an-

swer questions correctly. Clearly, there is a lot of room for

improvement and we hope our balanced dataset will encour-

age more future work on detailed understanding of visual

semantics towards the goal of accurately answering ques-

tions about images.

Classifying a pair of complementary scenes. We experi-

ment with an even harder setting – a test point consists of a

pair of complementary scenes and the associated question.

Recall, that by construction, the answer to the question is

“yes” for one image in the pair, and “no” for the other. This

test point is considered to be correct only when the model

is able to predict both its answers correctly.

Since language-only models only utilize the textual infor-

mation in the question ignoring the image, and therefore,

predict the same answer for both scenes, their accuracy is

zero in this setting3. The results of the baselines and our

model, trained on balanced and unbalanced datasets, are

shown in Table 3. We observe that our model trained on

the balanced dataset performs the best. And again, our

3Note that to create this pair-level test set, we only consider those pairs

where the answers were opposites. We removed all scenes that workers

were unable to create complementary scenes for due to a finite clipart li-

brary, as well as those scenes for which the majority answer from 10 work-

ers did not agree with the intended answer of the creator of the scene.
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model that focuses on relevant regions in the image to an-

swer the question outperforms the state-of-the-art approach

of [2] (Q+Tuple+H-IMG) that does not model attention.

Training set

Unbalanced Balanced

Blind-Q+Tuple 0 0

Q+Tuple+H-IMG 03.20 23.13

Q+Tuple+A-IMG 09.84 34.73

Table 3: Classifying a pair of complementary scenes. All

accuracies are percentage of test pairs that have been pre-

dicted correctly.

5.4. Analysis

Our work involves three steps: tuple extraction, tuple and

object alignment, and question answering. We conduct

analyses of these three stages to determine the importance

of each of the three stages. We manually inspected a ran-

dom subset of questions, and found the tuple extraction to

be accurate 86.3% of the time. Given perfect tuple ex-

traction, the alignment step is correct 95% of the time.

Given perfect tuple extraction and alignment, our approach

achieves VQA accuracy of 81.06% as compared to 79.2%

with imperfect tuple extraction and alignment. Thus, ∼2%

in VQA accuracy is lost due to imperfect tuple extraction

and alignment.

5.5. Ablation Study

We conducted an ablation study to analyze the importance

of the two kinds of language features– LSTM for question

vs. word2vec for tuple. For “blind” (language only) models

trained and tested on unbalanced datasets, we found that

the combination (Q+Tuple) performs better than each of the

individual methods. Specifically, Q+Tuple achieves a VQA

accuracy of 78.9% as compared to 77.87% (Q-only) and

77.54% (Tuple-only).

5.6. Qualitative results

Fig. 4 shows qualitative results for our approach. We show

a question and two complementary scenes with opposite an-

swers. We find that even though pairs of scenes with oppo-

site ground truth answers to the same questions are visually

similar, our model successfully predicts the correct answers

for both scenes. Further, we see that our model has learned

to attend to the regions of the scene that seem to correspond

to the regions that are most relevant to answering the ques-

tion at hand. The ability to (correctly) predict different an-

swers to scenes that are subtle (semantic) perturbations of

each other demonstrates visual understanding.

6. Discussion

The idea of balancing a dataset can be generalized to real

images. For instance, we can ask MTurk workers to find

images with different answers for a given question. The ad-

vantage with clipart is that it lets us make the complemen-

tary scenes very fine-grained forcing the models to learn

subtle differences in visual information. The differences in

complementary real images will be coarser and therefore

easier for visual models. Overall, there is a trade-off be-

tween clipart and real images. Clipart is easier (trivial) for

low-level recognition tasks, but is more difficult balanced

dataset because it can introduce fine-grained semantic dif-

ferences. Real is more difficult for low-level recognition

tasks, but may be an easier balanced dataset because it will

have coarse semantic differences.

7. Conclusion

In this paper, we take a step towards the AI-complete task

of Visual Question Answering. Specifically, we tackle the

problem of answering binary questions about images. We

balance the existing abstract binary VQA dataset by aug-

menting the dataset with complementary scenes, so that

nearly all questions in the balanced dataset have an answer

“yes” for one scene and an answer “no” for another closely

related scene. For an approach to perform well on this bal-

anced dataset, it must understand the image. We will make

our balanced dataset publicly available.

We propose an approach that extracts a concise summary

of the question in a tuple form, identifies the region in the

scene it should focus on, and verifies the existence of the

visual concept described in the question tuple to answer

the question. Our approach outperforms the language prior

baseline and a state-of-the-art VQA approach by a large

margin on the balanced dataset. We also present qualita-

tive results showing that our approach attends to relevant

parts of the scene in order to answer the question.
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