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Abstract

During the past few years we have witnessed the devel-

opment of many methodologies for building and fitting Sta-

tistical Deformable Models (SDMs). The construction of

accurate SDMs requires careful annotation of images with

regards to a consistent set of landmarks. However, the man-

ual annotation of a large amount of images is a tedious,

laborious and expensive procedure. Furthermore, for sev-

eral deformable objects, e.g. human body, it is difficult to

define a consistent set of landmarks, and, thus, it becomes

impossible to train humans in order to accurately annotate

a collection of images. Nevertheless, for the majority of

objects, it is possible to extract the shape by object segmen-

tation or even by shape drawing. In this paper, we show for

the first time, to the best of our knowledge, that it is pos-

sible to construct SDMs by putting object shapes in dense

correspondence. Such SDMs can be built with much less

effort for a large battery of objects. Additionally, we show

that, by sampling the dense model, a part-based SDM can

be learned with its parts being in correspondence. We em-

ploy our framework to develop SDMs of human arms and

legs, which can be used for the segmentation of the outline

of the human body, as well as to provide better and more

consistent annotations for body joints.

1. Introduction

Statistical Deformable Models (SDMs) of various ob-

jects is a well-studied and popular area in the intersection

of computer vision and machine learning [26, 24, 43, 54,

14, 64, 60]. Recently, we have witnessed tremendous de-

velopments on SDMs of human faces and bodies trained

with images that are captured under unconstrained condi-

tions, usually referred to as “in-the-wild” [14, 21, 64, 60,

11, 59, 12, 35, 2, 63, 8, 9, 3, 57]. This is attributed to:

• The abundance of complex visual data, spread through

web services (e.g. Youtube, Flickr, Google Images),

(a) MPII (b) Fashion (c) FLIC

Figure 1: Examples of inconsistent annotations of human

pose among different datasets. Blue markers denote the

original annotations. The arrows and green markers show

the correct location at which the points should be annotated.

Figure 2: Comparison of the standard landmark annotation

(red dots) with the curve annotation (blue lines) on arms,

ears and faces. It is evident that the curve annotations sur-

pass the inevitable inconsistency of sparse annotations.

which has led to the development of “in-the-wild”

databases of human faces and bodies [14, 37, 64, 20].
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• The manual annotation of such databases that has been

undertaken by several research teams [51, 22, 29, 7].

• The development of powerful visual features that are

able to describe objects and their parts in a robust man-

ner (e.g., SIFT [41], HoGs [27] ), as well as generative

and discriminative methodologies for learning SDMs.

However, there are two main drawbacks when building

SDMs directly on manually annotated landmarks:

• Annotating with regards to consistent landmarks is an

extremely time-consuming, tedious and labour inten-

sive work [52], which is usually performed by a trained

person. Furthermore, for various object classes, it re-

quires a highly skilled person in order to identify and

annotate landmarks in a consistent manner. For exam-

ple, the human ear has very complicated inner struc-

tures (helix, crus antihelicis, scapha, tragus, lobe etc.)

which remarkably differ between different ears. More-

over, certain ear parts, such as fossa triangularies and

crus helicis, do not appear in all ears and their visibil-

ity is highly sensitive to the head pose and illumination

variation. Another such example is the human body,

which is generally annotated with regards to a num-

ber of landmarks that intuitively correspond to a set of

body joints. For most body pose databases, the anno-

tation task was undertaken by a crowd-sourcing Inter-

net marketplace, so-called Amazon Mechanical Turk

(AMT). Unfortunately, this resulted in acquiring in-

consistent and inaccurate annotations, in many cases1

(please see Figure 1). As it was also recently pointed

out [56], the inconsistencies in body joint annotations

may also render the comparison between different hu-

man pose estimation methodologies irrelevant.

• The nature of many deformable objects does not allow

them to be annotated with regards to a consistent set

of landmarks (e.g., bottles, fruits etc.). Additionally,

it is very difficult to consistently annotate the outline

of certain objects such as faces, ears, body, since these

landmarks do not have any semantic meaning. That

is why many state-of-the-art methods opt to leave the

boundary out when reporting results [59, 12]. The ma-

jority of the state-of-the-art methods for model-based

landmark localisation [21, 64, 60, 59, 12] are not ap-

plicable to objects with inconsistent sets of landmarks.

To illustrate how time-consuming careful annotation of a

complex deformable object is, we lay down our own experi-

ence based on the human ear. A trained annotator needs an

average of 4 minutes per image for the manual annotation

1In the case of faces, the quality of annotations produced from AMT

are extremely inaccurate and cannot, by any means, be compared with the

ones provided by the recent 300W competition [52, 51].

of 55 landmarks. This means that the annotation of 1000

images requires a total of about 67 hours. Furthermore, the

quality of training as well as fatigue greatly influence the

annotation accuracy. Hence, a second pass on the anno-

tated data is, in many cases, necessary. Due to the fact that

manual annotation is a costly and labour-intensive proce-

dure, unsupervised learning of deformable models for the

task of object alignment has recently attracted some atten-

tion [30, 13, 25, 34, 32, 36, 33, 40, 62]. However, because

the problem of fully unsupervised discovery of the deforma-

tions of arbitrary objects is difficult and ill-posed, the lim-

ited number of methods that have been proposed for the task

cannot be directly applied to arbitrary collections of “in-the-

wild” images. On the other hand, the method of [10], which

can deal with “in-the-wild” images, requires a set of consis-

tently annotated sparse shapes to perform deformable face

congealing.

2. Contributions

In this paper, we propose a solution for annotating an

object with regards to its deformations that requires consid-

erably less effort compared to manual annotation and, at the

same time, can be used to define statistical deformations for

objects without a consistent set of landmarks. We employ

the proposed method in order to construct SDMs based on

the outline of human body parts (i.e., arms and legs). The

proposed SDM can also be used to provide accurate and

consistent annotations for several of the body joints (such

as wrist, elbow etc.). To this end, we argue and empirically

demonstrate that it is better to annotate an object with re-

gards to a set of continuous lines that describe its shape. An

example is provided in Figure 2, which compares the stan-

dard landmark annotations that are employed in the current

literature with the proposed curve annotations for arms, ears

and faces. It becomes evident that the curve annotations

avoid the inherent ambiguity of placing sparse landmarks

and offer a richer description of the object’s shape. Fur-

thermore, these curves can be automatically generated by

recently proposed methods that perform discriminative seg-

mentation of objects [42, 39]. Note that the work in [65]

is the only one that shows that training SDMs based on the

outline contours of the human body parts has considerable

advantages compared to using the sparse skeleton joints, as

done by the majority of existing SDMs for human pose.

Furthermore, we capitalise on recent advances on mul-

tiframe optical flow estimation [31, 49, 55] and show that

the relevant methodologies have matured enough to densely

annotate the proposed shapes using either simplistic or even

more sophisticated and robust shape representation methods

[44]. In particular, in order to build dense correspondences

between different shape instances of the same object class,

we jointly estimate the optical flow among all the instances

by imposing low-rank constrains, an approach that we call
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Shape Flow. Multiframe optical flow has originally been

applied on video sequences, relying on the assumptions of

colour consistency and motion smoothness [31]. However,

these assumptions do not hold in our case, where we have

a collection of shapes. Therefore, we introduce appropri-

ate modifications based on the consistency of image-based

shape representation, as well as low-rank priors.

Additionally, we show that the proposed methodology

can be applied on landmark localisation, even though it is

not tailored for that task, achieving particularly good per-

formance. Specifically, we explain how to build powerful

dense SDMs that are suitable for objects that have rich in-

terior texture but lack landmarks consistency. Furthermore,

we show how to build a powerful patch-based SDM on the

sparse outline landmarks of objects that do not have se-

mantically meaningful interior textures. Using the result-

ing outline patch-based SDM, we report state-of-the-art per-

formance on the task of human body parts localisation on

challenging databases. Finally, we show that the proposed

patch-based SDM can be used to provide consistent annota-

tions for different body parts.

In summary, the contributions of this paper are:

• We propose one of the first, to the best of our knowl-

edge, methodologies that constructs accurate SDMs

from a set of training data with inconsistent anno-

tations. We show that the proposed methodology

tremendously reduces the manual workload thanks to

the highly effective curve annotations.

• We illustrate the ability of the proposed method to gen-

erate consistent sparse landmark annotations for ob-

ject classes which, by nature, make it impossible to be

manually annotated in a consistent way.

• We show that it is more advantageous to model the hu-

man body parts (e.g. arms) with a set of sparse land-

marks on their outline, rather than on their skeleton

joints. This is because the outline landmarks, which

can be acquired by our method in a straightforward

way, exhibit better consistency compared to the in-

evitable inconsistency of the joint landmarks.

• We report state-of-the-art quantitative and qualitative

results on human body parts localisation by employing

a patch-based SDM trained on the outline landmarks

that are sampled by the dense correspondences. Our

proposed model outperforms all current state-of-the-

art techniques that are trained on skeleton joints.

• We show that the employed patch-based SDM corrects

the annotations that are currently provided for most

major human body pose databases 2.

2The corrected annotations are publicly available in

http://www.ibug.doc.ic.ac.uk/resources/

bodypose-anno-correction.

3. Constructing Deformable Models with

Shape Flow

This section presents the proposed method for establish-

ing dense correspondences among training shapes by only

using curve annotations. It takes as input a set of train-

ing images of a particular object class, along with the cor-

responding curve annotations. The steps of our pipeline,

which are also depicted in Figure 3, are the following:

Step 1: Represent the curve annotations in a consistent way

using a multichannel extension of the Support Vector Shape

(SVS) representation [44]. Apply the Iterative Closest Point

(ICP) algorithm [16] to achieve an initial alignment of the

SVS images.

Step 2: Construct a correspondence basis for the training

SVS images. This is acquired by applying the Non-rigid

ICP (NICP) algorithm of [5] on the densely sampled an-

notated curves, followed by Principal Component Analysis

(PCA).

Step 3: Establish dense correspondences between all the

shapes in the training set by feeding the multichannel

similarity-aligned SVS images into a multi-image subspace

flow estimation.

Step 4: Utilise the dense correspondences acquired by the

optical flow in order to automatically generate either dense

or sparse (on the outline) landmark annotations, depending

on the object class type. Then, build either a dense [48, 4, 6]

or a patch-based [59] AAM, respectively.

The upcoming sections discuss each of the aforemen-

tioned steps in further detail.

Step 1: Shape Representation Based on Support
Vector Shapes

In order to fully capture the variability among most de-

formable objects’ shapes annotations, we use a represen-

tation based on SVS [44]. An SVS is a decision function

trained on shapes using Support Vector Machines (SVMs)

with Radial Basis Function (RBF) kernels. In this way,

a shape is represented as a classifier function, which has

several advantages: (a) the representation is completely

generic, e.g. it can be applied to sparse landmark points,

curves lines or a combination of the two, and (b) it fuses

inconsistent landmarks into consistent and directly compa-

rable decision functions. Furthermore, this representation is

also robust against noise, missing data and outliers [44].

The curve annotations for all training images are densely

sampled to yield a set of landmarks per image, with this set

being different for every training image. To train the SVM,

these landmarks are assigned as belonging to the ‘positive’

class, whereas randomly sampled points around them are

assigned as belonging to the ‘negative’ class. Since the

positive class has far less points than the negative class,

landmarks are assigned considerably larger weights so that
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Figure 3: Schematic description of the proposed pipeline. Figure best viewed by zooming in.

Np ×Wp = Nn ×Wn where Np, Nn are number of points

of the positive and negative class respectively and Wp,Wn

are their corresponding weights.

SVMs with RBF kernel functions map any number of

data points onto an infinite-dimensional space where pos-

itive and negative points are linearly separable, hence the

classification boundary on the 2D space represents the ac-

tual shape of the object. Let d(x) be the decision function

for SVMs. In our formulation, d(x) can be defined for ev-

ery pixel x of the corresponding object image, therefore we

interpret it as an image and we call it SVS image.

We extend the SVS representation to support also the

case where multiple curves with different labels are an-

notated. This is useful when annotating different struc-

tures of the same object, such as the left and right eye-

brows on faces. Even though not absolutely necessary in

our framework, it can provide further guidance on the esti-

mation of dense shape correspondences for various object

classes. In more detail, we create a multichannel SVS im-

age d(x) = [d1(x) · · · di(x) · · · dNc
(x)], where di(x) is

the SVS image that corresponds to the curve annotation of

the i-th structure and Nc is the total number of structures (a

single curve annotation is the special case where Nc = 1).

Note that we do not necessarily require that all structures

are annotated in all the object images: in the case that a

structure is not annotated, the corresponding channel of the

SVS image simply takes a zero value for all pixels. The

shape flow estimation can deal with such missing informa-

tion thanks to the spatial regularization and the low-rank

constraint that it adopts, c.f. Step 3.

After constructing the SVS representation for all images,

the next step is to apply a simple similarity alignment over

them. This is done because the goal here is to build a model

capable of effectively representing non-rigid local shape de-

formations rather than global rotation, translation and scal-

ing. The alignment is performed by using the ICP algorithm

[16] on the annotated landmarks point cloud of the training

images.

Step 2: Correspondence Basis for Shape Flow Es­
timation

We define the problem of shape flow as the joint estima-

tion of optical flow fields between a reference SVS image

and every SVS image of the training dataset, which yields

dense correspondences across SVS images. This also de-

fines for every training SVS image a warping function that

registers it with the reference SVS image. To establish the

dense correspondences robustly, we are inspired by the idea

of subspace constraints in the estimation of multiframe op-

tical flow [31, 49, 55].

Instead of the motion basis used in multiframe optical

flow formulation of [31], we build a correspondence ba-

sis that introduces constraints on how points of different

shapes are matched to each other. Every pixel of the ref-

erence SVS image is matched to its corresponding position

at every training SVS image and in this way defines a corre-

spondence vector. This vector consists of the 2D locations

of the specific point in all SVS images. To form this vec-

tor, the training images are arranged in an arbitrary order.

Similarly to the order of the training samples when PCA is

applied, this order does not affect the result of our method

and any re-ordering would produce exactly the same results.

Formally, let Nt be the number of training SVS images

and n = 1, . . . , Nt be the training image index. Also, let

q1(n), . . . , qR(n) : {1, . . . , Nt} → R
2 be the R orthonor-

mal elements of the correspondence basis, where qi(n) is

the displacement vector that matches the points of the ref-

erence SVS image with the points of the n-th training SVS

image, according to the variation described from the i-th

correspondence basis element. Note that the basis elements

qi(n) are independent from the point location. Note also

that the number of basis elements is typically much smaller

than the full dimensionality (2Nt) of correspondence vec-

tors, therefore this basis plays a role of dimensionality re-

duction.

In addition, let Ω ⊂ R
2 be the image domain of the

SVS images and x denote the point location. We denote

the shape flow result as un(x) : Ω × {1, . . . , Nt} → R
2,

where un(x) is the displacement vector that matches the
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Figure 4: Exemplar deformation fields for the left arm, ob-

tained using the proposed pipeline. Figure best viewed by

zooming in.

point x of the reference SVS image with its corresponding

location at the n-th training SVS image.

Using the constructed correspondence basis, the shape

flow can be approximated as:

un(x) ≈
∑R

i=1
qi(n)vi(x) , (1)

where vi(x) is the weight that needs to be applied on the

i-th correspondence basis element, in order to get the corre-

spondence vector for the point location x. In other words,

the shape flow for every point x is described as a linear

combination of basis elements that is controlled by the co-

efficients vi(x). The values of the i-th coefficient for all

the points vi(x) can be interpreted as an image defined on

Ω. Using the correspondence basis, the determination of

the shape flow boils down to the determination of the set

of coefficients vi(x). The above representation of shape

flow, constrains the correspondence vectors to lie on a sub-

space and, therefore, acts as a low-rank prior that enforces

coherency of the shape registration result over the whole

training dataset of shapes.

To effectively build the correspondence basis, we first

transform the original annotations to sparse point clouds.

Then, we apply the NICP algorithm of [5] between the point

cloud of annotations in the reference shape and the one of

every shape of the training set. NICP iteratively deforms

the cloud of points of every shape to match the points of

the reference shape. This yields an initial estimation of the

correspondence vectors on the sparse locations of annotated

landmarks on the reference shape. Finally, the correspon-

dence basis is found by applying PCA on these correspon-

dence vectors and keeping only the first R principal compo-

nents.

Step 3: Shape Flow Estimation

As already mentioned, our shape flow estimation builds

upon robust methods for multiframe optical flow estima-

tion [31]. However, optical flow estimation typically works

based on the assumptions of brightness or colour constancy

and motion smoothness, whereas in our setting the input

training data correspond to shapes. For this reason, we pro-

pose to modify the formulation of [31] by using the corre-

spondence basis that we introduced in conjunction with the

SVS representation of shapes.

Let d(x;n), d(x; 0) : Ω → R
Nc be the n-th training

SVS image and the reference SVS image respectively. Fol-

lowing [31], we propose to estimate the shape flow over all

training images by minimizing the following energy:

Esf = α

∫
Ω

Nt∑
n=1

‖d(x+ un(x);n)− d(x; 0)‖dx (2)

+ β

∫
Ω

Nt∑
n=1

‖un(x)−
R∑
i=1

qi(n)vi(x)‖
2dx (3)

+

∫
Ω

R∑
i=1

‖∇vi(x)‖ dx (4)

This energy consists of two sets of unknown shape flows

that are relatively close to each other: (i) un(x) which tries

to explain the data from the input SVS images, and (ii) the

shape flow determined by the correspondence basis coef-

ficients vi(x) that are spatially regularised and enforce a

low-rank prior.

The first term of the above energy (2) is a data attach-

ment term that uses the robust L
1-norm. It is based on

the assumption that the values of the reference SVS image

d0(x) at every pixel x are preserved at its corresponding

locations on all training SVS images dn(x). The use of an

L
1-norm improves the robustness of the method since it al-

lows deviations from this assumption, which might occur in

practice. The second term of the energy (3) penalizes the

difference between the two sets of shape flows and acts as a

coupling term between them. The third term of the energy

(4) corresponds to the spatial Total Variation regularization

[50] of the correspondence basis coefficients vi(x). This

term penalizes spatial oscillations of each coefficient caused

by distortions of the SVS images but not strong disconti-

nuities that are desirable in the borders of different object

regions. In addition, this term allows to fill in information

into regions where the shape information in the SVS images

is missing, due to e.g. regions with no annotations.

We implement the minimization of the energy Esf by us-

ing the optimization algorithm described in [31]. For more

details, please refer to the Supplementary Material. Fig-

ure 4 shows some examples of deformation fields derived

from the estimated shape flow computed by the aforemen-

Figure 5: Dense shape models build for faces and ears.

Dense shapes are presented as grid for better visualization.
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tioned method. These results correspond to exemplar train-

ing shapes in the case of an arm dataset. We observe that the

shape flow estimation captures the shape and deformations

of the human arm in a plausible way.

Step 4: Dense and Patch­Based Deformable Models

The deformation fields obtained from Step 3 can be used

to naturally build two different kinds of effective Active Ap-

pearance Models (AAMs) [24, 43]: dense [48, 4, 6] and

patch-based [59]. The only difference between these two

AAM formulations is on the way that the shape is repre-

sented and, thus, the manner in which the texture is sam-

pled. Each one of them is suitable for object classes with

specific properties. The dense AAM provides an excep-

tionally effective modeling and fitting for non-articulated

objects, such as ears and faces, whose appearance has char-

acteristic structures that spread all over their region (even if

these structures cannot be consistently annotated). On the

other hand, there exist other challenging object classes, such

as arms and legs, that not only cannot be consistently an-

notated with landmarks, but their appearance is distinctive

only on the object’s outline and not in its interior region.

Especially in the case of human body parts, they are almost

always covered by clothes, which makes it impossible to

construct robust texture models.

Dense Active Appearance Model Since all the deforma-

tion fields acquired by Step 3 are defined for the pixels of

the reference SVS image, the spatial positions xi = (xi, yi)
of these pixels can be treated as point landmarks and the de-

formation fields as dense annotations of the object’s shape.

Consequently, building a dense shape model reduces to nor-

malising these dense annotations with respect to a global

similarity transform (typically using Procrustes Analysis)

and applying PCA. A shape instance can be generated by

the resulting shape model as:

s(p) = s̄+ Sp (5)

where s̄ is mean shape, and S and p are the shape bases and

shape parameters, respectively.

By making explicit use of the one-to-one correspon-

dence between pixels on the reference frame and on the

deformation fields, the motion model of sparse holistic

AAMs [24, 43] (piece-wise affine, thin-plates splines [17])

is replaced by sampling all pixel values onto the reference

frame. Let us define this sampling function, given a shape

instance s(p), as W(s(p)). Once the images have been

warped, the texture model is obtained by applying PCA on

them. A texture instance can be generated as:

t(c) = t̄+ Tc (6)

where t is the mean texture, and T and c are the texture

bases and texture parameters, respectively.

Given a test image I, the fitting process involves the min-

imization of the following cost function:

argmin
p,c

‖I(W(s(p)))− t(c)‖22 (7)

This optimization problem is typically solved using the

inverse-compositional Gauss-Newton algorithm, for which

different variations have been proposed [43, 45, 4, 58, 2].

Note that the existence of the sampling function W() in-

stead of a non-linear warping function has the advantage

that all existing efficient gradient descent algorithms be-

come exact.

Outline Patch-Based Active Appearance Model (PAAM)

The object classes for which the interior appearance does

not have specific structure are modeled using patch-based

AAMs [59] trained on a set of sparse landmarks. Especially

for human body parts (arms, legs), we strongly believe that

the points located to the outline of the object are more suit-

able compared to the internal ones that correspond to the

skeleton joints, which are commonly used by current litera-

ture [19, 22, 46, 61].

The main differences between the patch-based and dense

AAMs are that (a) the densified shape instances are sub-

sampled to include only the outline points, and (b) the tex-

ture representation involves the sampling a neighbourhood

around each point instead of a single pixel. Specifically, in

order to build the outline sparse shape model, we simply se-

lect the outline points on the SVS reference frame. Then,

by taking advantage of the dense correspondences obtained

by Step 3, the shape model is trained in a similar way as in

the dense case. Moreover, similar to the dense case, the tex-

ture model is built by sampling the image values from the

sparse shape locations, i.e. W(s(p)). However, contrary

to dense AAMs, we sample a patch that is centred around

each landmark point. These patches are then vectorised and

concatenated in a single texture vector. Note that the opti-

mization process remains exactly the same.

4. Experimental Evaluation

We evaluate the performance of the proposed methodol-

ogy for the task of human body pose correspondence esti-

mation, as well as non-rigid alignment “in-the-wild”. For

further experimental results, please refer to the supplemen-

tary material. Note that all steps of the proposed pipeline

were implemented using the Menpo Project [1].

4.1. Non­rigid Object Alignment In­the­Wild

Herein, we compare the fitting accuracy of the dAAMs

that are trained with our proposed framework with holistic

sparse AAMs [24, 43, 8]. We consider two object classes

that demonstrate rich texture: face and ear.
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Figure 6: Example of human pose annotation for left arm

among 4 annotators. The large variance highlights the diffi-

culty of obtaining consistent landmarks.

Databases & Error Metrics In the case of face, we trained

both models using the 811 training images of the Labelled

Faces Parts in-the-Wild (LFPW) [15]. Sparse AAMs were

built from the 68 points annotations provided by [52, 51].

Our dAAMs were built as described in Step 4. In both cases,

the appearance is represented using pixel intensities. The

results are reported on the 224 images of the LFPW testset.

The fitting error is evaluated as the point-to-point distance

normalised by the face’s size, as proposed in [64].

In the case of human ear, given the lack of publicly avail-

able annotated databases, we collected 605 high resolution

images captured under unconstrained conditions from on-

line search engines. The images were manually annotated

with respect to 55 sparse landmarks, as well as the curve

annotations proposed in this paper. Examples of these two

types of annotations are shown in Figure 2. We randomly

split the database into two disjoint sets of training (500) and

testing (105) images. The training and evaluation of the two

models is done in the same way as in the case of face.

Results We report the results in Figure 9 using Cumulative

Error Distribution (CED) curves. By visual inspection of

the results, we determined that the fitting is adequately ac-

curate for errors less than 0.1 and 0.06 for the ear and face,

respectively. The results indicate that dAAMs marginally

outperform sparse AAMs. Therefore, the proposed pipeline

is capable of dealing with the complex structure of non-rigid

shapes and train dAAMs from simple curve line annotations

which can compete and even outperform the commonly-

used sparse AAMs trained on carefully annotated images.

4.2. Arm Pose Estimation

In this experiment, we aim to compare the effect of train-

ing a deformable model of human arm using: (i) our pro-

posed outline sparse landmarks, and (ii) the standard skele-

ton joints annotations that are commonly employed in liter-

ature. For this purpose, we employ the patch-based AAM as

described in Step 4. Additionally, we compare our method-

ology with the current state-of-the-art.

Dataset & Error Metric We opted to report quantitative

results on the BBC Pose database [46], which provides the

most consistent and accurate joints annotations compared

to the rest of existing databases. The training of the outline

patch-based AAM was performed after obtaining 29 out-

line landmarks using our proposed framework. We used

891 training images from a combination of datasets, in-

cluding H3D [18], Microsoft COCO [38], MPII [7], Fash-

ion Pose [28], FLIC [53] and BBC Pose [46]. SIFT fea-

tures [18] are adopted for the image representation in our

model. The fitting procedure on the BBC Pose database

is initialised using a simplistic in-house deep convolutional

neural network.

In order to compare with current state-of-the-art on BBC

Pose, we used the same error metric as the one in [46],

which normalises testing images in order to have a height of

256 pixels. Once again, the performance is visualised using

CED curves. The results for this experiment are reported

on 1000 testing images from BBC Pose, which utilises 7

skeleton landmarks to annotate the human upper-body pose.

Note that in the case of our model, the final joints locations

required for evaluation are retrieved from the dense corre-

spondence acquired with our proposed method. On the con-

trary, the rest of the methods are trained on this 7-points

mark-up, thus directly return their estimated locations.

Results Figure 10 reports the results of our model

trained on the outline landmarks (Outline PAAM), as

well as the current state-of-the-art techniques which in-

clude: Buehler [19], Charles14 [23], Charles13 [22], Pfis-

ter14 [47], Ramanan [61] and Pfister15 [46]. As can be

seen, our outline part-based AAM model outperforms the

state-of-the-art for this task, even though it is not trained di-

rectly on the wrist and elbow points, thus it is not tailored

for locating them. In particular, our model outperforms the

currently best method [46] by a notable amount (9% with

error less than 6pt) on wrist, as well as marginal improve-

ment on elbow estimation. Figure 8 shows some indicative

qualitative fitting results.

In the same experiment we prove that it is more ad-

vantageous to train a deformable model using the outline

landmarks rather than the skeleton points. This is done by

building a patch-based AAM on the same training data and

with identical settings using both annotation schemes. As it

can be seen from the CED curves of Figure 10, our model

trained on outline landmarks (Outline PAAM) notable out-

performs the skeleton-based model for both wrist and el-

bow. We believe that this is a remarkable result, which in-

dicates that out proposed outline mark-up can lead to a sig-

nificant improvement of current state-of-the-art techniques.

4.3. Annotation Correction

The final experiment demonstrates that it is feasible to

use the proposed arm model in order to correct the anno-
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Figure 7: Demonstration of annotation correction using our method for the experiment of Section 4.3. Red dots refer to

officially provided landmarks, and green dots are corrected position.

Figure 8: Demonstration of outline fitting of patch-based AAM on arms.

tations provided by current datasets. As mentioned above

there are inconsistencies in the annotations of MPII [7],

Fashion Pose [28] and FLIC [53]. Due to the large vari-

ance in arm pose, it is difficult even for trained annotators

to obtain consistent annotations between them. As proof of

concept, Figure 6 reports the standard deviation observed

between the annotations of 4 trained humans that were re-

quested to annotate 120 images of left arms from Fashion

Pose [28] with respect to the shoulder, elbow and wrist.
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Figure 9: CEDs of faces and ears fitting performance for the

experiment of Section 4.1.
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Figure 10: CEDs over skeleton landmarks on BBC Pose

database for the experiment of Section 4.2.

By applying our outline patch-based AAM on the afore-

mentioned databases, we managed to greatly correct the

currently available annotations of the arm. Figure 7 shows

indicative examples of the corrected landmarks. There is no

doubt that points after correction demonstrate more consis-

tency among images. We make the corrected annotations

publicly available2.

5. Conclusion

Learning and fitting statistical deformable models

(SDMs) is one of the most important areas in computer vi-

sion. Generally, in order to train a SDM, a set of predefined

correspondences are required. In some objects, such as hu-

man face, semantically meaningful correspondences can be

found, but require laborious manual annotations; on other

objects it is very difficult, or even impossible. In this paper,

we propose one of the first comprehensive procedures for

establishing correspondences (that do not necessarily corre-

spond to semantically meaningful object landmarks) in ar-

bitrary objects with minimal amount of human annotation.

We apply the proposed approach for the construction of the

first, to the best of our knowledge, highly-descriptive SDM

for the human arm.
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