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Abstract

This paper addresses the challenge of 3D full-body hu-

man pose estimation from a monocular image sequence.

Here, two cases are considered: (i) the image locations of

the human joints are provided and (ii) the image locations

of joints are unknown. In the former case, a novel approach

is introduced that integrates a sparsity-driven 3D geometric

prior and temporal smoothness. In the latter case, the for-

mer case is extended by treating the image locations of the

joints as latent variables to take into account considerable

uncertainties in 2D joint locations. A deep fully convolu-

tional network is trained to predict the uncertainty maps

of the 2D joint locations. The 3D pose estimates are real-

ized via an Expectation-Maximization algorithm over the

entire sequence, where it is shown that the 2D joint lo-

cation uncertainties can be conveniently marginalized out

during inference. Empirical evaluation on the Human3.6M

dataset shows that the proposed approaches achieve greater

3D pose estimation accuracy over state-of-the-art base-

lines. Further, the proposed approach outperforms a pub-

licly available 2D pose estimation baseline on the challeng-

ing PennAction dataset.

1. Introduction

This paper is concerned with the challenge of recovering

the 3D full-body human pose from a monocular RGB image

sequence. Potential applications of the presented research

include human-computer interaction (cf. [37]), surveillance,

video browsing and indexing, and virtual reality.

From a geometric perspective, 3D articulated pose re-

covery is inherently ambiguous from monocular imagery

[20]. Further difficulties are raised due to the large variation

in human appearance (e.g., clothing, body shape, and illu-

mination), arbitrary camera viewpoint, and obstructed vis-

ibility due to external entities and self-occlusions. Notable

successes in pose estimation consider the challenge of 2D

pose recovery using discriminatively trained 2D part mod-

els coupled with 2D deformation priors, e.g., [50, 4, 49],

and more recently using deep learning, e.g., [46]. Here,
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Figure 1. Overview of the proposed approach. (top-left) Input

image sequence, (top-right) CNN-based heat map outputs repre-

senting the soft localization of 2D joints, (bottom-left) 3D pose

dictionary, and (bottom-right) the recovered 3D pose sequence re-

construction.

the 3D pose geometry is not leveraged. Combining robust

image-driven 2D part detectors, expressive 3D geometric

pose priors and temporal models to aggregate information

over time is a promising area of research that has been given

limited attention, e.g., [5, 54]. The challenge posed is how

to seamlessly integrate 2D, 3D and temporal information to

fully account for the model and measurement uncertainties.

This paper presents a 3D pose recovery framework that

consists of a novel synthesis between discriminative image-

based and 3D reconstruction approaches. In particular, the

approach reasons jointly about image-based 2D part loca-

tion estimates and model-based 3D pose reconstruction, so

that they can benefit from each other. Further, to improve

the approach’s robustness against detector error, occlusion,

and reconstruction ambiguity, temporal smoothness is im-

posed on the 3D pose and viewpoint parameters. Figure 1

provides an overview of the proposed approach. Given the

input video (Fig. 1, top-left), 2D joint heat maps are gener-

ated with a deep convolutional neural network (CNN) (Fig.

1, top-right). These heat maps are combined with a sparse

model of 3D human pose (Fig. 1, bottom-left) within an

Expectation-Maximization (EM) framework to recover the

3D pose sequence (Fig. 1, bottom-right).
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Considerable research has addressed the challenge of hu-

man motion capture from imagery [26, 41, 9, 33]. This

work includes 2D human pose recovery in both single im-

ages (e.g., [50, 46, 10, 17, 45]) and video, e.g., [35, 11, 49,

29, 31, 52]. In the current work, focus is placed on 3D pose

recovery in video, where the pose model and prior are ex-

pressed in their natural 3D domain.

Early research on 3D monocular pose estimation in

videos largely centred on incremental frame-to-frame pose

tracking, e.g., [8, 42, 38]. These approaches rely on a given

pose and dynamic model to constrain the pose search space.

Notable drawbacks of this approach include: the require-

ment that the initialization be provided and their inability to

recover from tracking failures. To address these limitations,

more recent approaches have cast the tracking problem as

one of data association across frames, i.e., “tracking-by-

detection”, e.g., [5]. Here, candidate poses are first detected

in each frame and subsequently a linking process attempts

to establish temporally consistent poses.

Another strand of research has focused on methods that

predict 3D poses by searching a database of exemplars

[36, 27, 19] or via a discriminatively learned mapping from

the image directly or image features to human joint loca-

tions [1, 34, 51, 16, 44]. Recently, deep convolutional net-

works (CNNs) have emerged as a common element behind

many state-of-the-art approaches, including human pose es-

timation, e.g., [46, 22, 45, 23]. Here, two general ap-

proaches can be distinguished. The first approach casts the

pose estimation task as a joint location regression prob-

lem from the input image [46, 22, 23]. The second ap-

proach uses a CNN architecture for body part detection

[10, 17, 45, 31] and then typically enforces the 2D spa-

tial relationship between body parts as a subsequent pro-

cessing step. Similar to the latter approaches, the proposed

approach uses a CNN-based architecture to regress confi-

dence heat maps of 2D joint position predictions. The cur-

rent work departs from these approaches by enforcing 3D

spatial part relationships rather than 2D ones.

Most closely related to the present paper are generic fac-

torization approaches for recovering 3D non-rigid shapes

from image sequences captured with a single camera [7, 3,

14, 57, 12], i.e., non-rigid structure from motion (NRSFM),

and human pose recovery models based on known skele-

tons [20, 43, 47, 30, 21] or sparse representations [32, 15,

2, 55, 56]. Much of this work has been realized by assum-

ing manually labeled 2D joint locations; however, there is

some recent work that has used a 2D pose detector to auto-

matically provide the input joints [40, 48] or solved 2D and

3D pose estimation jointly [39, 54].

Contributions: The proposed approach advances the state-

of-the-art in the following three ways. First, in contrast to

prediction methods (e.g., [16, 23]), the proposed approach

does not require synchronized 2D-3D data, as captured by

motion capture systems. The proposed approach only re-

quires readily available annotated 2D imagery (e.g., the “in-

the-wild” PennAction dataset [53]) to train a CNN part de-

tector and a separate 3D motion capture dataset (e.g., the

CMU MoCap database) for the pose dictionary. Second,

in comparison to other 3D reconstruction methods (e.g.,

[32, 2]), the proposed approach considers an arbitrary pose

uncertainty. Finally, in contrast to prior work that consider

two disjoint steps (i.e., detection of 2D joints and subse-

quent lifting the detections to 3D), the current approach

combines these steps by casting the 2D joint locations as la-

tent variables. This allows us to leverage the 3D geometric

prior to help 2D joint localization and to rigorously handle

the 2D estimation uncertainty in a statistical framework.

2. Models

In this section, the models that describe the relationships

between 3D poses, 2D poses and images are introduced.

2.1. Sparse representation of 3D poses

The 3D human pose is represented by the 3D locations

of a set of p joints, which is denoted by St ∈ R
3×p for

frame t. To reduce the ambiguity for 3D reconstruction, it

is assumed that a 3D pose can be represented as a linear

combination of predefined basis poses:

St =

k
∑

i=1

citBi, (1)

where Bi ∈ R
3×p denotes a basis pose and cit the corre-

sponding weight. The basis poses are learned from training

poses provided by a motion capture (MoCap) dataset. In-

stead of using the conventional active shape model [13],

where the basis set is small, a sparse representation is

adopted which has proven in recent work to be capable of

modelling the large variability of human pose, e.g., [32, 2,

55]. That is, an overcomplete dictionary, {B1, · · · ,Bk},
is learned with a relatively large number of basis poses, k,

where the coefficients, cit, are assumed to be sparse. In the

remainder of this paper, ct denotes the coefficient vector

[c1t, · · · , ckt]
⊤ for frame t and C denotes the matrix com-

posed of all ct.

2.2. Dependence between 2D and 3D poses

The dependence between a 3D pose and its imaged 2D

pose is modelled with a weak perspective camera model:

W t = RtSt + T t1
⊤, (2)

where W t ∈ R
2×p denotes the 2D pose in frame t, and

Rt ∈ R
2×3 and T t ∈ R

2 the camera rotation and trans-

lation, respectively. Note, the scale parameter in the weak

perspective model is removed because the 3D structure, St,
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can itself be scaled. In the following, W , R and T denote

the collections of W t, Rt and T t for all t, respectively.

Considering the observation noise and model error, the

conditional distribution of the 2D poses given the 3D pose

parameters is modelled as

Pr(W |θ) ∝ e−L(θ;W ), (3)

where θ = {C,R,T } is the union of all the 3D pose pa-

rameters and the loss function, L(θ;W ), is defined as

L(θ;W ) =
ν

2

n
∑

t=1

∥

∥

∥

∥

∥

W t −Rt

k
∑

i=1

citBi − T t1
⊤

∥

∥

∥

∥

∥

2

F

,

(4)

with ‖ · ‖F denoting the Frobenius norm. The model in (3)

states that, given the 3D poses and camera parameters, the

2D location of each joint belongs to a Gaussian distribution

with a mean equal to the projection of its 3D counterpart

and a precision (i.e., the inverse variance) equal to ν.

2.3. Dependence between pose and image

When 2D poses are given, it is assumed that the distribu-

tion of 3D pose parameters is conditionally independent of

the image data. Therefore, the likelihood function of θ can

be factorized as

Pr(I,W |θ) = Pr(I|W )Pr(W |θ), (5)

where I = {I1, · · · , In} denotes the input images and

Pr(W |θ) is given in (3). Pr(I|W ) is difficult to directly

model, but it is proportional to Pr(W |I) by assuming uni-

form priors on W and I , and Pr(W |I) can be learned from

data.

Given the image data, the 2D distribution of each joint is

assumed to be only dependent on the current image. Thus,

Pr(I|W ) ∝ Pr(W |I) = ΠtΠjhj(wjt; It), (6)

where wjt denotes the image location of joint j in frame

t, and hj(·;Y ) represents a mapping from an image Y to

a probability distribution of the joint location (termed heat

map). For each joint j, the mapping hj is approximated

by a CNN learned from training data. The details of CNN

learning are described in Section 4.

2.4. Prior on model parameters

The following penalty function on the model parameters

is introduced:

R(θ) = α‖C‖1 +
β

2
‖∇tC‖

2
F +

γ

2
‖∇tR‖

2
F , (7)

where ‖ · ‖1 denotes the ℓ1-norm (i.e., the sum of absolute

values), and ∇t the discrete temporal derivative operator.

The first term penalizes the cardinality of the pose coeffi-

cients to induce a sparse pose representation. The second

and third terms impose first-order smoothness on both the

pose coefficients and rotations.

3. 3D pose inference

In this section, the proposed approach to 3D pose infer-

ence is described. Here, two cases are distinguished: (i) the

image locations of the joints are provided (Section 3.1) and

(ii) the joint locations are unknown (Section 3.2).

3.1. Given 2D poses

When the 2D poses, W , are given, the model param-

eters, θ, are recovered via penalized maximum likelihood

estimation (MLE):

θ∗ = argmax
θ

ln Pr(W |θ)−R(θ)

= argmin
θ

L(θ;W ) +R(θ). (8)

The problem in (8) is solved via block coordinate descent,

i.e., alternately updating C, R or T while fixing the others.

The update of C needs to solve:

C ← argmin
C

L(C;W ) + α‖C‖1 +
β

2
‖∇tC‖

2
F , (9)

where the objective is the composite of two differentiable

functions plus an ℓ1 penalty. The problem in (9) is solved by

accelerated proximal gradient (APG) [28]. Since the prob-

lem in (9) is convex, global optimality is guaranteed. The

update of R needs to solve:

R← argmin
R

L(R;W ) +
γ

2
‖∇tR‖

2
F , (10)

where the objective is differentiable and the variables are ro-

tations restricted to SO(3). Here, manifold optimization is

adopted to update the rotations using the trust-region solver

in the Manopt toolbox [6]. The update of T has the follow-

ing closed-form solution:

T t ← row mean

{

W t −Rt

k
∑

i=1

citBi

}

. (11)

The entire algorithm for 3D pose inference given the 2D

poses is summarized in Algorithm 1. The iterations are ter-

minated once the objective value has converged. Since in

each step the objective function is non-increasing, the algo-

rithm is guaranteed to converge; however, since the problem

in (8) is nonconvex, the algorithm requires a suitably chosen

initialization (described in Section 3.3).

3.2. Unknown 2D poses

If the 2D poses are unknown, W is treated as a latent

variable and is marginalized during the estimation process.

The marginalized likelihood function is

Pr(I|θ) =

∫

Pr(I,W |θ)dW , (12)
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Algorithm 1: Block coordinate descent to solve (8).

Input: W ; // 2D joint locations

Output: C,R,T ; // pose parameters

1 initialize the parameters ; // Section 3.3

2 while not converged do

3 update C by (9) with APG;

4 update R by (10) with Manopt;

5 update T by (11);

6 end

where Pr(I,W |θ) is given in (5).

Direct marginalization of (12) is extremely difficult. In-

stead, an EM algorithm is developed to compute the penal-

ized MLE. In the expectation step, the expectation of the

penalized log-likelihood is calculated with respect to the

conditional distribution of W given the image data and the

previous estimate of all the 3D pose parameters, θ′:

Q(θ|θ′) =

∫

{ln Pr(I,W |θ)−R(θ)} Pr(W |I, θ′)dW

=

∫

{ln Pr(I|W ) + ln Pr(W |θ)−R(θ)}Pr(W |I, θ′)dW

= const−

∫

L(θ;W )Pr(W |I, θ′)dW −R(θ). (13)

It can be easily shown that
∫

L(θ;W )Pr(W |I, θ′)dW = L(θ;E [W |I, θ′]) + const,

(14)

where E [W |I, θ′] is the expectation of W given I and θ′:

E [W |I, θ′] =

∫

Pr(W |I, θ′) W dW

=

∫

Pr(I|W )Pr(W |θ′)

Z
W dW , (15)

and Z is a scalar that normalizes the probability. The deriva-

tion of (14) and (15) is given in the supplementary mate-

rial. Both Pr(I|W ) and Pr(W |θ′) given in (6) and (3), re-

spectively, are products of marginal probabilities of wjt.

Therefore, the expectation of each wjt can be computed

separately. In particular, the expectation of each wjt is effi-

ciently approximated by sampling over the pixel grid.

In the maximization step, the following is computed:

θ ← argmax
θ

Q(θ|θ′)

= argmin
θ

L(θ;E [W |I, θ′]) +R(θ), (16)

which can be solved by Algorithm 1.

The entire EM algorithm is summarized in Algorithm 2

with the initialization scheme described next in Section 3.3.

Algorithm 2: The EM algorithm for pose from video.

Input: hj(·; It), ∀j, t ; // heat maps

Output: θ = {C,R,T } ; // pose parameters

1 initialize the parameters ; // Section 3.3

2 while not converged do

3 θ′ = θ;

// Compute the expectation of W

4 E [W |I, θ′] =
∫

1
Z

Pr(I|W )Pr(W |θ′) W dW ;

// Update θ by Algorithm 1

5 θ = argminθ L(θ;E [W |I, θ′]) +R(θ) ;

6 end

3.3. Initialization

A convex relaxation approach [55, 56] is used to ini-

tialize the parameters. In [55], a convex formulation was

proposed to solve the single frame pose estimation prob-

lem given 2D correspondences, which is a special case of

(8). The approach was later extended to handle 2D cor-

respondence outliers [56]. If the 2D poses are given, the

model parameters are initialized for each frame separately

with the convex method proposed in [55]. Alternatively, if

the 2D poses are unknown, for each joint, the image loca-

tion with the maximum heat map value is used. Next, the

robust estimation algorithm from [56] is applied to initialize

the parameters.

4. CNN-based joint uncertainty regression

A CNN is used to learn the mapping Y 7→ hj(·;Y ),
where Y denotes an input image and hj(·;Y ) represents a

heat map for joint j. Instead of learning p networks for p

joints, a fully convolutional neural network [24] is trained

to regress p joint distributions simultaneously by taking into

account the full-body information.

During training, a rectangular patch is extracted around

the subject from each image and is resized to 256×256 pix-

els. Random shifts are applied during cropping and RGB

channel-wise random noise is added for data augmentation.

Channel-wise RGB mean values are computed from the

dataset and subtracted from the images for data normaliza-

tion. The training labels to be regressed are multi-channel

heat maps with each channel corresponding to the image

location uncertainty distribution for each joint. The uncer-

tainty is modelled by a Gaussian centered at the annotated

joint location with variance σ = 1.5. The heat map res-

olution is reduced to 32 × 32 to decrease the CNN model

size which allows a large batch size in training and prevents

overfitting.

The CNN architecture used is similar to the SpatialNet

model proposed elsewhere [31] but without any spatial fu-
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sion or temporal pooling. The network consists of seven

convolutional layers with 5 × 5 filters followed by ReLU

layers and a last convolutional layer with 1× 1× p filters to

provide dense prediction for all joints. A 2×2 max pooling

layer is inserted after each of the first three convolutional

layers. The network is trained by minimizing the l2 loss

between the prediction and the label with the open source

Caffe framework [18]. Stochastic gradient descent (SGD)

with momentum of 0.9 and a mini-batch size of 128 is used.

During testing, consistent with previous 3D pose meth-

ods (e.g., [23, 44]), a bounding box around the subject is

assumed and the image patch in the bounding box It is

cropped in frame t and fed forward through the network

to predict the heat maps, hj(·; It), ∀j = 1, . . . , n.

5. Empirical evaluation

5.1. Datasets and implementation details

Empirical evaluation was performed on two datasets –

Human3.6M [16] and PennAction [53].

The Human3.6M dataset [16] is a recently published

large-scale dataset for 3D human sensing. It includes mil-

lions of 3D human poses acquired from a MoCap system

with corresponding images from calibrated cameras. This

setup provides synchronized videos and 2D-3D pose data

for evaluation. It includes 11 subjects performing 15 ac-

tions, such as eating, sitting and walking. The same data

partition protocol as in previous work was used [23, 44]:

the data from five subjects (S1, S5, S6, S7, S8) was used

for training and the data from two subjects (S9, S11) was

used for testing. The original frame rate is 50 fps and is

downsampled to 10 fps.

The PennAction dataset [53] is a recently introduced in-

the-wild human action dataset containing 2326 challenging

consumer videos. The dataset consists of 15 actions, such

as golf swing, bowling, and tennis swing. Each of the video

sequences is manually annotated frame-by-frame with 13

human body joints in 2D. In evaluation, PennAction’s train-

ing and testing split was used which consists of an even split

of the videos between training and testing.

The algorithm in [56] was used to learn the pose dictio-

naries. The dictionary size was set to K = 64 for action-

specific dictionaries and K = 128 for the nonspecific action

case. For all experiments, the parameters of the proposed

model were fixed (α = 0.1, β = 5, γ = 0.5, ν = 4 in a

normalized 2D coordinate system).

5.2. Evaluation with known 2D poses

First, the evaluation of the 3D reconstructability of the

proposed method with known 2D poses is presented. The

generic approach to 3D reconstruction from 2D correspon-

dences across a sequence is NRSFM. The proposed method

is compared to the state-of-the-art method for NRSFM [14]

Original Synthesized

PMP [32] 89.50 84.16

NRSFM [14] 72.98 48.88

Single frame initialization 50.04 48.08

Optimization by Algorithm 1 49.64 47.57

Table 1. 3D reconstruction given 2D poses. Two input cases are

considered: original 2D pose data from Human3.6M and synthe-

sized 2D pose data with artificial camera motion. The numbers are

the mean per joint errors (mm) in 3D.

on the Human3.6M dataset. A recent baseline method for

single-view pose reconstruction Projected Matching Pursuit

(PMP) [32] is also included in comparison.

The sequences of S9 and S11 from the first camera in the

Human 3.6M dataset were used for evaluation and frames

beyond 30 seconds were truncated for each sequence. The

2D orthographic projections of the 3D poses provided in the

dataset were used as the input. Performance was evaluated

by the mean per joint error (mm) in 3D by comparing the

reconstructed pose against the ground truth. As the standard

protocol for evaluating NRSFM, the error was calculated up

to a similarity transformation via the Procrustes analysis. To

demonstrate the generality of the proposed approach, a sin-

gle pose dictionary from all the training pose data, irrespec-

tive of the action type, was used, i.e., a non-action specific

model. The method from Dai et al. [14] requires a prede-

fined rank K. Here, various values of K were considered

with the best result for each sequence reported.

The results are shown in the second column of Table 1.

The proposed method clearly outperforms the NRSFM

baseline. The reason is that the videos are captured by

stationary cameras. Although the subject is occasionally

rotating, the “baseline” between frames is generally small,

and neighboring views provide insufficient geometric con-

straints for 3D reconstruction. In other words, NRSFM is

very difficult to compute with slow camera motion. This

observation is consistent with prior findings in the NRSFM

literature, e.g., [3]. To validate this issue, an artificial rota-

tion was applied to the 3D poses by 15 degrees per second

and the 2D joint locations were synthesized by projecting

the rotated 3D poses into 2D. The corresponding results are

presented in the third column of Table 1. In this case, the

performance of NRSFM improved dramatically. Overall,

the experiments demonstrate that the structure prior (even a

non-action specific one) from existing pose data is critical

for reconstruction. This is especially true for videos with

small camera motion, which is common in real world ap-

plications. The temporal smoothness helps but the change

is not significant since the single frame initialization is very

stable with known 2D poses. Nevertheless, in the next sec-

tion it is shown that the temporal smoothness is important

when 2D poses are not given.
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Directions Discussion Eating Greeting Phoning Photo Posing Purchases

LinKDE [16] 132.71 183.55 132.37 164.39 162.12 205.94 150.61 171.31

Li et al. [23] - 136.88 96.94 124.74 - 168.68 - -

Tekin et al. [44] 102.39 158.52 87.95 126.83 118.37 185.02 114.69 107.61

Proposed 87.36 109.31 87.05 103.16 116.18 143.32 106.88 99.78

Sitting SittingDown Smoking Waiting WalkDog Walking WalkTogether Average

LinKDE [16] 151.57 243.03 162.14 170.69 177.13 96.60 127.88 162.14

Li et al. [23] - - - - 132.17 69.97 - -

Tekin et al. [44] 136.15 205.65 118.21 146.66 128.11 65.86 77.21 125.28

Proposed 124.52 199.23 107.42 118.09 114.23 79.39 97.70 113.01

Table 2. Quantitative comparison on Human 3.6M datasets. The numbers are the mean per joint errors (mm) in 3D evaluated for different

actions of Subjects 9 and 11.

3D (mm) 2D (pixel)

Single frame initialization 143.85 15.00

Optimization by Algorithm 2 125.55 10.85

Perspective adjustment 113.01 10.85

No smoothness 120.99 11.25

No action label 116.49 10.87

Table 3. The estimation errors after separate steps and under addi-

tional settings. The numbers are the average per joint errors for all

testing data in both 3D and 2D.

5.3. Evaluation with unknown poses: Human3.6M

Next, results on the Human3.6M dataset are reported

when 2D poses are not given. The proposed method is com-

pared to three recent baseline methods. The first baseline

method is LinKDE which is provided with the Human3.6M

dataset [16]. This baseline is based on single frame regres-

sion. The second one is from Tekin et al. [44] which extends

the first baseline method by exploring motion information

in a short sequence. The third one is a recently published

CNN-based method from Li et al. [23].

In this experiment, the sequences of S9 and S11 from

all cameras were used for evaluation. The standard evalua-

tion protocol of the Human3.6M dataset was adopted, i.e.,

the mean per joint error (mm) in 3D is calculated between

the reconstructed pose and the ground truth in the camera

frame with their root locations aligned. Note that the Pro-

crustes alignment is not allowed here. In general, it is im-

possible to determine the scale of the object in monocular

images. The baseline methods learned the scale from train-

ing subjects. For a fair comparison, the reconstructed pose

by the proposed method was scaled such that the mean limb

length of the reconstructed pose was identical to the aver-

age value of all training subjects. As the alignment to the

ground truth was not allowed, the joint error was largely af-

fected by the camera rotation estimate, and empirically the

misalignment was largely due to the adopted weak perspec-

tive camera model. To compensate the misalignment, the

rotation estimate was refined for each frame with a perspec-

tive camera model (the 2D and 3D human pose estimates

were fixed) by a perspective-n-point (PnP) algorithm [25]

The results are summarized in Table 2. The table shows

that the proposed method achieves the best results on most

of the actions except for “walk” and “walk together”, which

involve very predictable and repetitive motions and might

favor the direct regression approach [44]. In addition, the

results of the proposed approach have the smallest variation

across all actions with a standard deviation of 28.75 versus

37.80 from Tekin et al.

In Table 3, 3D reconstruction and 2D joint localiza-

tion results are provided under several setup variations of

the proposed approach. Note that the 2D errors are with

respect to the normalized bounding box size 256 × 256.

The table shows that the convex initialization provides suit-

able initial estimates, which are further improved by the

EM algorithm that integrates joint detection uncertainty and

temporal smoothness. The perspective adjustment is im-

portant under the Human3.6M evaluation protocol, where

Procrustes alignment to the ground truth is not allowed.

The proposed approach was also evaluated under two ad-

ditional settings. In the first setting, the smoothness con-

straint was removed from the proposed model by setting

β = γ = 0. As a result, the average error significantly

increased. This demonstrates the importance of incorpo-

rating temporal smoothness. In the second setting, a single

CNN and pose dictionary was learned from all training data.

These models were then applied to all testing data without

distinguishing the videos by their action class. As a result,

the estimation error increased, which is attributed to the fact

that the 3D reconstruction ambiguity is greatly enlarged if

the pose prior is not restricted to an action class.
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Figure 2. Example frame results on Human3.6M, where the errors in the 2D heat maps are corrected after considering the pose and temporal

smoothness priors. Each row includes two examples from two actions. The figures from left-to-right correspond to the heat map (all joints

combined), the 2D pose by greedily locating each joint separately according to the heat map, the estimated 2D pose by the proposed EM

algorithm, and the estimated 3D pose visualized in a novel view. The original viewpoint is also shown.

Figure 2 visualizes the results of some example frames.

While the heat maps may be erroneous due to occlusion,

left-right ambiguity, and other uncertainty from the detec-

tors, the proposed EM algorithm can largely correct the

errors by leveraging the pose prior, integrating temporal

smoothness, and modelling the uncertainty.

5.4. Evaluation with unknown poses: PennAction

Finally, the applicability of the proposed approach for

pose estimation with in-the-wild videos is demonstrated.

Results are reported using two actions from the PennAc-

tion dataset: “golf swing” and “tennis forehand”, both of

which are very challenging due to large pose variability,

self-occlusion, and image blur caused by fast motion. For

the proposed approach, the CNN was trained using the an-

notated training images from the PennAction dataset, while

the pose dictionary was learned with publicly available Mo-

Cap data1. Due to the lack of 3D ground truth, quantitative

2D pose estimation results are reported and compared with

the publicly available 2D pose detector from Yang and Ra-

manan [50]. The baseline was retrained on the PennAction

dataset. Note that the baseline methods considered in Sec-

tion 5.3 are not applicable here since they require synchro-

nized 2D image and 3D pose data for training.

To measure joint localization accuracy, both the widely

used per joint distance errors and the probability of correct

keypoint (PCK) metrics are used. The PCK metric mea-

sures the fraction of correctly located joints with respect to

a threshold. Here, the threshold is set to 10 pixels which is

roughly the half length of a head segment.

Table 4 summarizes the quantitative results. The initial-

1Data sources: http://mocap.cs.cmu.edu and http://

www.motioncapturedata.com
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Figure 3. Example results on PennAction. Each row includes two examples. In each example, the figures from left-to-right correspond

to the ground truth superimposed on the image, the estimated pose using the baseline approach [50], the estimated pose by the proposed

approach, and the estimated 3D pose visualized in a novel view. The original viewpoint is also shown.

Baseline Initial Optimized

Golf 24.78 / 0.38 18.73 / 0.45 14.03 / 0.54

Tennis 29.15 / 0.40 25.75 / 0.42 20.99 / 0.45

Table 4. 2D pose errors on PennAction. Each pair of numbers cor-

respond to the per joint distance error (pixels) and the PCK metric.

The baseline is the retrained model from Yang and Ramanan [50].

The last two columns correspond to the errors after initialization

and EM optimization in the proposed approach.

ization step alone outperformed the baseline. This demon-

strates the effectiveness of CNN-based approaches, which

has been shown in many recent works, e.g., [46, 31]. The

proposed EM algorithm further improves upon the initial-

ization results by a large margin by integrating the geo-

metric and smoothness priors. Several example results are

shown in Figure 3. It can be seen that the proposed method

successfully recovers the poses for various subjects under a

variety of viewpoints. In particular, compared to the base-

line, the proposed method does not suffer from the well-

known “double-counting” problem for tree-based models

[50] due to the holistic 3D pose prior.

5.5. Running time

The experiments were performed on a desktop with an

Intel i7 3.4G CPU, 8G RAM and a TitanZ GPU. The run-

ning times for CNN-based heat map generation and convex

initialization were roughly 1s and 0.6s per frame, respec-

tively; both steps can be easily parallelized. The EM algo-

rithm usually converged in 20 iterations with a CPU time

less than 100s for a sequence of 300 frames.

6. Summary

In summary, a 3D pose estimation framework from video

has been presented that consists of a novel synthesis be-

tween a deep learning-based 2D part regressor, a sparsity-

driven 3D reconstruction approach and a 3D temporal

smoothness prior. This joint consideration combines the

discriminative power of state-of-the-art 2D part detectors,

the expressiveness of 3D pose models and regularization by

way of aggregating information over time. In practice, al-

ternative joint detectors, pose representations and tempo-

ral models can be conveniently integrated in the proposed

framework by replacing the original components. Experi-

ments demonstrated that 3D geometric priors and temporal

coherence can not only help 3D reconstruction but also im-

prove 2D joint localization. Future extensions may include

incremental algorithms for online tracking-by-detection and

handling multiple subjects.

Supplementary material: The MATLAB code, evaluation on

the HumanEva I dataset, demonstration videos, and other sup-

plementary materials are available at: http://cis.upenn.

edu/˜xiaowz/monocap.html.
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