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1. Introduction

This supplementary document provides additional de-
tails as well as experimental results that could not be in-
cluded in the main paper due to lack of space. Detailed
steps of the derivations that were given in the main paper
are provided in Section 2 and 3 along with explanation of
each step. Section 4 includes additional results of recovered
panoramas and stereo depth estimates that were captured
using our proposed setup. More results including anaglyph
images, videos of dynamic scenes and stereo depth maps
may be found at the project website 1

2. Optimality of the Surface Shape

In this section, we explain the reason for choosing
paraboloid surface for the design of coffee-filter mirror. Let
us take a general quadric surface equation, a1x2 + a2y

2 +
a3z

2 + a4x + a5y + a6z + a7 = 0. For a flat surface,
a1, a2, a3 are zero, for a paraboloid surface a3, a4, a5 are
zero and for hyperboloid surfaces a4, a5, a6 are zero. To
calculate the variation in the resolution of the image cap-
tured along a radial line, we find the difference between the
direction of the consecutive incident rays. In the case of
orthographic projections, direction of reflected light rays is
same and the direction of incident light rays is directly pro-
portional to normals of the mirror’s surface. We find the
variation of normals nv which is given by,

nv =
[
cos θ sin θ dz

dr

]
(1)

for a constant θ and varying r. We find dnv

dr by,

dnv
dr

=
[
0 0 d2z

dr2

]
Using x = r cos θ and y = r sin θ, we get a general
quadratic function given by f(r, z, θ).
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f(r, z, θ) = a1r
2 cos2 θ + a2r

2 sin2 θ + a3z
2 + a4r cos θ

+ a5r sin θ + a6z + a7

Double differentiating f(r, z, θ) = 0, we get,

d2f

dr2
= 2a1 cos2 θ + 2a2 sin2 θ + 2a3

dz

dr

2

+ 2a3z
d2z

dr2
+ a6

d2z

dr2

Consider the case of a flat mirror, where a1 = 0, a2 =

0, a3 = 0, we get d
2z
dr2 = 0, which means that the flat surface

has uniform field of view and does not change with r. This
means that the field of view is totally dependent upon the
height of the mirror.

For the case of a paraboloidal surface, where a3 = 0, we
get,

d2z

dr2
=
−2(a1 cos2 θ + a2 sin2 θ)

a6
(2)

which means that the resolution for the paraboloidal surface
is uniformly increasing with respect to r. As r increases,
resolution increases. Also the FOV captured in paraboloidal
shape is more than that of the flat mirror.

Considering hyperboloidal surface, where a6 = 0, we
get,

d2z

dr2
=
−2(a1 cos2 θ + a2 sin2 θ + a3

dz2

dr )

a6 + 2a3z
(3)

Although, FOV is more than that captured by the flat mirror,
the resolution increases non-uniformly with r. The resolu-
tion difference between the pixels at the upper part of the
design and the lower part of the design is drastically high,
which makes the choice of hyperbolic design irrelevant.
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3. Mirror Surface Derivations
In this section we derive the equation of the mirror sur-

face. Multiple factors can be varied to make the device
adaptive to specific applications. We derive the expressions
for only one petal APB as shown in the Fig. 1a. and the
same expressions hold for all n petals rotated by 2π/n. Cir-
cular surfaces AP and PB are used to capture the right and
left eye view respectively. Let us consider the angle be-
tween the chords of these two faces as β such that ∠APB
= β. Each petal subtends an angle θ at the center, where
θ = 2π

n such that ∠AOB = θ. Hence, we get n views each
for left and right eye. The design of the mirror is symmetri-
cal, and all the petals are of same size and dimensions. The
length of each face, referred as petal length, denoted by l,
as shown in Fig. 1a. Each petal, say Pi , where i = 1 to n
is bounded by a circle Cmax with radius Rmax, and inside
by a circle Cmin with radius Rmin. V is the viewing cir-
cle with radius equal to b. From Fig. 1a, OA = Rmin and
OP = Rmax. From 4OAP and 4OBP , by sine rule we
get the relations as,

l

sin( θ2 )
=

Rmax

sin(π − (θ+β)
2 )

=
Rmin

sin(β2 )
(4)

Since each face is symmetrical and oriented at equal sep-
aration,. OP is the angle bisector of the ∠APB, such that

∠APO = ∠BPO =
β

2

∠AOP = ∠POB =
θ

2

Therefore, in4OAP we get

∠OAP = π − ∠APO − ∠AOP

∠OAP = π − θ

2
− β

2

Since, LD is the perpendicular bisector of the chord AP
and is tangent to the viewing circle V , ∠DLP and ∠CDO
are the right angles and LP = l/2. OD = b is the radius of
the viewing circle. In4OCD and4CLP , we get

LP = CP cos(
β

2
)

CP = LP sec(
β

2
)

=
l

2
sec(

β

2
).

We know, OC + CP = Rmax, which gives

OC = Rmax −
l

2
sec(

β

2
) (5)

In4PLC,

∠LCP = π − ∠CLP − ∠CPL

=
π

2
− β

2

∠OCD = ∠LCP being vertically opposite angles. Thus
we get,

∠COD =
π

2
− ∠OCD

=
π

2
− (

π

2
− β

2
)

=
β

2

In4OCD,

OD

OC
= cos

β

2

OC = b sec(
β

2
) (6)

Comparing Eqn 5 and Eqn 6 we get

Rmax −
l

2
sec(

β

2
) = b sec(

β

2
)

Rmax = (b+
l

2
) sec(

β

2
). (7)

Combining Eqn 4 and Eqn 7, we get:

2Rmax cos
β

2
= 2b+ l

2Rmax cos
β

2
= 2b+Rmax

sin θ
2

sin θ+β
2

Rmax

(
(2 cos β2 sin θ+β

2 )− sin θ
2

sin θ+β
2

)
= 2b

Rmax

(
(2 cos β2 (sin θ

2 cos β2 + cos θ2 sin β
2 ))− sin θ

2

sin θ+β
2

)
= 2b

Rmax

(
(2 cos2 β2 − 1) sin θ

2 + cos θ2 (2 sin β
2 cos β2 )

sin θ+β
2

)
= 2b

Rmax

(
cosβ sin θ

2 + cos θ2 sinβ

sin θ+β
2

)
= 2b

Rmax

(
sin θ+2β

2

sin θ+β
2

)
= 2b (8)



Combining Eqn 4 and Eqn 8, we get

Rmax =
2b sin( θ+β2 )

sin( θ+2β
2 )

(9)

Rmin = Rmax
sin(β2 )

sin( θ+β2 )
=

2b sin(β2 )

sin( θ+2β
2 )

(10)

l = Rmax
sin( θ2 )

sin( θ+β2 )
=

2b sin( θ2 )

sin( θ+2β
2 )

(11)

3.1. Selection of optimal parameters

In our proposed design, disparity and device size can be
altered depending upon the application requirement. Size of
the device is proportional to Rmax. In order to have a com-
pact design of the mirror that generates human perceivable
stereo panoramas, the design parameters need to be opti-
mized.

3.1.1 Optimal outer radius

The value of the outer radius of the coffee filter mirror i.e.
Rmax is dependent upon β. We minimize the parameter
Rmax as given by Eqn 9 and get an optimal petal angle,

βopt =
π − θ

2
(12)

at whichRmax is minimum, and hence we get the minimum
size of the device.

3.1.2 Optimal angle between the two petals

We now find the optimal angle between the two petals. In
Fig. 1a, Let ∠PBE be α, the angle between two petals.
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Figure 1: Geometry of the petal surface used to obtain opti-
mal design parameters.

Consider4OBP where

∠OPB =
β

2
,∠POB =

θ

2

∠OBP = π − θ + β

2

Therefore

∠PBF = π − ∠OBP

= (π − θ + β

2
)

=
θ + β

2

Since OP is the angle bisector at equal separation,
∠PBE = 2∠PBF , which means α = θ+β, which means
αopt = θ + βopt. Hence, from Eqn 12 we get

αopt = θ +
π − θ

2
=
π + θ

2
(13)

3.1.3 Optimal angular curvature of a face

Next, we find the optimal value of the angular curvature of
a face. Consider Fig. 1b where O′ is the center of curvature
of the face PB. PO′ and O′B are the radii of curvature i.e
rc and ∠PO′B = 2γ is the angle subtended by each face
at the center of curvature. In4PO′B, ∠A = π − (θ + β),
which implies,

γ =
π

2
− ∠A = (θ + β)− π

2

In order to have a smaller device size,

γopt = (θ + βopt)−
π

2

Therefore, the optimal horizontal angular field of view is
given by:

γopt =
θ

2
(14)

and is independent of the obtuse angle ∠PBE between two
adjacent petals.

3.1.4 Optimal Radius of the curvature

From Fig 1b, O′C is the perpendicular bisector of PB,
CB = l

2 . In 4O′CB, l/2rc = sin γ. Radius of curvature
rc can be optimized by using the optimal value of γ. There-
fore,

rcopt =
l

2 sin θ
2

(15)



is the optimal radius of curvature. It is to be noted that these
centers of curvature lie on a circle.

To avoid wastage of pixels due to inter-reflections, as ex-
plained in Section 4.2 in the main paper, it is important to
collect the maximum scene information in the captured im-
age. Each face covers 2θ

n angular FOV, thus a total of n
such faces for each view covers complete 2π FOV. For no
missing regions, FOVs of two faces for the same eye views
should be covering consecutive areas of the scene. This
is achieved by aligning one face in the direction of O′P
and the next face for the same eye view, in the direction
BE. Hence the obtuse angle between the two faces PB
and BE is π+θ

2 . The amount of inter-reflections depends
upon the angle between two consecutive petals, α, which
depends upon the sampling angle of the device 2π

n . Ide-
ally, the amount of inter-reflections reduces down to zero,
when the FOV of two consecutive faces do not intersect at
all. However, this way, some of the scene regions will be
left uncovered in the FOV of some faces and hence not im-
aged at all. In order to account for these inter-reflections,
we introduce a small angle δ such that the angle of curva-
ture becomes 2γ+δ. This makes sure some overlap is there,
so that some redundant information is captured, which can
be used while dewarping. However, the value of δ is kept
sufficiently low, such that inter-reflections are also reduced
to a huge extent.

3.2. Resultant Mirror Surface
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Figure 2: Parameters of the mirror petal.

In this section, we obtain the surface equations of the
proposed coffee filter mirror in terms of polar coordinates φ
and r. As explained earlier, the surface of the coffee filter
mirror is paraboloidal vertically and circular in each hori-
zontal cross section. Let us consider the central axis of the
mirror to be the z axis. Then the surface equation can be
written as a function of x and y axis:

z = f(x, y) = mφ(x2 + y2), (16)

where mφ is the slope of the parabola for a given φ. Let

x2 +y2 = r2, where r is the radial distance in the XY plane
and φ is the angle of the radial line, then:

z = mφr
2 (17)

Eqn 17 represents the petal surface of our custom de-
signed mirror centered around origin. Consider the upper-
most and widest cross section of the mirror at z = zmax,
such that

zmax = mφr1
2

mφ =
zmax
r21

Let (xc, yc) be the center of the circle of curvature of
a face of a petal and (xd, yd) be the point which lie on the
curvature, r21 = k2r2 such that xd = kx and yd = ky. rc be
the radius of the circle of curvature for a face. Combining
this with Eqn 17, we get

mφ =
zmax
k2r2

which implies

z =
zmax
k2

Distance between (0, 0) and (xc, yc) is dc such that x2c +
y2c = d2c , Calculating distance from center of the curvature
and the point on the curvature we have:

(xd − xc)2 + (yd − yc)2 = r2c

(kx− xc)2 + (ky − yc)2 = r2c

=⇒ k =
(xxc + yyc) +

√
(xxc + yyc)2 − r2(d2c − r2c )

r2

Since, mφ = zmax/k
2r2,

mφ = zmax

(
r

(xxc + yyc) +
√

(xxc + yyc)2 − r2(d2c − r2c)

)2

Also, from the Fig. 2, it is to be noted that (xc, yc) forms
angle θ1 + θ

2 + β
2 + θ2 from the horizontal. Hence,

xc = xd + rc(cos(θ1 +
θ

2
+
β

2
+ θ2)

yc = yd + rc(sin(θ1 +
θ

2
+
β

2
+ θ2))

where θ2 = tan−1( 2rc
l ).

From this and Eqn 17 we get,



z = zmax

(
r2

(xxc + yyc) +
√

(xxc + yyc)2 − r2(d2c − r2c)

)2

(18)
Therefore, Eqn 18 gives the equation of the paraboloidal

surface of the mirror. Note that the slope mφ at every point
is a function of r.

3.3. Estimation of Surface normals

In this section, we derive the equation of the normal vec-
tor of a point on coffee-filter mirror. Let n̂ be the direction
of the normal vector of point P (r, φ). We find n̂ by find-
ing the normal vector of the tangent plane at point P (r, φ)
which consists of tangent vectors in horizontal and verti-
cal plane such that n̂ = PA×PB. PA and PB are the
tangent vectors at point P in the horizontal and vertical di-
rection respectively.
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Figure 3: Geometry for deriving the normals direction at
point P.

Let us consider the horizontal plane containing point P
as shown in Fig. 3a where P lies on a circular curvature
with center O such that P = (r cosφ, r sinφ, z0) , O =
(xc, yc, z0) and

OP = P−O =
[
r cosφ− xc r sinφ− yc 0

]T
And the vector PA which is orthogonal to OP is this given
by:

PA = nh =
[
yc − r sinφ r cosφ− xc 0

]T
Similarly we calculate PB in the vertical direction for

a fixed φ, where P (x, y, z) = (r cosφ, r sinφ,mφr
2) such

that PB is given by

PB = nv =
[
dx
dr

dy
dr

dz
dr

]T
=
[
cosφ sinφ 2mφr

]T

In the end, we calculate n as n = P̂A× P̂B = n̂h × n̂v.

3.4. Epipolar Geometry and Stereo Depth Estima-
tion

In this section we explain the derivation of the epipolar
geometry in detail. In general, epipolar geometry is used
for reducing the search space of matching points in the two
stereo images. In our device setup, the arrangement of the
mirrors capturing both left and right eye views, enables us to
calculate the epipolar geometry by finding the direction of
incident rays which are captured using the parabolic reflec-
tor. As described in the Section 5.3 in the main paper, the
conventional camera used in the system captures the light
rays which are parallel to the central axis of the camera us-
ing a parabolic reflector. Hence, all the rays which are in-
cident on the coffee-filter mirror are reflected in the parallel
direction. From the surface normals derived in the previous
section, we find out the direction of the set of the incident
rays captured using the proposed system.

n
^

I
R 

P

P3 P2
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Figure 4: Geomtery for deriving the direction of incident
ray direction.

Consider Fig. 4 where I is the Incident ray vector on any
point, n is the normal vector and R is the reflected ray vec-
tor. Since the direction of reflected ray and the normal vec-
tor is already known, we calculate the direction of the in-
cident ray to calculate the epipolar lines. From 4PP2P3,
P2P3 is the projection of PP3 on PP2. Hence,

P3P2 = PP2 − Î

= (PP3 · ˆPP2) ˆPP2 − Î

= (I · n̂)n̂− Î

Applying laws of reflection, the triangles 4PP3P2 and
4PP1P2 are congruent. This means,

P3P1 = 2P3P2

= 2((I · n̂)n̂− Î).



Applying vector triangle law in4P1P2P3 we get,

PP1 = PP3 + P3P1

= Î + 2((I · n̂)n̂− Î)

= 2(I · n̂)n̂− Î

R̂ = 2(I · n̂)n̂− Î

Using principle of reversibility of light, one can simply
derive

Î = 2(R · n̂)n̂− R̂

With our setup the R̂ is known, Î becomes the function of
r, φ for each point on the surface.
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Figure 5: Geometry showing the set of the points viewing
the straight line X to derive the epipolar constraints.

Let us consider a point in 3D world as shown in Fig. 5
defined by (X,Y, Z) which is imaged by a mirror surface
at point P (r, φ), then the incident ray direction Î at P is
viewed by some other mirror surface at location P ′(r′, φ′).
The set of such points form an epipolar curve for the point
P . Epipolar curve for a point in the left face is found by
minimizing the distance between the incident rays from a
point in a left face P to every other point in it’s right face
P ′. Thus, for each φ in the mirror surface, we find the rφ
which intersects the reflected ray from point P such that the
triple vector product is zero which means,

|[PP′, Ir,φ, Ir′,φ′ ]|
|Ir,φ × Ir′,φ′ |

= 0 (19)

where Ir,φ represents the direction of reflected ray from
mirror surface.

Each point is then transformed into the corresponding
image coordinate using the dewarping method explained in
previous section. Since, the design behaves as a non-central
camera, every point has different epipolar constraints. We

calculate stereo disparity between the left and right views
by finding the correspondences along these epipolar curves
using sum of squared differences (SSD). For this, we for-
mulate this problem as energy minimization problem and
find solution using [1].

3.5. Derivation of Orthographic Projections

We observed that for most practical applications, impor-
tant information perceived by humans is in the lower part
of the world whereas upper part is mostly the sky. In our
design, owing to the structure, upper part of the surface
has better resolution than the lower regions. Therefore, we
keep the coffee filter design inverted as shown in Fig. 6. A
parabolic reflector is kept above it, both aligned along the
same central axis. This parabolic mirror captures the ortho-
graphic rays and reflects them at the camera kept at its focus
C.

C

Rmax

ᵐ
ᵐ

P0

P1

P2
rmin

Parabolic 
Reflector

Coffee filter 
Mirror

B
O

Figure 6: Orthographic Projections using the proposed set
up which includes the coffee filter mirror and a parabolic
reflector

A hole of radius rmin is kept in the mirror so that the
camera can capture the parallel rays reflected from the
parabolic reflector. Also,OB = Rmax so that it captures all
the rays coming from the entire radius of the mirror surface.
Let a be the curvature of the parabolic reflector such that
the equation of the parabolic reflector can be represented as

z = ar2 (20)

then p0 = aR2
max. Also, from Fig. 6:

tan Θ =
p1

Rmax − rmin
=

p2
rmin

(21)

Since, 1
4a is the focal length of the parabolic reflector,

p0 + p1 + p2 =
1

4a
(22)



Solving Eqns 21 and 22, we get:

aR2
max + p1 + p2 =

1

4a

4a2R2
max + 4a(p1 + p2)− 1 = 0

(4R2
max)a2 + 4(p1 + p2)a− 1 = 0

Solving for a, we get,

a =

√
(p1 + p2)2 +R2

max − (p1 + p2)

2R2
max

(23)

which can be used to find the surface equations of the
parabolic reflector.

3.6. Calibration of the Proposed System

In this section, we explain the calibration and dewarp-
ing process in detail. As explained earlier that the surface
of the mirror is paraboloidal, the resolution is different at
different points along each radial line. Also, each captured
image depends upon the orientation and viewing angle of
the camera. However, for stereo vision to be perceivable,
camera’s viewing axis must be aligned with the central axis
of the device. To calibrate our device, we project structured
light binary patterns onto a display surface. These patterns
are used to compute a mapping from world coordinates to
image coordinates which is used for de-warping the panora-
mas. We use the approach proposed in [3] and project both
normal and inverse binary sequence patterns. These calibra-
tion images together will be used to de-warp the captured
scene image into left and right eye panoramas as explained
in the following steps.

1. Decoding the calibration images: At each pixel in
the captured image, we find the row and column it cor-
responds to in the de-warped panoramas, by decoding
the observed binary sequence from the calibration im-
ages at that particular pixel.

2. Finding the correct eye views: For each pixel in the
captured scene image we find out the angle of the ra-
dial line it lies on from the center of the image. Each
petal subtends an angle θ at the center. So pixels at an-
gles 0 to θ

2 belong to the left eye views, and those on
angles between θ

2 to θ belong to right eye views.

3. Creating the left and right panoramas: The cap-
tured scene image is de-warped into left and right
panoramas using the spatial information obtained from
step 1 and 2. The upper part of the image is of lesser
resolution than the lower one. As a result, some por-
tion of de-warped panorama has holes which can be
easily filled by interpolating those regions.

4. Additional Results
The dewarped left and right eye panoramas of two scenes

are given in Figures 8 and 9 along with red-cyan anaglyph
stereo.

Fig 9 below shows the anaglyph of an indoor scene along
with the depth values that are recovered from our camera.
Even through the design process is optimized for human
consumption, the recovered stereo is highly consistent with
the ground truth (See Figures 7b and 7c).
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(a)
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(c)

Figure 7: (a) The red-cyan anaglyph of a scene (b) Depth
map computed from the epipolar geometry of the proposed
coffee-filter mirror design (c) Ground Truth depth of the
scene

.



(a)

(b)

(c)

Figure 8: (a) Left-eye view (b) Right-eye view (c) Red-cyan stereo image of the Patio scene [2]
.
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Figure 9: (a) Left-eye view (b) Right-eye view (c) Red-cyan stereo image of the Office scene [2]
.


