
Large-Scale Semantic 3D Reconstruction: an Adaptive
Multi-Resolution Model for Multi-Class Volumetric Labeling

Supplementary Material

Maroš Bláha†,1 Christoph Vogel†,1,2 Audrey Richard1 Jan D. Wegner1

Thomas Pock2,3 Konrad Schindler1
1 ETH Zurich 2 Graz University of Technology 3 AIT Austrian Institute of Technology

The supplementary material is structured as follows: we
start with a number of visualizations that support the exper-
imental analysis in Sec. 5 of the paper. First, we show larger
and more detailed visualizations of the reconstructed large-
scale 3D model, to give a more tangible impression of the
model quality. We also visually depict the 2D evaluation
procedure for the semantic labeling performance, comple-
menting the quantitative results in Tab. 1 of the paper. In
addition, we qualitatively contrast the octree and fixed-grid
reconstructions in terms of geometric accuracy. Further, we
visualize the comparison between the proposed voxel split-
ting scheme and the trivial strategy to refine wherever there
is a non-zero data cost, c.f . Tab. 2 of the paper. Also in the
context of that table, we show the detailed evolution of the
memory and run-time consumption, per hierarchical refine-
ment step of the proposed scheme.

The remainder of the supplementary material then gives
additional technical details omitted in the paper: the ex-
act feature set used to predict the class-conditional proba-
bilities; the theoretical background and implementation de-
tails of the numerical scheme used to minimize the adaptive
energy and several straightforward proofs for a number of
claims that had to be omitted in the paper for lack of space.

1. Complementary Visualizations

To begin with, we present additional visualizations of
the large-scale semantic 3D model. Fig. 1 shows an or-
thographic projection of our reconstruction along the verti-
cal, juxtaposed with the aerial image of the same area from
Google Earth. Fig. 2 shows an oblique view of the full
scene; three oblique close-up views together with the most
similar input images; and three street-level views together
with the corresponding views from Google Street View (not
used in our work). The comparisons demonstrate the cor-
rectness and high level-of-detail of our reconstruction.

† shared first authorship

2. Comparison with a Fixed Voxel Grid
As an add-on to Tab. 1 of the paper, we illustrate the val-

idation of the semantic labeling accuracy. Fig. 3 shows the
reconstructions obtained with the proposed scheme as well
as with a fixed voxel grid, both at the same target resolu-
tion. Those reconstructions are then back-projected to one
of the input cameras and compared to a ground truth se-
mantic segmentation, as well as the raw 2D labeling from
the MultiBoost classifier, which serves as input for our vol-
umetric 3D modeling.

Complementary to the semantic validation, we quali-
tatively compare octree and fixed-grid reconstructions in
terms of geometric accuracy. Fig. 4 highlights regions with
perceptible differences, and simultaneously underlines that
the two variants deliver nearly identical models. Differ-
ences in the reconstructions are rare and concern only small
details.

3. Comparison of Splitting Schemes
This section complements Tab. 2 in the paper. It illus-

trates qualitatively how the proposed splitting criterion per-
forms compared to a trivial splitting rule, in which all voxels
with non-zero data cost are always subdivided (Fig. 5).

4. Performance Analysis per Refinement Level
When using a hierarchical scheme, the savings in mem-

ory consumption and computation time depend on the tar-
get resolution – the finer the discretization, the more waste-
ful a uniform voxel grid at that discretization interval. For
completeness, we list memory consumption and run-time,
as well as the corresponding gains, for different target res-
olutions. The analysis underlines the increasing benefit of
the multi-resolution framework as one aims for more de-
tailed and accurate models, c.f . discussion in Sec. 5 of the
paper. Empirically, the gain grows by a factor 1.7-1.9 every
time the target resolution is doubled, see Tab. 1.

Figure 1. Additional Visualizations. Top: orthographic birds-eye view of the complete Enschede model. Bottom: independent Google
Earth image of the same area. Colors indicate ground (gray), building (red), roof (yellow), vegetation (green) and clutter (blue).

Figure 2. Additional Visualizations. Big image: oblique view of the Enschede model. 1st and 2nd rows: aerial images from our input data
set, and corresponding details from the semantic 3D model. 3rd and 4th rows: independent Google Street View images, and corresponding
details from the semantic 3D model. Colors indicate ground (gray), building (red), roof (yellow), vegetation (green) and clutter (blue).

Figure 3. Comparison of the labeling accuracy. Left: input image and semantic 3D reconstructions. Colors indicate ground (gray), building
(red), roof (yellow), vegetation (green) and clutter (blue). Middle left: resulting label images. Middle right: error plot (misclassified pixels
are marked in red). Right: ground truth. Unlabeled image pixels (black) were excluded from the analysis.

Runtime [sec] Memory [GB] mean ratio gain factor
Scene 1 2 3 4 1 2 3 4

1
Sp

lit Octree 160 161 29 39 0.03 0.03 0.01 0.01 –
Grid 461 473 121 113 0.11 0.11 0.03 0.03 –
Ratio 2.9 2.9 4.2 2.9 3.7 3.7 3.0 3.0 3.3

2
Sp

lit
s Octree 834 827 213 201 0.12 0.12 0.03 0.03 –

Grid 4452 4398 1131 1124 0.85 0.85 0.21 0.21 –
Ratio 5.3 5.3 5.3 5.6 7.1 7.1 7.0 7.0 6.2 1.9

3
Sp

lit
s Octree 4134 3977 1183 1028 0.58 0.56 0.16 0.15 –

Grid 39521 39044 9873 9906 6.78 6.78 1.70 1.70 –
Ratio 9.6 9.8 8.3 9.6 11.7 12.1 10.6 11.3 10.4 1.7

4
Sp

lit
s Octree 19883 19672 5488 4984 2.68 2.62 0.74 0.69 –

Grid 430545 416771 91982 92893 54.25 54.25 13.56 13.56 –
Ratio 21.7 21.2 16.8 18.6 20.2 20.7 18.3 19.7 19.7 1.9

5
Sp

lit
s Octree – – 25390 21533 – – 3.32 2.70 –

Grid – – – – – – 108.50 108.50 –
Ratio – – – – – – 32.7 40.2 36.5 1.9

Table 1. Gain in run-time and memory footprint for different target resolutions, respectively refinement levels. Note, because of the low
memory consumption at coarse discretizations, we show an additional decimal place compared to the table in the main paper.

5. Features of the Semantic Input Data

To estimate the pixelwise class-conditional probabilities
in the input images, we train a multiclass boosting classifier
[1]. Per pixel we extract a 94-dimensional feature vector
from the intensity image and the corresponding depth map.
Appearance features are simply RGB values in a 5×5 pixel

window, for a total of 75 features. Additionally, we convert
the depth map to a 3D point cloud in the scene coordinate
system and extract 19 local geometry features [4], derived
from the height, the 3D structure tensor (i.e. eigenvalues),
the local tangent plane, and the point distribution in a verti-
cal column. See Tab. 2 for a complete list.

Type Feature definition

Height features
Height (z-component)
Height variance

Eigenvalue features

Anisotropy (λ1 − λ3)/λ1

Planarity (λ2 − λ3)/λ1

Sphericity λ3/λ1

Linearity (λ1 − λ2)/λ1

Local tangent plane features

Vertical component of plane normal
Deviation angle of plane normal from vertical
Variance of deviation angles
Distance from point to local plane
Variance of point-to-plane distances

Features based on histogram of signed z-
differences to other points in a vertical
column

of bins above mean frequency
of bins below mean frequency
Difference: # above bins - # below bins
of local frequency maxima
Average distance between local maxima
Sum of positive values
Sum of negative values
of elements in zero-bin

Table 2. Geometric features [4] used for semantic segmentation (together with RGB values).

Figure 4. Qualitative comparison between octree and fixed-grid
reconstructions in terms of geometric accuracy. Differences are
marked with blue circles.

6. Numerical Scheme of the Discrete Energy in
the Octree

This section provides a brief overview of our optimiza-
tion framework. At each octree level l we minimize the
adapted energy function El, as imposed by the current oc-
tree discretization. Recall that voxels of different sizes co-

exist in the octree. The energy (Eqs. 14, 15 in the paper)
was defined as:

El(xl) =
∑
s∈Ωl

∑
i

ρisx
i
s +

∑
i,j;i<j

Φijl (xijs − xjis). (A.1)

subject to the following marginalization, normalization and
non-negativity constraints:

xis =
∑
j

xijs,k, x
i
s =

∑
j

xjis̄,k,∀s̄ ∈ N−ek(s),

k ∈ {1, 2, 3} and
∑
i

xis = 1, xij ≥ 0. (A.2)

Here N−ek(s) denotes the neighborhood of the voxel s in
the direction −ek, which can consist of a voxel of the same
size, multiple smaller voxels, or (part of) one bigger voxel.
To minimize the convex problem in Eqs. (A.1, A.2), we in-
troduce Lagrange multipliers for the constraints to convert
the problem to primal-dual form. The dual variables are:

• νs for
∑
i x

i
s=1,

• λis,k for xis =
∑
j x

ij
s,k, and

• θis,s̄ for the “per-face” constraints xis =
∑
j x

ji
s̄,k, which

exist for all s, s̄ ∈ N−ek(s).

The dual variables are arranged into a vector (νl,λl,θl)
T.

The same is done for the primal variables (x)Tl =

(xil,x
ij
l)T. Then the energy can be written in its primal-

Figure 5. Comparison of the evolution using the proposed splitting criterion and naive splitting (c.f . Fig. 7 in the paper). Top: intermediate
reconstructions throughout the refinement. Both shape and semantic labels gradually emerge in a coarse-to-fine manner. Middle: vertical
slice through the scene, with color-coded octree depth (or equivalently, voxel size), using the proposed splitting criterion. Bottom: same,
but with naive splitting criterion.

dual form Epdl :

min
xl

max
νl,λl,θl

Epdl (xl;νl,λl,θl) =

 νl
λl
θl

Ml

(
xil
xijl

)
+

∑
s∈Ωl

∑
i

ρisx
i
s +
∑
i<j

Φijl (xijs − xjis) + ι≥0(xijs) + ι≥0(xjis)

with Ml :=MLN
Al,LN

. (A.3)

Here we used MLN
as the matrix encoding the full con-

straint set at maximal (grid) resolution. The level-dependent
multipliers νl,λl and θl follow by combining constraints
that occur multiple times, and eliminating redundant ones
(e.g. inside a coarse voxel). In this form we can apply the
primal-dual algorithm [3] to find a saddle-point for Epdl ,
which in our case reads:

νlλl
θl

n+1

=

νlλl
θl

n

+ σMlx
n
l

xn+1
l = (I + ∂G)−1

xnl − τMT
l

2

νlλl
θl

n+1

−

νlλl
θl

n



with G(xl) :=
∑
s∈Ωl

∑
i

ρisx
i
s +
∑
i<j

Φijl (xijs − xjis)+

ι≥0(xijs) + ι≥0(xjis). (A.4)

Overrelaxation 2(νl,λl,θl)
n+1 − (νl,λl, θl)n on the dual

variables proves to be especially memory efficient. In prac-
tice only the update of the indicator functions xi affects

multiple voxels. Thus, it is sufficient to only keep track
of (xis)

n. The respective descent step for the transition vari-
ables xij can be updated on-the-fly, without requiring addi-
tional storage.

The proximal step can be solved locally for each voxel.
While the update of the indicator functions xis is simple (per
voxel s and label i subtract ρis), the update of the transi-
tion functions xijs is more involved. We apply a variant of
Dykstra’s algorithm [2], described below in Sec. 6.1. The
algorithm converges as soon as the step sizes τ, σ fulfill
τσ|Ml|2 < 1, where we used |Ml| to denote the opera-
tor norm of Ml. In practice, instead of using constant step
sizes, we use the pre-conditioning scheme of [6] to acceler-
ate convergence. After refinement, the previous solution is
lifted to the next level according to the prolongation opera-
tor Al,l+1.

Practical issues. Recall that the data term for a voxel s at
any level l (s ∈ Ωl) is computed from the data term at the
finest resolution LN via ρis :=

∑
s̄∈ΩLN∩s ρ

i
s̄A

I
l,LN

(s, s̄).
To limit memory consumption, one can thus tile the grid Ω
and compute the unary terms independently and in parallel.
During refinement the data costs can then be loaded and
constructed in parts. To accelerate the inference, we assign
a small value σsky

s to voxels s, if they are likely to belong to
the freespace. These are all voxels that were not assigned
any data cost according to Eq. (3) from the paper, and whose
depth is lower than the observed one in all images.

6.1. Proxmap for the Minkowski sum of convex sets

While most parts of the primal-dual optimization stated
above are straight-forward, the proximity step w.r.t. the tran-

sition variables is a bit more involved. We must solve the
following sub-problem per voxel:

arg min
xij ,xji

1

2
||xij − xij ||2 +

1

2
||xji − xji||2+∑

k:Wk∈W

sup
w∈Wk

wT(xij − xji) + ι≥0(xij) + ι≥0(xji)

(A.5)

Here, the Minkowski sum, W , is assumed to consist of
K different Wulff shapes W1, . . . ,WK ∈ W . Introduc-
ing auxiliary variables {yk, zk}Kk=0 and additional Lagrange
multipliers {µk, λk}Kk=0, we can decouple the argument
within the regularizer:

min
xij ,xji,yk,zk

max
µk,λk

1

2
||xij − xij ||2 +

1

2
||xji − xji||2

+
∑

k:Wk∈W

sup
w∈Wk

wT(yk − zk) + ι≥0(y0) + ι≥0(z0)

−
K∑
k=0

λTk(xij − yk)− µTk(xji − zk)
(A.6)

Optimality w.r.t. xij , xji implies:

xij = xij +

K∑
k=0

λk and xji = xji +

K∑
k=0

µk. (A.7)

This leads to:

min
yk,zk

max
µk,λk

−1

2
||

K∑
k=0

λk − xij ||2 +
−1

2
||

K∑
k=0

µk − xji||2

+
∑

k:Wk∈W

sup
w∈Wk

wT(yk − zk) + ι≥0(y0) + ι≥0(z0)

+

K∑
k=0

λTkyk + µTkzk .
(A.8)

Using the fact that the support function of a set is the con-
jugate of its indicator function, we add ±

∑K
k=1 λ

T
kzk and

“dualize” the regularizer and positivity constraints:

max
µk,λk

min
zk

−1

2
||

K∑
k=0

λk − xij ||2 +
−1

2
||

K∑
k=0

µk − xji||2

−
∑

k:Wk∈W

ιWk
(−λk)− ι≤0(−λ0)− ι≤0(−µ0)

+

K∑
k=1

(λk + µk)Tzk.
(A.9)

The latter summand minzk
∑K
k=1(λk + µk)Tzk requires

λk = −µk, so we end up with:

min
µ0,λk

1

2
||

K∑
k=0

λk − xij ||2 +
1

2
||

K∑
k=0

λk + xji||2

+
∑

k:Wk∈W

ιWk
(−λk) + ι≥0(λ0) + ι≥0(µ0).

(A.10)

Figure 6. A simple octree structure. Inner and leaf nodes are kept
in two separate arrays. Inner nodes hold pointers to their children,
the data is only stored in the leaf nodes.

In that form, a certain number of iterations of block coor-
dinate descent on the dual variables {λk}k=0...K , µ0 and
(A.7) will deliver the solution to the the proximal step (A.5).

6.2. Octree structure

As mentioned in section 4.1 of the paper, the employed
octree data structure is rather simple (Fig. 6). A quick
test (always splitting each voxel) revealed an overhead of
a factor 1.6 in computation time, when compared to the
grid structure. For the uniform grid, the neighborhood re-
lation of adjacent voxels is directly accessible. In our oc-
tree implementation we use a simple recursive procedure.
Yet, more sophisticated octree models exist [5], which are
specifically tailored for fast neighbor retrieval. Constructing
a dual octree [5] promises a significant speedup with sim-
ilar memory usage. In future work we plan to investigate
whether our implementation could benefit from this kind of
data structure.

7. Proofs
In this section we formally derive a number of claims

which were stated without proof in the paper.

7.1. Prolongation operator

We first show that property (iii) in section 4.2 is fulfilled
with equality:

El(xl) = El+1(Al,l+1xl) (A.11)

According to Eq. (7) in the paper two properties need to be
fulfilled:

El(xl) = E(Al,LN
xl) and (A.12)

Al+1,l+2Al,l+1 = Al,l+2 , (A.13)

with LN the maximal resolution in the octree. First, note
that the resolution-dependent energy was defined according
to (A.12). To prove (A.13) we first repeat the definition of
A:

A :=
[
(AI)T; (AIJ)T

]T
. (A.14)

Again the hierarchical structure allows us to specify map-
pings only for a single coarse parent voxel s and one of its
children s̄. The full operator A in (A.14) is simply a con-
catenation of its parts. Indicator variables are transformed

according to:

AIl,L(s, s̄) :=
[
AIl,L|0l,L

]
, AIl,L∈RM×M ,0l,L∈RM×3M2

,

AIl,L(i, j) =

{
1 iff i = j

0 otherwise.
(A.15)

Recall that ∂eks denotes the boundary of voxel s in direction
ek. The second part of A, the prolongation of the transition
variables, is given by:

AIJl,L(s, s̄) :=
[
BIl,L|BIJl,L

]
BIl,L∈R3M2×M

BIJl,L∈R3M2×3M2

BIl,L((i, i, k), (i)) =

{
1 iff ∂ek s̄ 6⊂ ∂eks
0 else

BIJl,L((i, j, k), (i, j, k)) =

{
1 iff ∂ek s̄ ⊂ ∂eks
0 else.

(A.16)

To show (A.13), we denote a parent voxel s ∈ Ωl, one
of its children s̄ ∈ Ωl+1 ∩ s and a “grand-child” of s with
s ∈ Ωl+2 ∩ s̄, and abbreviate l01 := {l, l + 1}, l12 :=
{l + 1, l + 2}, l02 := {l, l + 2}.

Al12(s̄, s)Al01(s, s̄) =[
AIl12A

I
l01

0

BIl12A
I
l01

+BIJl12B
I
l01

BIJl12B
IJ
l01

]
:=

[
CIl02 0

DI
l02

DIJ
l02

]

CIl02(i, j) =

{
1 iff i = j

0 else.

DI
l02((i, i, k), (i))=


1 iff ∂eks 6⊂ ∂ek s̄∨

(∂eks⊂∂ek s̄ ∧ ∂ek s̄ 6⊂∂eks)
0 else

DIJ
l02((i, j, k), (i, j, k))=

{
1 iff ∂ek s̄⊂∂eks ∧ ∂eks⊂∂ek s̄
0 else.

(A.17)

In its last form the equivalence to the definition of AIl02 and
AIJl02 (c.f . Eqs. (9,10) in the paper) is apparent:

CIl02(i, j) =

{
1 iff i = j

0 else

DI
l02((i, i, k), (i)) =

{
1 iff ∂eks 6⊂ ∂eks
0 else

DIJ
l02((i, j, k), (i, j, k)) =

{
1 iff ∂eks ⊂ ∂eks
0 else.

(A.18)

This concludes the proof.

Figure 7. Configuration of the counterexample. (c.f . Sec. 7.2).

7.2. Equality constraints on the transition variables

In this section we show that, by only demanding equal-
ity in the indicator functions, our scheme does not derive
from the “as-tight-as-possible” principle alone. We give the
following 2D counterexample with three labels, and three
pixels arranged in a clockwise rotated L-shape configura-
tion (c.f . Fig. 7). The central one holds variables z, its right
neighbor x and the pixel at the bottom variables y. We set
the data term and regularizer as follows:

ρiz := (0, 0.999, 0)

ρix := (0, 0, 0.999)

ρiy := (0.999, 0, 0)

φ01(z)=φ12(z)=0.5||z||2
φ02(z) = 0.625||z||2.

(A.19)

Assuming one level difference to the maximal resolution,
an optimal solution is:

x = y = z := (
1

3
,

1

3
,

1

3
),

with zij = 0 ∀ i 6= j
(A.20)

with an energy of 0.999. Here, any feasible assignment with
zij = 0 ∀i 6= j is optimal. In contrast, introducing transi-
tion variables (and handling constraints) at the level of the
grid, the optimal solution becomes:

z := (
1

2
, 0,

1

2
) , x := (

1

2
,

1

2
, 0) , y := (0,

1

2
,

1

2
)

with

z00
x1

= z21
x1

= z01
y1 = z11

y1 = 0.5,

z00
x2

= z21
x2

= z01
y2 = z22

y2 = 0.45,

z01
x2

= z20
x2

= z02
y2 = z21

y2 = 0.05, and

zij∗ = 0 for all other i, j and ∗ = x1, x2, y1, y2.

(A.21)

Although the solution appears significantly different, the
energy of 0.994 is only slightly lower. To prove optimality
one could check the respective Lagrangian—we found both
solutions with a Matlab program, and omit further tedious
details at this point.

Discussion. The analysis above shows that boundary tran-
sitions at coarse voxels could be modeled more accurately
by maintaining additional pseudo-marginals xij for each
voxel. Aiming for a low memory footprint, such a proce-
dure does not appear very reasonable. A situation as de-
picted in the example above should better be resolved by
refining the affected voxels, in order to allow for a more
accurate transition boundary. Recall that we require the res-
olution of adjacent voxels to differ by at most one level, and
split a voxel whenever its neighborhood contains any vox-
els with a different dominant label. Both conditions will
eventually lead to the splitting of affected regions.

References
[1] D. Benbouzid, R. Busa-Fekete, N. Casagrande, F.-D. Collin,

and B. Kégl. MULTIBOOST: a multi-purpose boosting pack-
age. JMLR, 2012. 4

[2] J. P. Boyle and R. L. Dykstra. A method for finding projec-
tions onto the intersection of convex sets in Hilbert spaces.
Lecture Notes in Statistics, 1986. 6

[3] A. Chambolle and T. Pock. A first-order primal-dual al-
gorithm for convex problems with applications to imaging.
JMIV, 2011. 6

[4] N. Chehata, L. Guo, and C. Mallet. Airborne lidar feature se-
lection for urban classification using random forests. IntArch-
PhRS, 2009. 4, 5

[5] T. Lewiner, V. Mello, A. Peixoto, S. Pesco, and H. Lopes. Fast
generation of pointerless octree duals. In Symposium on Ge-
ometry Processing 2010 (Computer Graphics Forum), 2010.
7

[6] T. Pock and A. Chambolle. Diagonal preconditioning for
first order primal-dual algorithms in convex optimization. In
ICCV, 2011. 6

