
Online Learning with Bayesian Classification Trees
Supplementary Material

Samuel Rota Bulò
FBK-irst

Trento, Italy
rotabulo@fbk.eu

Peter Kontschieder
Microsoft Research

Cambridge, UK
Mapillary

Graz, Austria
pkontschieder@gmail.com

This document provides the following, additional contributions to our CVPR 2016 submission:

• in Section A we provide details about how to derive some formulæ that appear in the main paper;

• in Section B we provide a complexity analysis of our algorithm;

• in Section C we provide additional experimental analyses. Specifically, in Section C.1 we provide Matlab timings of
our non-optimized implementation. In Section C.2, we demonstrate and discuss the positive effects of an increasing
ensemble size for both, depth 7 and depth 8 BOF-S ensembles. Moreover, we provide a guide on how to perform
model selection based on the online development of the ensemble training loss in Section C.3.

A. Detailed derivations
A.1. Derivation of (9) and (10)

We show how to obtain (9) and (10) from (6) when the unimodal surrogate posterior is adopted. The KL-divergence in (6)
can be rewritten as follows:

DKL(q̂
i+1‖q) = Eq̂i+1 [− log q(t;h)] + const

= Eq̂i+1

[
− log δŜ(S)−

∑
n∈N

log qn(θn;µn, Σn)−
∑
`∈L

log q`(π`;α`)

]
+ const

= Eq̂i+1

[
− log δŜ(S)

]
+
∑
n∈N

Eq̂i+1 [− log qn(θn;µn, Σn)] +
∑
`∈L

Eq̂i+1 [− log q`(π`;α`)] + const ,

where we indicate with “const” a term that does not depend on h = (Ŝ,µ, Σ,α). Hence,

min
h
DKL[p

(
q̂i+1

)
‖q(t;h)]

= min
Ŝ

Eq̂i+1

[
− log δŜ(S)

]
+
∑
n∈N

min
µn,Σn

Eq̂i+1 [− log qn(θn;µn, Σn)] +
∑
`∈L

min
α`

Eq̂i+1 [− log q`(π`;α`)] + const .

Therefrom, the independent minimizations in (9) and (10) follow. Moreover,

Ŝi+1 = arg min
Ŝ

Eq̂i+1

[
− log δŜ(S)

]
= Ŝi ,

for q̂i+1 is supported only at Ŝi.

1

A.2. Update of the multi-modal surrogate posterior

The projection step in (6) takes the following form when the multi-modal surrogate posterior in (11) is adopted (we
re-write it in terms of the distribution’s parameter):

(h1i+1, . . . , h
m
i+1) ∈ arg min

h1,...,hm

DKL(q̂(t;h
1
i , . . . , h

m
i)‖q(t;h1, . . . , hm)) . (21)

where q̂(t;h1i , . . . , h
m
i) is the result of update rule (5), when the multi-modal surrogate posterior q(t;h1i , . . . , h

m
i) is employed.

We can then write

q̂(t, h1i , .., h
m
i) =

1

m

m∑
j=1

p
(
yi+1;hji ,xi+1

)
p(yi+1;h1i , . . . , h

m
i ,xi+1)

p
(
t|yi+1;hji ,xi+1

)
and apply the log-sum-inequality to obtain the following bound:

DKL(q̂(t|h1i , .., hmi)‖q(t;h1, . . . , hm))

≤ 1

m

m∑
j=1

p
(
yi+1;hji ,xi+1

)
p(yi+1;h1i , . . . , h

m
i ,xi+1)

DKL(q̂(t;h
j
i)‖q(t;h

j) + log
p
(
yi+1;hji ,xi+1

)
p(yi+1;h1i , . . . , h

m
i ,xi+1)

 .

Now, the minimization (21) can be replaced with the minimization of the upper bound that we derived above, to get approx-
imate posterior updates. The minimization of the upper bound is equivalent to minimizing the KL-divergence terms with
respect to each hj independently, i.e. we perform the posterior update of single Bayesian trees, given the unimodal surrogate
posteriors q(t;hji).

A.3. Posterior predictive distribution

From (7) we obtain

p(y;hi,x) = Eqi [p(y|t;x)] =
∑
`∈L

Eqi [r(`|t;x)] Eqi` [π`y] =
∑
`∈L

Eqi [r(`|t;x)]
αi`y
|αi`|

.

As for the expectation of r we have

Eqi [r(`|t;x)] =
∏
n∈N

Eqin [1zn≥0]
1`↙n Eqin [1zn<0]

1n↘` , (22)

where zn = θ>n ξn(x). Since θn is Gaussian distributed with mean µin and covariance Σin, also zn is Gaussian distributed
with mean E[zn] = E[θn]>ξn(x) = µi>n ξn(x) and variance Var[zn] = ξn(x)

>Var[θn]ξn(x) = ξn(x)>Σinξn(x). This
allows us to write

Eqin [1zn≥0] = Ezn [1zn≥0] = Φ

(
E[zn]√
Var[zn]

)
= Φ(µi>n ξ̃in(x)) = βin(x) , (23)

where ξ̃in(x) is defined as in (15). Moreover, we have that

Eqin [1zn<0] = 1− Eqin [1zn≥0] = 1− βin(x) . (24)

We obtain (13), by substituting (23) and (24) into (22), and by writing ρ(`;hi,x) for the latter quantity.

A.4. Update rule for α

We show how to obtain (20) from (19). It is well-known that, if π` is Dirichlet-distributed with parameter αi+1
` , then the

expectation of log(π`z) yields ψ(αi+1
`z) − ψ(|αi+1

` |1), where ψ is the digamma function. Hence, the left-hand-side of (20)
follows therefrom.

We focus now on the right-hand-side, i.e. the expectation Eq̂i+1 [log(π`z)], which involves the following marginal of q̂i+1:

q̂i+1(π`) =
p(yi+1|π`;hi,xi+1)q`(π`;α

i
`)

p(yi+1;hi,xi+1)
. (25)

2

The likelihood term p(yi+1|π`;hi,xi+1) has the same form of p(yi+1;hi,xi+1) as per (13) with π`yi+1 replacingαi`yi+1
/|αi`|1.

Accordingly, we can write

p(yi+1|π`;hi,xi+1) = p(yi+1;hi,xi+1) +

(
π`yi+1

−
αi`yi+1

|αi`|1

)
ρ(`;hi,xi+1) .

By substituting back into (25) we obtain

q̂i+1(π`) = q`(π`;α
i
`)

[
1 +

(
π`yi+1

−
αi`yi+1

|αi`|1

)
a`

]
,

where a` = ρ(`;hi,xi+1)
p(yi+1;hi,xi+1)

.
We can now solve the expectation as follows:

Eq̂i+1 [log(π`z)] =

∫
log(π`z)q̂

i+1(π`)dπ`

=

(
1− a`

αi`yi+1

|αi`|1

)∫
log(π`z)q`(π`;α

i
`)dπ`︸ ︷︷ ︸

ψ(αi
`z)−ψ(|α

i
`|1)

+a`

∫
log(π`z)π`yi+1q`(π`;α

i
`)dπ` ,

where the integral in the first term of the last equality is again the expectation of log(π`z) under the Dirichlet distribution. As
for the last integral we can get rid of π`yi+1

by noting that

π`yi+1
q`(π`;α

i
`) =

αi`yi+1

|α`|1
q`(π`;β`)

where β`z = αi`z for all z 6= yi+1 and β`yi+1
= αi`yi+1

+ 1. By doing so, we find again a known integral:

a`

∫
log(π`z)π`yi+1

q`(π`;α
i
`)dπ` = a`

αi`yi+1

|αi`|1

∫
log(π`z)q`(π`;β`)dπ` = a`

αi`yi+1

|αi`|1
[ψ(β`z)− ψ(|β`|1)] .

By exploiting the digamma’s recurrence relation ψ(x+ 1) = ψ(x) + x−1, we can rewrite the last factor as

ψ(β`z)− ψ(|β`|1) = ψ(αi`z)− ψ(|αi`|1) +
1z=yi+1

αi`z
− 1

|αi`|1
.

Finally, by exploiting the new relations we obtain

Eq̂i+1 [log(π`z)]

=

(
1− a`

αi`yi+1

|αi`|1

)[
ψ(αi`z)− ψ(|αi`|1)

]
+ a`

αi`yi+1

|αi`|1

[
ψ(αi`z)− ψ(|αi`|1) +

1z=yi+1

αi`z
− 1

|αi`|1

]
= ψ(αi`z)− ψ(|αi`|1) +

a`(1z=yi+1
− u`)

|αi`|1

where u` = αi`yi+1
/|αi`|1.

A.5. Update rule for µ and Σ

The solution to (9) can be found by moment-matching. By [1], this yields the following explicit update formulas for the
means and the covariances of each node n ∈ N :

µi+1
n = µin + Σin

∂

∂µin
log p(yi+1;hi,xi+1) , (26)

Σi+1
n = Σin + Σin

∂2

∂µin∂µ
i>
n

log p(yi+1;hi,xi+1)Σi>n . (27)

3

We will next simplify the derivatives to obtain (16) and (17). We start with the derivative in the update for the mean µn:

∂

∂µin
log p(yi+1;hi,xi+1) =

∂
∂µi

n
p(yi+1;hi,xi+1)

p(yi+1;hi,xi+1)
.

Then

∂

∂µin
p(yi+1;hi,xi+1) = ρ(n;hi,xi+1)

∂

∂µin
p(yi+1|n;hi,xi+1)

= ρ(n;hi,xi+1)

[
p(yi+1|nL;hi,xi+1)

∂

∂µin
βin(xi+1) + p(yi+1|nR;hi,xi+1)

∂

∂µin
(1− βin(xi+1))

]
= ρ(n;hi,xi+1)φ(µi>n ξ̃in)[p(yi+1|nL;hi,xi+1)− p(ys+1|nR;hi,xi+1)]ξ̃in

= ρ(n;hi,xi+1)φ(µi>n ξ̃in)(unL
− unR

)ξ̃in ,

where ξ̃in stands for ξ̃in(xi+1), un = p(yi+1|n;hi,xi+1), and we explot the recursive formula un = βin(xi+1))unL
+ (1 −

βin(xi+1)))unR
. By substituting back in the original derivative we obtain:

∂

∂µin
log p(yi+1;hi,xi+1) =

ρ(n;hi,xi+1)

p(yi+1;hi,xi+1)
φ(µi>n ξ̃in)(unL

− unR
)ξ̃in = κnξ̃

i
n ,

and by substitution in (26) we obtain (16).
As for the update rule for Σn, we have

∂2

∂µin∂µ
i>
n

log p(yi+1;hi,xi+1) =

∂2

∂µi
n∂µ

i>
n
p(yi+1;hi,xi+1)

p(yi+1;hi,xi+1)
− κ2nξ̃inξ̃i>n .

Then

∂2

∂µin∂µ
i>
n

p(yi+1;hi,xi+1) = ρ(n;hi,xi+1)(unL
− unR

)ξ̃in
∂

∂µi>n
φ(µi>n ξ̃in)

= −ρ(n;hi,xi+1)φ(µi>n ξ̃in)(unL
− unR

)(µi>n ξ̃in)ξ̃inξ̃
i>
n ,

where we exploit the derivative φ′(x) = −xφ(x). By substituting back in the previous derivative we get

∂2

∂µin∂µ
i>
n

log p(yi+1;hi,xi+1) = −κn(µi>n ξ̃in)ξ̃inξ̃
i>
n − κ2nξ̃inξ̃i>n = −(κ2n + κnµ

i>
n ξ̃in)ξ̃inξ̃

i>
n .

Finally, by substitution in (27) we obtain (17).

B. Complexity notes.
If we consider the online learning procedure with the multi-modal posterior, we are de facto training m tree models.

Assume each tree to have n decision nodes. The per-sample training complexity is given by O(mn(d2 + |Y|ν)). Indeed, the
computation of the posterior updates require traversing the trees twice as shown Sec. 4 of the main paper. The most expensive
operation per decision node is the covariance matrix update having complexity O(d2), where d is the maximum node feature
dimensionality. For the leaves, the update complexity is proportional to the number of classes |Y| and the average number
ν of Newton-Raphson iterations. The computational complexity during inference per single tree is discussed in Sec. 4 of
the main paper, i.e. for m trees, we have O(md2n) in case the stochastic routing is applied. However, when applying the
fast, single path inference trick as discussed in the main paper, complexity reduces to O(md log2(n)), which is identical to
the complexity of offline, oblique random forests [2]. Since for our proposed method the number of trees m per ensemble
as well as their average number of decision nodes n is much smaller than for oblique forests, we will typically experience a
computational advantage over them.

4

dna satimages USPS
#features 180 60 36 256

ORF 2.0·103 - 2.8·103 4.0·103

MF 330 290 510 1.6·103

EX-k 5.0·103 - 5.0·103 2.9·104

BOF 32.3 4.3 63.7 1.88·103

BOF-P 19.7 3.8 40.4 436.2
BOF-B 22.9 3.1 45.2 1.29·103

BOF-BP 11.6 2.6 35.7 305.4

Table 2. Timing details for related works in top rows (Python implementation, numbers taken from [4]) and proposed Bayesian online
forests in bottom rows (Matlab implementation) in [s].

C. Experimental Results
C.1. Timings on Machine Learning and Kinect Datasets

Timing analysis In this section, we provide timing details in Tab. 2 for our parallel, though non-optimized Matlab imple-
mentation in the machine learning datasets evaluated in Sec. 5.1 of the main paper. We ran all experiments on a desktop
machine with 16 cores. Please note that the timings for our method cannot directly be compared to those produced by the
Python implementations from [3, 4], however, they show how fast our ensembles of Bayesian trees can be grown. Training
times are provided for forest training, i.e. we have an advantage as we only have to train 8 trees of limited depth, while our
competitors need to train 100 deep trees to obtain the reported accuracies. For future work, we plan a GPU-based imple-
mentation that is capable to pursue real-time updates of the model. Timings on test data were in the order of milliseconds.
For the sake of implementation simplicity we only used balanced trees at the moment. Despite the quadratic term due to the
covariance matrix update, our trees can be trained reasonably fast compared to the other approaches, because there is no need
for exceptionally deep trees.

As for the experiment on the Kinect dataset in Sec. 5.2, the training time for 8 BOF-S trees on all training data is≈20h for
depth 8 (≈12h for depth 7), which can be reduced to ≈6h with the diagonal version for depth 8 BOF-SD and ≈3h for depth
7 BOF-SD (all Matlab timings).

C.2. Ensemble effect on Kinect dataset

In Fig. 5 we show the ensemble effect on test accuracy for Kinect data. The scores increase as we add more of our BOF-S
trees to the ensemble, providing a stronger impact on the overall test scores as we found for the machine learning datasets.
We explain this by the fact that the feature space in the Kinect experiment is much larger and more complex and also due to
the inherent differences of BOF and BOF-S, ie. the enabled feature space subsampling in split nodes. Thus, for more complex
classification scenarios we benefit from a larger ensemble size, akin to what is well-known and appreciated in conventional
applications for random forests.

C.3. Model selection guide based on online development of ensemble training loss

Finally, we present a guide on how to perform tree topology selection, based on the analysis of the cumulative moving
average of the training loss they exhibit (defined as ls+1 = − log

(
(s+ 1)−1

∑s
i=0 P (yi+1|xi+1, hi)

)
. In Fig. 6, we plot

the cumulative moving average loss for different tree depths 4-8 (averaged over 5 training repetitions) for the first 2000
training samples. Please note that depth 4 is in principle insufficient since the number of generated leaf nodes is smaller than
the number of object classes. We observe that the loss development strongly correlates with tree depth (when considering
sufficiently deep tree depths 5-8), i.e. depth 5 has lower loss than depth 6, etc. In such a way, one can select the model with
lowest training loss if inference needs to be performed at this early stage of training (which we actually applied to obtain the
scores for depth 8 BOF-S up to 1k samples in Fig. 4, center). As we approach closely to 2k samples, the differences in the
loss become less pronounced, and different tree depths lead to similar loss developments. The depth 4 case (trees that are too
shallow) also shows that the loss cannot be reasonably reduced after around 1300 samples, which is an expected trend and a
clear indicator that the model choice was suboptimal.

5

Training data size
103 104 105 106

A
cc

ur
ac

y
[%

]

50

55

60

65

70

75

80

85
Ensemble effect on Accuracy (depth 7)

2 trees
3 trees
4 trees
5 trees
6 trees
7 trees
8 trees

Training data size
103 104 105 106

A
cc

ur
ac

y
[%

]

50

55

60

65

70

75

80

85
Ensemble effect on Accuracy (depth 8)

Figure 5. Effect of varying BOF-S ensemble sizes for depth 7 (left) and depth 8 (right) trees on Kinect test data accuracy as function of
training data.

Training data size
0 200 400 600 800 1000 1200 1400 1600 1800 2000

O
nl

in
e

tr
ai

ni
ng

 lo
ss

1.5

2

2.5

3

3.5
Online development of loss vs. training data arrival

Depth 4
Depth 5
Depth 6
Depth 7
Depth 8

Figure 6. Demonstration of loss development on Kinect dataset using different depth selections. Losses are cumulative moving averages of
the training loss (after averaging the losses over five repetitions per forest).

References
[1] Manfred Opper. A bayesian approach to on-line learning. In David Saad, editor, On-line Learning in Neural Networks,

pages 363–378. Cambridge University Press, 1998. 3

[2] Bjoern H. Menze, B. Michael Kelm, Daniel N. Splitthoff, Ullrich Koethe, and Fred A. Hamprecht. On oblique random
forests. In Machine Learning and Knowledge Discovery in Databases, volume 6912. Springer, 2011. 4

[3] M. Denil, D. Matheson, and N. de Freitas. Consistency of online random forests. In (ICML), 2013. 5

[4] B. Lakshminarayanan, D. Roy, and Y. W. Teh. Mondrian forests: Efficient online random forests. In Advances in Neural
Inform. Process. Syst., 2014. 5

6

