
Supplemental Material for
Learning Online Smooth Predictors for Realtime Camera Planning

using Recurrent Decision Trees

Jianhui Chen ∗ Hoang M. Le † Peter Carr ‡ Yisong Yue † James J. Little ∗
∗University of British Columbia † California Institute of Technology ‡ Disney Research

{jhchen14, little}@cs.ubc.ca {hmle, yyue}@caltech.edu carr@disneyresearch.com

1. Linear Autoregressor Function Class

The autoregresor fπ(y−1, . . . , y−τ) is typically selected
from a class of autoregressors F . In our experiments, we
use regularized linear autoregressors as F .

Consider a generic learning policy π̂ with rolled-out tra-
jectory Ŷ = {ŷt}Tt=1 corresponding to the input sequence
X = {xt}Tt=1. We form the state sequence S = {st}Tt=1 =
{[xt, . . . , xt−τ , ŷt−1, . . . , ŷt−τ]}Tt=1. We approximate the
smoothness of the curve Ŷ by a linear autoregressor

fπ ≡ fπ(st) ≡
τ∑
i=1

ciŷt−i

for a set of constants {ci}τi=1 such that ŷt ≈ fπ (st). Given
expert feedback Y∗ = {y∗t }, the joint loss function becomes

`(y, y∗t) = `d(y, y
∗
t) + λ`R(y, st)

= (y − y∗t)2 + λ(y −
τ∑
i=1

ciŷt−i)
2

Here λ trade-offs smoothness versus absolute imitation ac-
curacy. The autoregressor fπ acts as a smooth linear reg-
ularizer, the parameters of which can be updated at each
iteration based on expert feedback Y ∗ according to

fπ = argmin
f∈F

‖Y ∗ − f(Y ∗)‖`2

= argmin
c1,...,cτ

(

T∑
t=1

(y∗t −
τ∑
i=1

ciy
∗
t−i)

2), (1)

In practice we use a regularized version of equation (1)
to learn a new set of coefficients {ci}τi=1. The Learn
procedure (Line 7 of algorithm 1) uses this updated fπ to
train a new policy that optimizes the trades off between
ŷt ≈ y∗t (expert feedback) versus smoothness as dictated
by ŷt ≈

∑τ
i=1 ciŷt−i.

Figure 1: Performance of learned policy for basketball data
after different number of iterations

1.1. Training with Linear Autoregressor

Our application of Algorithm 1 to realtime camera plan-
ning proceeds as follows: At each iteration, we form a state
sequence S̃ based on the exploration trajectory Ỹ and the
tracking input data X. We collect expert feedback Y∗ based
on each s̃ ∈ S̃. At this point, a new linear autoregressor
fπ is learned based on Y∗, as described in the previous sec-
tion. We then train a new model π̂ based on S̃,Y∗, and this
updated autoregressor fπ , using our recurrent decision tree
framework (Line 7 of Algorithm 1). Note that typically this
creates a ”chicken-and-egg” problem. As the newly learned
policy π̂ is greedily trained with respect to Y∗, the rolled-out
trajectory of π̂ may have a state distribution that is different
from what the previously learned fπ would predict. Our ap-
proach offers two remedies to this circular problem. First,
by allowing expert feedback to vary smoothly relative to the
current exploration trajectory Ỹ, the new policy π̂ should in-
duce a new autoregresor that is similar to previously learned
fπ . Second, by interpolating distributions (Line 10 of Algo-
rithm 1) and having Y∗ eventually converge to the original
human trajectory Y, we will have a stable and converging
state distribution, leading to a stable and converging fπ .

Fig. 1 illustrates the effect of applying Algorithm 1

1

as outlined above using the adaptive interpolation param-
eter β to the basketball data. Throughout iterations, the
linear autoregressor fπ enforces smoothness of the rolled-
out trajectory, while the recurrent decision tree framework
learns an increasingly accurate imitation policy. We gener-
ally achieve a satisfactory policy after 5-10 iterations in our
basketball and soccer data sets. In the following section, we
describe the mechanics of our recurrent decision tree train-
ing.

2. Recurrent Decision Tree Training
Empirically, decision tree-based ensembles are among

the best performing supervised machine learning method
[3, 4]. Due to the piece-wise constant nature of decision
tree-based prediction, the results are typically non-smooth.
We propose a recurrent extension, where the prediction at
each leaf node is not necessarily constant, but rather is a
smooth function of both static leaf node prediction and its
previous predictions.

Given state s as input, a decision tree specifies a parti-
tioning of the input state space. Let D = {(sm, y∗m)}Mm=1

denote a training set of state/target pairs. Conventional re-
gression tree learning aims to learn a partitioning such that
each leaf node, node, makes a constant prediction via min-
imizing the squared loss function:

ȳnode = argmin
y

∑
(s,y∗)∈Dnode

`d(y, y
∗)

= argmin
y

∑
(s,y∗)∈Dnode

(y∗ − y)2, (2)

where Dnode denotes the training data from D that has par-
titioned into the leaf node. For squared loss, we have:

ȳnode = mean {y∗ |(s, y∗) ∈ Dnode } . (3)

In the recurrent extension, we allow the decision tree to
branch on the input state s, which includes the previous pre-
dictions y−1, . . . , y−τ . To enforce more explicit smooth-
ness requirements, let fπ(y−1, . . . , y−τ) denote an autore-
gressor that captures the temporal dynamics of π over the
distribution of input sequences dx, while ignoring the in-
puts x. At time step t, fπ predicts the behavior yt = π(st)
given only yt−1, . . . , yt−τ .

Our policy class Π of recurrent decision trees π makes
smoothed predictions by regularizing the predictions to be
close to its autoregressor fπ . The new loss function in-
corporates both the squared distance loss `d, as well as a
smooth regularization loss such that:

LD(y) =
∑

(s,y∗)∈D

`d(y, y
∗) + λ`R(y, s)

=
∑

(s,y∗)∈D

(y − y∗)2 + λ(y − fπ(s))2

where λ is a hyper-parameter that controls how much we
care about smoothness versus absolute distance loss.

Making prediction: For any any tree/policy π, each leaf
node is associated with the terminal leaf node value ȳnode
such that prediction ŷ given input state s is:

ŷ(s) ≡ π(s) = argmin
y

(y − ȳnode(s))2 + λ(y − fπ(s))2

=
ȳnode(s) + λfπ(s)

1 + λ
. (4)

where node(s) denotes the leaf node of the decision tree
that s branches to.

Setting terminal node value: Given a fixed fπ and de-
cision tree structure, navigating through consecutive binary
queries eventually yields a terminal leaf node with associ-
ated training data Dnode ⊂ D.

One option is to set the terminal node value ȳnode to sat-
isfy:

ȳnode = argmin
y

∑
(s,y∗)∈Dnode

`d(ŷ(s|y), y∗)

= argmin
y

∑
(s,y∗)∈Dnode

(ŷ(s|y)− y∗)2 (5)

= argmin
y

∑
(s,y∗)∈Dnode

(
y + λfπ(s)

1 + λ
− y∗)2 (6)

for ŷ(s|y) defined as in (4) with y ≡ ȳnode(s). Similar to
(3), we can write the closed-form solution of (5) as:

ȳnode = mean {(1 + λ)y∗ − λfπ(s) |(s, y∗) ∈ Dnode } . (7)

When λ = 0, (7) reduces to (3).
Note that (5) only looks at imitation loss `d, but not

smoothness loss `R. Alternatively in the case of joint im-
itation and smoothness loss, the terminal leaf node is set to
minimize the joint loss function:

ȳnode = argmin
y
LDnode(ŷ(s|y))

= argmin
y

∑
(s,y∗)∈Dnode

`d(ŷ(s|y), y∗) + λ`R(ŷ(s|y), s)

= argmin
y

∑
(s,y∗)∈Dnode

(ŷ(s|y)− y∗)2 + λ(ŷ(s|y)− fπ(s))2

= argmin
y

∑
(s,y∗)∈Dnode

(
y + λfπ(s)

1 + λ
− y∗)2

+ λ(
y + λfπ(s)

1 + λ
− fπ(s))2 (8)

= mean {y∗ |(s, y∗) ∈ Dnode } , (9)

Node splitting mechanism: For a node representing a

subset Dnode of the training data, the node impurity is de-
fined as:

Inode = LDnode(ȳnode)

=
∑

(s,y∗)∈Dnode

`d(ȳnode, y
∗) + λ`R(ȳnode, s)

=
∑

(s,y∗)∈Dnode

(ȳnode − y∗)2 + λ(ȳnode − fπ(s))2

where ȳnode is set according to equation (7) or (9) over
(s, y∗)’s in Dnode. At each possible splitting point where
Dnode is partitioned into Dleft and Dright, the impu-
rity of the left and right child of the node is defined simi-
larly. As with normal decision trees, the best splitting point
is chosen as one that maximizes the impurity reduction:
Inode − |Dleft|

|Dnode|Ileft −
|Dright|
|Dnode| Iright

Parameters: The window size of history time is τ =
40 of previous time frames. The number of iterations is
between 5− 10 for the basketball and soccer data sets.

3. Baselines
We build two baseline methods based on Kalman filter

with unknown noise covariances [6].

3.1. Kalman Filter

The noisy, non-smooth target pan positions ŷ′t are gen-
erated by a random decision forest (equivalent to the time
invariant predictions of Equation 3 in the main paper). A
Kalman filter is used to estimate a smooth variant ŷt from
the noisy time invariant predictions ŷ′t (Kalman smoothing
of noisy predictions according to Equation 5 in the main
paper).

We represent the unknown, smoothly varying state Φt =
[θt, θ̇t] of the camera as a combination of instantaneous pan
angle θt and pan velocity θ̇t. The internal state of the cam-
era Φt evolves over time based on a state transition matrix
F. The internal state can also be influenced by an external
signal ut and corresponding control matrix B. The discrep-
ancy wt is modeled as random noise.

Φt+1 = FΦt + But + wt. (10)

Each time invariant prediction ŷ′t is an observation of the
unknown state Φt. Using the measurement matrix H, we can
generate the expected observation HΦt. The discrepancy vt
between the actual observation and the expected observa-
tion is modeled as random noise.

ŷ′t = HΦt + vt. (11)

The filter estimates Φt, which is the basis for the out-
putted smooth approximation ŷt = θt of the input noisy
signal ŷ′t (see Equation 5 of the paper).

log10(Q11)
-6 -5.5 -5 -4.5 -4 -3.5 -3 -2.5 -2

er
ro
r

40

60

80

100

120

140

160

180

Figure 2: Cross validation on constant velocity with no
external control. The minimum error is achieved when
Q11 = 1.0e−4.

frame number
0 1000 2000 3000 4000 5000

pa
n

an
gl

e
(d

eg
re

es
)

-40

-30

-20

-10

0

10

20

ground truth
KF

frame number
0 1000 2000 3000 4000 5000

pa
n

an
gl

e
(d

eg
re

es
)

-40

-30

-20

-10

0

10

20

before KF
KF

Figure 3: Kalman filter testing result. The spatiotemporal
loss is 30.95.

In practice, both process (10) and measurement (11) are
noisy. The sources of noise are assumed to be independent
normal distributions with zero mean and covariance matri-
ces Q and R, respectively.

By setting different dynamic model and observation
model, the smoothly varying state Φt can be recovered us-
ing the standard Kalman filtering method [2]. We explore
the smoothing ability of Kalman filter by setting different
F and H . The measurement covariance matrix R is set as
the the standard deviation of the raw predictions y′t rela-
tive to the ground truth yt (on the training data). The pro-
cess covariance matrixQ is set by cross validation using the
simplification method from [1]. The simplification method
only puts a noise term in the lower rightmost element in Q
to approximate continuous white noise model. The cross
validation error is measured by the joint loss function:

1

T

∑
t

(yt − θt)2 + 500× θ̇2. (12)

3.1.1 Constant Position

In this simple model, we only model the pan angle in the
dynamic and observation model, thus

F =
[
1
]

H =
[
1
]

Fig. 2 shows the cross validation error. Fig. 3 shows the
testing result.

log10(Q22)
-8 -7.5 -7 -6.5 -6 -5.5 -5 -4.5 -4

er
ro
r

50

55

60

65

70

75

80

85

90

95

Figure 4: Cross validation on constant velocity. The mini-
mum error is achieved when Q22 = 1.0e−6.

frame number
0 1000 2000 3000 4000 5000

pa
n

an
gl

e
(d

eg
re

es
)

-40

-30

-20

-10

0

10

20
ground truth
KF

frame number
0 1000 2000 3000 4000 5000

pa
n

an
gl

e
(d

eg
re

es
)

-40

-30

-20

-10

0

10

20

before KF
KF

Figure 5: Kalman filter testing result. The spatiotemporal
loss is 38.12.

3.1.2 Constant Velocity

In this model,

F =

[
1 1
0 1

]
H =

[
1 0

]
Fig. 4 shows the cross validation error. Fig. 5 shows the

testing result.

3.1.3 Constant Velocity with External Acceleration

In this model,

F =

1 1 0.5
0 1 1
0 0 0


H =

[
1 0 0

]
The camera is undergoing external acceleration, leading to
change in velocity as well as the position. Assume the ex-
ternal control is instantaneous accelerations, and there is no
inherent pattern (e.g. smoothness in the control signal). As
a result, there is no correlation between φ̈t and φ̈t+1, which
is the reason that the last row of F consists of all zeros.

Fig. 6 shows the cross validation error. Fig. 7 shows the
testing result.

3.2. Dual Kalman filter

In the dual Kalman filter, both the states of the dynamic
system and its parameters are estimated simultaneously,

log10(Q33)
-8 -7.5 -7 -6.5 -6 -5.5 -5 -4.5 -4

er
ro
r

50

55

60

65

70

75

80

85

90

95

Figure 6: Cross validation on constant velocity with ex-
ternal acceleration. The minimum error is achieved when
Q33 = 1.0e−6.

frame number
0 1000 2000 3000 4000 5000

pa
n

an
gl

e
(d

eg
re

es
)

-40

-30

-20

-10

0

10

20

30

ground truth
KF

frame number
0 1000 2000 3000 4000 5000

pa
n

an
gl

e
(d

eg
re

es
)

-40

-30

-20

-10

0

10

20

30

before KF
KF

Figure 7: Kalman filter (constant velocity with external ac-
celeration) testing result. The spatiotemporal loss is 37.43.

frame number
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

ac
ce

le
ra

tio
n

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

Figure 8: Estimated accelerations.

frame number
0 1000 2000 3000 4000 5000

pa
n

an
gl

e
(d

eg
re

es
)

-40

-30

-20

-10

0

10

20

ground truth
dual KF

frame number
0 1000 2000 3000 4000 5000

pa
n

an
gl

e
(d

eg
re

es
)

-40

-30

-20

-10

0

10

20

before dual KF
dual KF

Figure 9: Dual Kalman filter result. The spatiotemporal
loss is 39.43.

given only noisy observation [5]. Fig. 9 shows the result
of the dual Kalman filter.

References
[1] Kalman and Bayesian filters in python. http:

//gitxiv.com/posts/4wYYffue4WfnhKZoB/
book-kalman-and-bayesian-filters-in-python.
Accessed: 2015-10-24. 3

[2] G. Bishop and G. Welch. An introduction to the Kalman filter.
Technical report, 2001. 3

[3] R. Caruana and A. Niculescu-Mizil. An empirical compari-
son of supervised learning algorithms. In International Con-
ference on Machine Learning (ICML), 2006. 2

[4] A. Criminisi, J. Shotton, and E. Konukoglu. Decision forests:
A unified framework for classification, regression, density
estimation, manifold learning and semi-supervised learning.
Foundations and Trends in Computer Graphics and Vision,
7(2–3):81–227, 2012. 2

[5] S. Haykin. Kalman filtering and neural networks, volume 47.
John Wiley & Sons, 2004. 4

[6] M. Nilsson. Kalman filtering with unknown noise covari-
ances. 2006. 3

http://gitxiv.com/posts/4wYYffue4WfnhKZoB/book-kalman-and-bayesian-filters-in-python
http://gitxiv.com/posts/4wYYffue4WfnhKZoB/book-kalman-and-bayesian-filters-in-python
http://gitxiv.com/posts/4wYYffue4WfnhKZoB/book-kalman-and-bayesian-filters-in-python

